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I. INTRODUCTION AND MOTIVATION

In a modern Commercial-Off-The-Shelf (COTS) multicore
architecture, a core often generates multiple concurrent mem-
ory requests (thanks to techniques such as non-blocking cache,
super-scaler, and out-of-order execution) to hide long off-
chip memory access latency. This, together with the increased
number of cores, puts a high bandwidth pressure on the main
memory subsystem [5].

To cater high memory bandwidth demand, modern main
memory (DRAM) is organized into ranks and each rank is
divided into multiple banks, which can be accessed in parallel.
Each bank is comprised of rows and column; to access data in
a row, an activate command (ACT) must be issued to load the
data in the row-buffer of the bank, before subsequent read or
write commands (RD, WR) can be issued. To access data in
a differnt row, a pre-charge (PRE) command must be issued
to write-back the data in the row-buffer into the originating
DRAM row. Accessing data already in the row buffer (row-
hit) is faster than data in a different row (row-miss).

A COTS DRAM controller typically employs an interleaved
bank addressing strategy to maximize bank parallelism. Mem-
ory requests from the cores (or DMA devices) are buffered
inside the DRAM controller’s internal buffers and the DRAM
controller and issues DRAM commands through the shared
command bus connected to the DRAM chips while respecting
all the timing constraints specified by the JEDEC standard [6].
The queued memory requests are often re-ordered to maximize
memory throughput; the mostly commonly used first-ready
first-come-first-serve (FR-FCFS) [11] scheduling algorithm
prioritizes: (1) Row-hit requests over row-miss requests; (2)
Older requests over younger requests.

Unfortunately, aforementioned COTS memory organization
and DRAM controller design are very poor at providing
predictable timing due to several reasons: First, each core can
access any bank at any time. If, for example, all cores try to
access the same bank at the same time, they will suffer a very
long delay due to the loss of bank-level parallelism. Second,
because the FR-FCFS scheduling algorithm re-orders mem-
ory requests in the DRAM controller’s buffers to maximize
memory throughput, a request from a high priority task can
be starved by the requests from the low priority threads.

Because of these reasons, real-time DRAM controller pro-
posals either partition the banks on a per-core basis [12],
[7], [10] at the hardware level or increase the granulaity of

Fig. 1: Two-level hierarchical memory scheduling algorithm

Fig. 2: An example: Requests to reserved banks (Bank 1-2)
are prioritized over previously arrived requests to shared banks
(Bank 3-4)). (Note: requests are numbered in the arrival time order.)

each memory request so that each request always access all
banks in the DRAM [1], [9]. Also, instead of the FR-FCFS
algorithm, they use predictable scheduling alrogithm such as
round-robin [9] or CCSP [2]. While these real-time DRAM
controller desigsns provide predictable memory timing, they
generally suffer much decreased average memory thoughput.

II. AN ENHANCED COTS DRAM CONTROLLER DESIGN

In this work, we propose a DRAM controller design that
can provide high time predictability when needed for real-
time tasks but also strive to provide high average performance
for non-real-time tasks. We aim to achieve this goal through a
close collaboration between the OS and the DRAM controller.

A. OS based DRAM bank partitioning

First, we partially partition DRAM banks via a software
(OS) based bank partitionnig method [13]. Instead of statically
partitioning all banks as in [10], [12], [7], we reserve a small



number of banks for each core but share the rest of the
banks for all cores. Each core can access both reserved banks
(dedicated for the core) and shared banks depending on the
physical addresses of the memory pages allocated memory by
the OS.

B. Two-level higherarchical memory scheduling

The DRAM controller employs the following two-level
scheduling algorithm. First, it prioritizes memory requests for
the reserved banks over shared banks. Second, arbitration
among deterministic memory requests is determined on a
round-robin basis over the reserved banks. Third, memory
requests to the shared banks are serviced using the standard
FR-FCFS algorithm. Figure 1 shows the flowchart of the
proposed algorithm.

C. Example

Figure 2 shows a running example of the proposed memory
contoller design. In this example, six requests, RD1-6 (num-
bered in their arrival order), are initially in the DRAM con-
troller’s request queues. Note that Bank1 (Bank2) is reserved
for Core1 (Core2), while Bank 3 and 4 are shared by all cores.
Assuming all requests are row-hit requests, if the standard FR-
FCFS algorithm is used, the requests will be processed in the
arrival order—i.e., RD1, RD2, ..., RD6. In our framework,
however, RD5 and RD6 will be prioritized because they are
targetting the core-reserved banks. Note that if there are no
deterministic memory requests in the buffers, our scheduler
works exactly the same as existing COTS memory controllers
(e.g., FR-FCFS).

The expected benefits of our approach is three-fold: 1) Real-
time tasks can easily allocate memory from the reserved banks
(via the OS) to achieve highly predictable timing; 2) Non-
real-time tasks can still achieve high average perforamnce
by allocating memory from the shared banks. Note that the
number of DRAM banks are typically significantly bigger than
the number of cores (e.g., 32 banks vs. 4 cores) and most
applications do not show performance improvement beyond a
certain number of banks [13], [8]; 3) Configuration is highly
flexible (via the OS at run-time).

III. PRELIMINARY EVALUATION RESULTS

In this section, we present our simulation setup and some
preliminary simulation results.

We are currently implementing the proposed DRAM con-
troller design in the Gem5 full-system simulator [3]. We have
modelled a Quad core armv7 system. Each core has a private
L1 cache (32K-I/32K-D) and all cores share a 1MiB L2 cache
(LLC). Both L1 and L2 are non-blocking caches with 4 and
8 MSHRs, respectively, which determine the local and global
limit of outstanding memory requests. We use a realistic event-
based memory controller [4], which captures important timing
and structural constraints of COTS memory controllers and
modified it to prioritize OS specified banks (currently hard
coded to prioritize bank0). On the simulator, we run a full
Linux 3.14 kernel and patched it to use the PALLOC [13]

Fig. 3: Average memory access latencies of Latency bench-
mark with memory intensive co-runners.

memory allocator, which allows us to partition DRAM banks
through the CGROUP interface.

As preliminary work, we used a micro benchmark Latency
(linked list travsersal) and memory intensive co-runners to
evaluate the proposed two-level scheduling algorithm. We
measured the average memory access latency of the Latency
benchmark in the presence of memory intensive co-runners;
we varied the number of co-runners from 0 to 3. Note that
all tasks are single-threaded and each core runs a single task.
We repeat the experiment on three different DRAM controller
and memory configurations: In FR-FCFS (samebank), all cores
access the same DRAM bank to simulate the worst-case
scenario; in FR-FCFS (diffbank), each core is assigend its
own dedicated DRAM bank; in proposed, memory requests
to bank 0 are alwasy prioritized over requests to other banks
and the memory pages of Latency are allocated on the bank0
while co-runners are allocated on the rest of the banks using
PALLOC.

Figure 3 shows the results. As expected, the proposed
scheduling algorithm almost completely eliminate the infer-
ence from the co-runners while the standard FR-FCFS shows
up to 20% higher interference even after partitioning DRAM
banks.

Our future work include 1) predictable handling of write
request draining (currently we only focused on the read request
queue) in the DRAM controller; 2) OS extension to support
more flexible bank partitioning; and 3) desinginig an interface
between the OS and the DRAM controller.
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