
An Efficient Lock Protocol for Home-based Lazy Release Consistency

Hee-Chul Yun Sang-Kwon Lee Joonwon Lee Seungryoul Maeng

Computer Architecture Laboratory
Korea Advanced Institute of Science and Technology

373-1 Kusong-Dong, Yusong-Gu, Taejon Korea 305-701
fhcyun,sklee,joon,maengg@camars.kaist.ac.kr

Abstract

Home-based Lazy Release Consistency (HLRC) shows
poor performance on lock based applications because of
two reasons: (1) a whole page is fetched on a page fault
while actual modification is much smaller, and (2) a home
is at the fixed location while access pattern is migratory. In
this paper we present an efficient lock protocol for HLRC.
In this protocol, the pages that are expected to be used by
acquirer are selectively updated using diffs. The diff accu-
mulation problem is minimized by limiting the size of diffs to
be sent for each page. Our protocol reduces the number of
page faults inside critical sections because pages can be up-
dated by applying locally stored diffs. This reduction yields
the reduction of average lock waiting time and the reduction
of message amount. The experiment with five applications
shows that our protocol archives 2% - 40% speedup against
base HLRC for four applications.

1 Introduction

Research on cluster systems such as NOW (Network of
Workstations) has been fuelled by the availability of pow-
erful microprocessors and high-speed interconnection net-
works. Shared Virtual Memory (SVM) [9] is a cost effec-
tive solution to provide shared memory abstraction to these
cluster systems.

LRC [6] and HLRC [13] are most popular protocols for
SVM. Both of them are multiple-writer protocols where two
or more processes can simultaneously modify their copy of
a shared page. The detection of modifications is done by
twinning and diffing [6]. Memory organization and diff
management differentiate LRC and HLRC. In LRC, each
shared page is treated like a cache. A diff is created when
other process requests that diff. When a page fault occurs

0This research is supported by KISTEP under the National Research
Laboratory program.

by accessing an invalid page, a faulting process examines
the write-notices to know writers of the page and sends a
diff request to them. Each process keeps diffs created by it-
self until a garbage collection. In HLRC, each shared page
has a designated home to which all writes are propagated.
Diffs are created at the end of an interval and sent to their
home(s). A diff can be discarded at the creating and home
process as soon as it is applied at the home process. When a
page fault occurs, the faulting process fetches a fresh copy
of the page from the home.

By introducing the concept of home, memory consump-
tion for maintaining diffs and the number of messages
needed to update a page is reduced. And writes to home
do not produce twins and diffs. However, it has several dis-
advantages: home assignment is important for performance
and a whole page must be fetched even when modifica-
tion is small. These disadvantages severely hurt lock per-
formance of HLRC. In general, memory area protected by
lock is small and access pattern is migratory. However, in
HLRC, the whole page must be fetched and home is at the
fixed location. Therefore, the execution time of a critical
section is increased and this can result lock serialization.

In this paper, we present an efficient lock protocol for
HLRC. This protocol inherits the characteristics of HLRC
but selectively updates pages that are expected to be ac-
cessed in the acquirer’s critical section by sending diffs at
lock release. To minimize the effect of diff accumulation
problem [8], the maximum size of diffs for a page is lim-
ited to page size. If it exceeds page size, diffs for that page
are not sent. Our protocol has following advantages: (1)
It reduces page fault handling time inside a critical section
because pages are updated at the time of lock acquire. This
also helps to reduce lock-waiting time by minimizing lock
serialization. (2) It reduces message amount because diffs
are used to make a fresh copy instead of fetching a whole
page. Our protocol was implemented in KDSM (KAIST
Distributed Shared Memory) system, which is our imple-
mentation of Princeton HLRC [13]. We used five applica-



tions, which include relatively many locks. For four appli-
cations, speedup is improved from 2% to 40% and the num-
ber of page faults inside critical sections is reduced 56% on
the average and up to 98% against base HLRC. For one ap-
plication, our protocol matched the performance with base
HLRC. Overhead of our protocol is negligible.

The rest of this paper is organized as follows. Section
2 briefly introduces HLRC and shows that lock operation
is inefficient in HLRC. We describe suggested protocol in
section 3 and present the result of the performance compar-
ison in section 4. Section 5 discusses related work. Finally,
section 6 summarizes our conclusions.

2 Background

2.1 HLRC

HLRC is a page-based multiple writer protocol. Its pro-
totype has been implemented at Princeton Univ [13]. Like
LRC, HLRC divides program execution withintervals. An
interval begins with each special access such as a release or
an acquire. By maintaining the happened-before ordering
[6] between the intervals, RC [4] can be maintained. For it,
each processor has its ownvector timestamp: the recent in-
terval information of all processes. The main difference of
HLRC against LRC is every shared page has its designated
home to which all writes are propagated. To make home
up-to-date, diff of each modified page is sent to its home at
the end of an interval. At the time of an acquire, acquiring
process receives write notices from releasing process and
invalidate pages indicated by them. When an actual access
happens on an invalidated page, faulting process update its
stale copy by fetching the fresh copy from the home.

HLRC have several advantages over LRC [2]. First, a
process can update its stale copy with one roundtrip mes-
sage with home. Second, since all diffs on a shared page
are collected and applied to the home copy, diffs can be dis-
carded from the memory. Therefore, memory requirement
is much smaller than LRC. Third, because home is always
up-to-date, accesses at the home node do not cause any pro-
tocol action except just changing protection. However, there
are also some disadvantages. First, because home is at fixed
location, modification of each non-home copy must be sent
to its home at the end of an interval. Therefore, if home
is not wisely assigned, severe performance degradation can
occur. Second, on a page fault, whole page must be fetched
while modification can be much smaller.

These problems severely hurt the performance of lock
operation in HLRC. In the following section, we will show
the reasons.

P0 P1 P2(home)

W(x)

x (4byte)

page (4Kbyte)

Rel

apply
diff

create
diff

Acq

R(x) fetch
page

copy
page

Figure 1. An example of lock operation in
HLRC

2.2 Problems of using lock in HLRC

In general, memory area protected by lock is small,
and its access pattern is migratory. These characteristics
exactly match with the problems of HLRC. First, proper
home assignment is hard due to migratory behavior of lock-
protected data. Home-migration techniques [3, 10] are not
helpful because they only make sense for barrier-protected
data. Therefore, diff must be transferred to its home at ev-
ery release. Second, a whole page must be fetched while
actual modification is much smaller. This causes long la-
tency inside a critical section thus increases the possibility
of lock serialization. Lock serialization is the situation that
a process is waiting for a lock, which is currently held by
other process. Lock serialization badly hurt the overall per-
formance of the system and it happens more frequently as
the number of processes increase.

Figure 1 clearly shows these problems. The home pro-
cess (P2) must apply received diff and serve a page request
even it is neither acquirer nor releaser. Moreover, P1 fetches
a page (4Kbyte), while actual modification is only 4byte
size.

3 Improved Lock Protocol for HLRC

3.1 Protocol

We suggest a new lock protocol for HLRC. The main
ideas of our protocol are as follows. : Releaser sends diffs
for expected pages to be used by acquirer. When a page
fault occurs in acquiring process, it applies received diffs for
that page instead of fetching a whole page from the home.
In this way, our protocol reduces page fault handling time
and lock-waiting time.



P0 P1 P3(home)

W(x)
W(y)

Acq

fetch
page

apply
diffs

Rel

Acq

P2

R(y)

create
diffs

apply
diffs

create
diffs

copy
page

Rel

P0 P1 P3(home)

W(x)
W(y)

Acq

fetch
page

R(x)
W(x)

R(y)
W(y)

apply
diff

apply
diffs

apply
diff

Rel

Acq

P2

R(x)

R(y)

apply
diffs

create
diffs

copy
page

send
diffs

store
diffs

Rel

store
diffs

apply
diff

create
diffs

send
diffs

fetch
page

R(x)

copy
page W(x)

copy
page W(y)

fetch
page

R(y)

fetch
page

R(x)

copy
page

x (4byte)

page X

y (3Kbyte)

page Y

< HLRC > < Ours >

Figure 2. An example of HLRC and Our protocol

Main operations of our protocol occur at three phases:
lock request, lock grant, and page fault handler. Detailed
descriptions of each phase are as follows.

� Lock request
Acquirer sends a lock request with information of ex-
pected pages to be used inside a critical section. Cur-
rently only page number information is used but ver-
sion information of each page can be added to know
the exact diffs that are needed to update each page.
The expectation is based on previous access history
of the critical section of that lock.

� Lock grant
Releaser of that lock decides pages to send diffs based
on the information from the lock request. To mini-
mize the effect of diff accumulation problem [8], se-
lection is based on the size of diffs to be sent for a
page. If it exceeds a page size, diffs for that page are
not sent. Diffs of selected pages are sent with write-
notices as a lock grant message.

� Page fault handling
To avoid diff application for unaccessed pages, re-
ceived diffs are not applied immediately, but they are
just stored locally. Diff application occurs at a page

fault. The page fault handler examines stored diffs
whether there is all diffs to make the page up-to-date.
If all diffs are found, they are applied for the faulting
page. If not, it fetches a fresh page from the home
just as base HLRC does.

Figure 2 clearly shows the differences of our protocol
from base HLRC. At the first glance, it can be noticed that
page requests to home occurred only once in our protocol
while base HLRC did four times. The only page request of
our protocol at P2 is due to accumulated diffs. To make up-
to-date copy of page Y at P2, two diffs must be sent from
P1. However, summed size of these two diffs exceeds a
page size. Therefore, P1 decides not to send these diffs as
explained above.

3.2 The merits and demerits

Our protocol has several advantages over base HLRC.
First, it reduces a page fault handling time inside criti-

cal sections. Usually, diffs are received at the time of lock
acquire. When a page fault occurred, page fault handler
can make a up-to-date copy of the page by simply apply-
ing these locally stored diffs. Because diff applications take
much shorter time than fetching a whole page, page fault



handing time can be greatly reduced. This reduction also
helps to reduce lock-waiting time because lock serialization
can be minimized. Second, it reduces message amounts. To
make a page up-to-date only diffs are transferred while the
whole page is transferred in base HLRC. The summed size
of transferred diffs for a page is guaranteed to be smaller
than a page size in our protocol. Third, extra messages for
our protocol are not needed. All needed information can
be piggybacked to existing protocol messages (such as lock
request or lock grant message).

The overheads of our protocol are creating diffs for home
pages and memory overhead to store diffs. However, these
overheads can be minimized as explained in the following
sections.

3.3 Home page diffing overhead and its solutions

To operate fully update manner, creating diffs for home
pages is desirable. However, it is limited for the pages ac-
cessed inside critical sections. Other pages do not create
diffs just as base HLRC does. In general, the number of
pages accessed inside critical sections is quite small. There-
fore, creating diffs for home pages do not hurt performance
much. Moreover, by limiting the size of a diff, average time
required to create diff for a home page can be reduced com-
pared with for a non-home page. Because home page diffing
does not affect correctness and large diffs have less possi-
bility to be sent, this limiting helps performance. In our
current implementation, this threshold value is set to 256
bytes. In this ways, overall overhead related to home page
diffing is minimized.

3.4 Memory overhead and its solution

In our protocol, diff should be maintained in memory.
However, it is only for the pages accessed inside critical sec-
tions as in the case of home page diffing. Therefore, mem-
ory requirement is much smaller. Moreover, because home
is always updated, diffs can be discarded at anytime with-
out affection of correctness. Therefore, complex garbage
collection procedure as in LRC is not needed. Simply dis-
carding old diffs is enough procedure for garbage collec-
tion.

4 Performance Evaluation

We performed experiments on 8 node Linux cluster
which are connected by 100 Mbps Switched Fast Ethernet.
Each node contains 500 MHz Pentium III CPU and 256 MB
main memory.

4.1 KDSM: KAIST Distributed Shared Memory

KDSM (KAIST Distributed Shared Memory) is a full-
blown SVM system, which was implemented from scratch.
KDSM was implemented as a user-level library running
on Linux 2.2.13. Communication layer is TCP/IP and SI-
GIO signal handling is used for processing messages from
other processes. KDSM uses page-based invalidation pro-
tocol, multiple-writer protocol, and support HLRC memory
model. Average basic operation costs of KDSM are as fol-
low: 1047�s for fetching a 4KB page, 259�s for acquiring
a lock, and 1132�s for barrier (8 processors).

4.2 Applications

We used five applications: TSP, Water, Raytraceorig,
Raytracerest and IS. Raytraceorig and Raytracerest are two
different version of the same program. The former is origi-
nal application from SPLASH2 [12] and the later is restruc-
tured version that removes a lock to protect status informa-
tion as described in [5]. TSP, Water and IS are from the
CVM [7] distribution.

Table 1 shows the problem sizes, number of synchro-
nizations, and their sequential execution times.

Appl. size locks barrs seq.time
TSP 19 cities 693 2 24.96
Water 343 mol 1040 70 12.96
Raytraceorig balls4 120945 1 57.82
Raytracerest balls4 2081 1 57.82
IS 215,10 80 30 7.05

Table 1. Benchmark applications, problem
size, synchronization operations, and se-
quential executing time

4.3 Experimental Results

Table 2 shows execution results of the benchmarks. It
lists 8 processor execution time, speedup, number of page
requests, number of pages requests inside critical sections,
and message amount.orig is base HLRC andnew is our
protocol. It can be seen from table 2 thatnewreduce num-
ber of page request and message amount in TSP, Water,
Raytraceorig, Raytracenew and consequently obtains per-
formance improvement. Raytaceorig uses lock intensively,
mostly to protect status information, which is simply 4byte
integer variable.neweliminates most of the page faults to
access this variable, thus reduces 98% of total page requests



Appl. 8-proc.time speedup remote getp getp in CS Msg.amt(MB)
orig new orig new orig new orig new orig new

TSP 7.19 5.83 3.47 4.28 6646 4505 6047 3896 27 19
Water 3.19 3.00 4.06 4.32 2442 2048 852 464 12 10

Raytraceorig 182.15 107.88 0.31 0.53 121652 18259 105309 1928 526 129
Raytracerest 10.90 10.71 5.30 5.40 8578 7424 2603 1337 36 31

IS 4.89 4.92 1.44 1.43 4188 4188 2044 2044 25 25

Table 2. Execution results of the Benchmarks

0

20

40

60

80

100

120

orig new orig new orig new orig new orig new

TSP Water Raytrace(o) Raytrae(r) IS

app & others

segv time

barrier time

lock time

Figure 3. Normalized execution time breakdown



inside critical sections. Moreover, because diffs are trans-
ferred instead of pages, message amount is greatly reduced
(526MB!129MB). Therefore, Raytraceorig obtains 40%
of performance improvement. TSP also shows good per-
formance improvement (19%). Performance improvement
is not so good in Water(6%) and Raytracerest(2%). It is
mainly because the fraction of page requests inside critical
sections is not large compared with total page requests. For
IS, it is the only application that doesn’t show improvement.
In fact performance is slightly degraded (0.6%). Because of
large write-granularity inside a critical section diffs are not
sent withnew in IS. The slight time increase is due to the
overhead of home page diffing. However, this overhead, as
you can see, is very small.

Figure 3 shows normalized execution time breakdown
of newandorig. Page fault handling time (SEGV time),
lock time, barrier time, and application time are presented.
It can be seen from the figure 3 that reducing page faults
inside critical sections is very effective to reduce lock time.
For Raytraceorig, lock time is significantly reduced because
lock is seriously serialized. TSP, Water and Raytracerest

also obtain both time reduction.

5 Related Work

There were many researches to improve lock perfor-
mance by adapting to migratory access pattern [6, 11, 1].
Although the work described here is done in the context of
specific home-based protocol, HLRC, some of our ideas are
related with these researches.

Just as our protocol, Lazy Hybrid (LH) [6] protocol se-
lectively updates pages by sending diffs at the time of lock
release. However, our protocol differs from LH mainly
in that updates are only used for specific pages: accessed
pages in the previous critical section of the acquirer. Perfor-
mance benefits of the updates are limited in the LH because
usually more pages are updated than actually needed.

ADSM [11] adapts to the sharing pattern of each page.
It dynamically categorizes the type of sharing experienced
by each page. For the migratory page (usually protected by
lock), ADSM switch the page into single-writer mode and
updates that page at the time of lock release. The page se-
lection scheme for the updates is similar with our protocol.
However, ADSM transfers a whole page for update because
the page is in the single-writer mode.

Amza [1] also adapts to migratory pattern in the simi-
lar way but write granularity is considered. If the size of
the modification to a page is not larger than some thresh-
old, invalidation based multiple-writer protocol is used to
reduce message traffic. However, invalidation protocol suf-
fers from larger delay against update protocol.

6 Conclusions

To improve the lock performance of HLRC, we propose
a new lock protocol for HLRC. By updating pages that are
expected to be accessed inside a critical section, our pro-
tocol reduces page fault handling time inside a critical sec-
tion, thus avoid lock serialization. The experiments with
five applications, which use relatively many locks, shows
that our protocol is quite effective. For some applications
that lock is the main synchronization operation, our proto-
col shows significant performance improvement over base
HLRC. Overhead of our protocol is negligible in the tested
benchmarks.

References

[1] C. Amza, A. Cox, S. Dwarkadas, L. Jin, K. Rajamani,
and W. Zwaenepoel. Adaptive Protocols for Software Dis-
tributed Shared Memory.Procedings of the IEEE, March
1999.

[2] A. Cox, E. de Lara, Y. Hu, and W. Zwaenepoel. A Per-
formance Comparison of Homeless and Home-based Lazy
Release Consistency Protocols in Software Shared Memory.
In Proceedings of the fifth HPCA, 1999.

[3] W. H. et al. Home Migration in Home-Based Software
DSMs. InProceedings of 1st WSDSM, 1999.

[4] K. Gharachorloo, D. Lenoski, P. Gibbons, A. Gupta, and
J. Hennessy. Memory Consistency and Event Ordering in
Scalable Shared-Memory Multiprocessors. InProceedings
of the 17th ISCA, 1990.

[5] D. Jiang, H. Shan, and J. Singh. Application restructuring
and performance portability on shared virtual memory and
hardware-coherent multiprocessors. InProceedings of the
6th PPOPP, 1997.

[6] P. Keleher.Distributed Shared Memory Using Lazy Release
Consistency. PhD thesis, Rice University, December 1994.

[7] P. Keleher. CVM: The Coherent Virtual Machine. Technical
report, 1996.

[8] H. Li, S. Dvarkadas, A. Cox, and W. Zwaenepoel. Message
Passing Versus Distributed Shared Memory on Networks of
Workstations. InProceedings of Supercomputing ’95, De-
cember 1995.

[9] K. Li. Shared Virtual Memory on Loosely Coupled Mul-
tiprocessors. PhD thesis, Yale University, Department of
Computer Science, September 1986.

[10] W. W. M.C. Ng. Adaptive Schemes for Home-based DSM
Systems. InProceedings of 1st WSDSM, 1999.

[11] L. Monnerat and R. Bianchini. Efficiently Adapting to Shar-
ing Patterns in Software DSMs. InProceedings of the 4th
HPCA, February 1998.

[12] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. InProceedings of the 22th ISCA, 1995.

[13] Y. Zhou, L. Iftode, and K. Li. Perforamnce Evaluation
of Two Home-Based Lazy Release Consistency Protocols
for Shared Virtual Memory Systems. InProceedings of
USENIX OSDI, October 1996.


