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Abstract

In this paper, we present a case-study that shows the challenges of using multicore based platforms for real-time
applications, and demonstrate how our kernel based memory bandwidth management system, called MemGuard, can
improve real-time performance efficiently.

We show that isolating cores does not necessarily provide desired performance isolation due to contention in shared
hardware resources, DRAM in particular. More concretely, the periodic real-time task used in the case-study suffers
28% deadline violations due to memory accesses originated from a non-real-time task (X-server), even though each
task is running on a different, isolated core. Using MemGuard, we can configure the system in a way that eliminates
all deadline violations at the cost of small throughput reduction of the non-real-time task.

1 Introduction

DRAM is an important shared resource in modern multi-
core systems. When multiple tasks concurrently run on
different cores, they compete for the shared DRAM band-
width and their performance can vary widely due to con-
tention in DRAM accesses. Such performance variability
is highly undesirable in real-time embedded systems.

In our previous work [3], we presented a kernel level
approach, called MemGuard, which can minimize such
performance variations. MemGuard uses hardware per-
formance counters to periodically monitor and regulate
the memory bandwidth usage of each core. Each core can
reserve a minimum memory bandwidth, which is guaran-
teed irrespective of memory access activities of the other
cores. This property can greatly simplify archieving de-
sired real-time performance on multicore platforms. Fur-
thermore, each core can receive additional bandwidth de-
pending on other cores memory bandwidth usage, effi-
ciently utilizing bandwidth.

To demonstrating the effectiveness of MemGuard in
[3], however, we mainly used the SPEC2006 benchmark
suite [2] and the instruction-per-cycle (IPC) metric that
do not capture important aspects of real-time systems
such as deadline miss ratios and WCETs.

In this work, we present a case study of a real-time
system that demonstrates how MemGuard can be config-
ured to deliver the required real-time performance. The
real-time system in the case-study consists of a periodic
real-time task, which has a given deadline, and an X-
server, which constantly updates the screen. The two de-
sired goals of the system are (1) to meet the deadline of
the real-time task and (2) to provide a fast screen updates
for the X-server; the former goal is more important than
the latter.

When we use an unmodified Linux kernel on an In-
tel Xeon 3553 based multicore platform, we found that
contention in shared DRAM causes up to 41% WCET
increases of the real-time task resulting in 28% deadline
violations. Using MemGuard, however, we can config-
ure the system to eliminate all deadline violations while
only causing as small as 17% performance reduction for
the X-server. The results suggest that MemGuard can ef-
ficiently provide desired real-time performance in a con-
trollable manner.

The remaining sections are organized as follows:
Section 2 reviews related background and the MemGuard
system. Section 3 presents the case-study results and dis-
cuss benefits and limitations. We conclude in Section 4.
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2 Background

In this section, we describe DRAM basics and review the
MemGuard system.

2.1 DRAM Basics

FIGURE 1: DRAM organization

Figure 1 shows the organization of a typical DRAM
based memory system. A DRAM module is composed
of several DRAM chips that are connected in parallel
to form a wide interface (typically 64bits in PC). Each
DRAM chip has multiple banks that can be operated con-
currently. Each bank is then organized as a 2d array, con-
sisting of rows and columns. A location in DRAM can be
addressed with the bank, row and column number.

In each bank, there is a buffer, calledrow buffer, to
store a single row (typically 1˜2KB) in the bank. In order
to access data, the DRAM controller must first copy the
entire data in the selected row into the row buffer of the
bank. The required latency for this operation is denoted
astRCD, often called as the RAS latency. The DRAM
controller then can read/write from the row buffer with
only issuing column addresses, as long as the requested
data is in the same row. The associated latency is denoted
astCL, often called as the CAS latency. If the requested
data is in a different row, however, it must save the con-
tent of the row buffer back to the originating row. The
associated latency is denoted astRP . In addition, in or-
der to open a new row in the same bank, at leasttRC

time must be passed since the opening of the current row.
Typically tRC is slightly larger than the sum oftRCD,
tCL, andtRP . The access latency to a memory loca-
tion, therefore, varies depending on whether the data is
already in the row buffer, called “row hit”, or not, called
“row miss”. The worst-case latency occurs when suc-
cessive requests are targeting different rows in the same
bank, which is determined by thetRC parameter.

Because banks can be accessed in parallel, the
achievable memory bandwidth also varies significantly

depending on how many banks are utilized concurrently.
If, for example, two successive memory requests are tar-
geting to bank0 and bank1 respectively, they can be re-
quested in parallel, achieving higher bandwidth. In the
best case, the peak bandwidth is only limited by the
DRAM I/O bus speed. For example, A DDR2 memory
system with 400MHz clock can feed up to 6400MB/s
(400M x 2 x 64bit). In the worst case, when there is
no bank level parallelism and each memory access would
cause a row-switch, the bandwidth would be limited by
tRC parameter. For example, a DDR2 memory with a
50nstRC value can serve up to 1280MB/s in the worst-
case. Because this bandwidth can be guaranteed even
in the worst-case, we call itguaranteed bandwidth. As
we will describe in the next subsection, MemGuard uses
the guaranteed bandwidth as the basis for its bandwidth
reservation.

2.2 MemGuard

FIGURE 2: MemGuard system architecture

In this subsection, we briefly review the MemGuard
system [3]. MemGuard is a software system with a goal
of providing memory performance isolation while still
maximizing memory bandwidth utilization. By memory
performance isolation, we mean that the average mem-
ory access latency of a task is no larger than when run-
ning on a dedicated memory system which processes
memory requests at a certainminimumservice rate (e.g.,
1GB/s). A multicore system can then be considered as a
set of unicore systems, each of which has a dedicated, al-
beit slower, memory subsystem. This notion of isolation
is commonly achieved through resource reservation ap-
proaches in real-time literature [1] mostly in the context
of CPU bandwidth reservation.

Figure 2 shows the overall system architecture of
MemGuard. MemGuard uses hardware performance
monitoring counters (PMCs) to account memory band-
width usage of each core. Each core can reserve a fraction
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of memory bandwidth and the MemGuard system guar-
antees the reserved bandwidth to be usable to the core.
To guarantee the reserved bandwidth, the total reserved
memory bandwidth should be limited up to the guaran-
teed bandwidth—the worst-case memory bandwidth. It
operates periodically and assign a memory usage budget
for a given time period, which is currently set as 1ms. At
the beginning of each period, the budget is recharged ac-
cording to the core’s reserved bandwidth. When the core
uses the budget within the period, it stops executing—by
scheduling a high priority idle-task with SCEHDFIFO—
until a new period begins. When all cores use their bud-
gets before the next period begins, the additional band-
width is considered as best-effort bandwidth and shared
by all cores. It currently provides two sharing modes:
“spare sharing” and “proportional sharing” (See [4] for
details). In this paper, we use the latter sharing mode,
denoted as “PS”.

3 Case Study

In this section, we present a multicore based real-
time system which shows how real-time performance—
WCET and deadline miss rate—can be impacted by
memory interference. We then present how MemGuard
can be used to improve real-time performance of the sys-
tem with minimal throughput reduction of non-real-time
part of the system.

3.1 Target Application

The target system in this case-study models a real-time
data acquisition system, which is composed of a peri-
odic real-time task and a non-real-time task. The real-
time task periodically read a memory region and per-
forms basic processing. The computation must be fin-
ished within a given deadline in order to avoid data cor-
ruption as the hardware can overwrite the buffer with in-
comding data. A non-real-time task is responsible for
analyzing and post-processing the data acquired by the
real-time task. This is a typical real-time data-acquisition
application found in a variety of real-time systems. For
example, an Unmanned Aerial Vehicle (UAV) with a real-
time video recording and analysis capability can be de-
signed in this way.

We simulated the system on a PC platform as fol-
lows: First, we create a synthetic real-time taskHRT that
periodically reads a chunk of main memory (the size is
equal to 32bpp raw HD video frame data). Each job
should be finished within the deadline of 13ms and the
period is 20ms (e.g., 50Hz HD video processing with
per-frame deadline of 13ms). Hence, we schedule the
task with a real-time scheduling policy (SCHEDFIFO)

in Linux. Note that HRT is insensitive to the shared L3
cache as all memory accesses are causing cache-misses.
Second, for non-real-time data processing workload, we
use the standard X-window server, which is responsi-
ble for updating the screen. When the X-server up-
dates screen, it generates memory traffic which can be
contended with the HRT task concurrently. In order to
make the X-server update the screen, we simply use a
gnome-terminal to output text continuously scrolling the
screen (in fact the standard output of the HRT program).
We run the X-server with the standard scheduling policy
(SCHED OTHER) in Linux. When the real-time task and
the X-server run together on different cores on the plat-
form, they compete for the shared main memory, causing
contention. We create acgrouppartition for all non-real-
time tasks, including the X-server, and assign a dedicated
core. We assign another core for the real-time task using
taskset.

The two desired goals of the system are (1) to meet
the deadline of the real-time application and (2) to pro-
vide a high frame-rate for the X-server; the former goal
is more important than the latter. We use the deadline
miss ratio and the execution time distribution to gauge
the first goal. We use the CPU utilization of the X-server
to measure the latter goal.

3.2 Hardware Platform

For evaluation, we use an Intel Xeon W3530 proces-
sor (Nehalem architecture) based desktop computer. The
processor has four cores, runs at a 2.8GHz frequency,
and has a 8MB 16-way shared L3 cache and 256KB pri-
vate L2 caches. The memory controller is integrated in
the processor. It has one 4GB PC10666 DDR3 DIMM
module with the maximum clock speed of 1333MHz;
the maximum transfer rate is 10.6GB/s. For evaluation,
we only use only two cores—one for real-time and the
other for non-real-time tasks—and disable others. We
also disable the Intel hyperboost feature and hardware
prefetchers in order to minimize CPU performance un-
predictability and to reduce memory bandwidth usage
(some prefetched data may not be used).

3.3 Real-Time Performance

In this section, we first present measured real-time per-
formance and throughput of the model system under the
vanilla Linux 3.6.0. We then show how we can improve
the real-time performance using MemGuard. Throughout
the experiments, we use only two cores: Core0 (for HRT)
and Core1 (for X-server).
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3.3.1 Vanilla Linux Kernel
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FIGURE 3: Runtime distribution of HRT, run-
ning alone (solo), under original Linux 3.6.0.
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FIGURE 4: Runtime distribution of HRT, run-
ning w/ X-server (corun), under original Linux
3.6.0.

Figure 3 shows the runtime distribution of the real-
time task running alone (“solo”) on Core0 for the dura-
tion of 1000 executions with the period of 20 ms, under
the unmodified Linux 3.6.0 kernel; X-axis shows execu-
tion times (in “ms” unit) and the Y-axis shows the corre-
sponding frequencies. Because the HRT task runs alone
using the FIFO real-time scheduling policy, its execution
time variations are small. The 99 percentile execution
time is 10.22ms and all meet the deadline of 13ms (the
vertical red line).

However, when we make X-server, running on
Core1, update the screen continuously with the output
of the HRT task, running on Core0, the runtime distri-
bution varies significantly as shown in Figure 4; the 99
percentile execution time is now 14.33ms (41% increase)
and the deadline miss ratio is 28%. Because each of the
two tasks is running on a dedicated core and the shared
L3 is not utilized by HRT by design, we can infer that the
observed performance variations mainly come from the
contention in the shared memory hierarchy.

3.3.2 MemGuard with Insufficient Bandwidth
Reservation
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FIGURE 5: Runtime distribution of HRT, run-
ning alone (solo) under MemGuard(600:600).
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FIGURE 6: Runtime distribution of HRT,
running w/ X-server (corun) under Mem-
Guard(600,600).

Next, we use MemGuard and reserve a fraction of
the memory bandwidth to improve the real-time perfor-
mance of HRT. We assign 600MB/s bandwidth for each
core without using best-effort sharing to see the effect of
bandwidth reservation only; we denote this configuration
as MemGuard(600,600).

Figure 5 shows the runtime distributions of the HRT
task running alone on Core0 under MemGuard(600,600).
First note that the runtimes are increased considerably—
the 99 percentile is 13.35ms (31% increase)—compared
to the previous results under the unmodified Linux ker-
nel. This is because the reserved bandwidth 600MB/s is
slightly less than the task needs—i.e., insufficient band-
width reservation. Therefore, the HRT task is self-
regulated by the MemGuard system due to the bandwidth
limit.

However, an important benefit of bandwidth reserva-
tion can be seen in Figure 6 when we make the X-server
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constantly update the screen concurrently on Core1. Note
that the “corun” runtime distribution of HRT is almost
identical to the ’solo’ in spite of the X-server. In other
words, real-time performance is not affected by the con-
tending X-server. That is because the X-server is also
regulated by the reserved bandwidth of 600MB/s, which
significantly reduces the contention that the real-time task
experiences. As a result, the performance variation due to
contention is much smaller. Note, however, that much of
the available memory bandwidth is wasted because cores
cannot use more than their small reserved bandwidth.
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FIGURE 7: Runtime distribution
of HRT, running alone (solo), under
MemGuard(600:600)+PS—reservation + best-
effort sharing.
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FIGURE 8: Runtime distribution of HRT,
running w/ X-server (corun), under Mem-
Guard(600:600)+PS.

To better utilize the available memory bandwidth, we
now enable the best-effort sharing (see Section 5.3 in [4]
for more details) of MemGuard. Figure 7 shows the run-
time distribution of the HRT task running alone under the
MemGuard with 600MB/s bandwidth reservation and the
best-effort sharing, denoted as MemGuard(600,600)+PS.
First, note that the runtime behavior is improved signif-
icantly to the point similar to that of the vanillar Linux
kernel. This is because best-effort memory bandwidth is

efficiently redistributed to the HRT task. Second, Fig-
ure 8 shows the real-time performance of “corun” experi-
ment, which also show significant real-time performance
improvements. Even in the presence of the contending X-
server, the HRT task can meet the deadline in most cases
(only 1 miss out of 1000) and the 99 percentile perfor-
mance is 12.1ms, which is well below the deadline.

3.3.3 MemGuard with Sufficient Bandwidth Reser-
vation
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FIGURE 9: Runtime distribution of HRT, run-
ning alone (solo), under MemGuard(900:300)—
reservation only.
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FIGURE 10: Runtime distribution of HRT,
running w/ X-server (corun), under Mem-
Guard(900:300).

In this experiment, we increase the reserved band-
width for the HRT task at Core0 from 600MB/s to
900MB/s. At the same time, we reduce the reserved
bandwidth for the X-server at Core1 from 600MB/s to
300MB/s, in order to make the sum of reservations is
unchanged. We, however, again disable the best-effort
bandwidth sharing. We denote this configuration as
MemGuard(900,300).
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Figure 9 shows the runtime distribution of the
HRT task running alone (solo) at Core0 under Mem-
Guard(900,300). Note that the HRT task’s runtime dis-
tribution is very similar to that of the unmodified Linux
in Section 3.3.1. This means that the reserved bandwidth
is enough for the HRT task that it does not suffer per-
formance penalties. In the “corun” case, shown in Fig-
ure 10, the runtime distribution is still very similar to the
“solo” case, meaning that X-server’s influence to the HRT
task is very small. The 99 percentile execution times in
“solo” and “corun” cases are 10.72ms and 11.23ms, re-
spectively. As a result, the HRT task always meets the
deadline.
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FIGURE 11: Runtime distribution of
HRT, running alone (solo), under Mem-
Guard(900:300)+PS
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FIGURE 12: Runtime distribution of HRT,
running w/ X-server (corun), under Mem-
Guard(900:300)+PS.

When we enable the best-effort bandwidth sharing,
denoted as MemGuard(900,300)+PS, the real-time per-
formance further improves, albeit slightly, as shown in
Figure 11 and Figure 12. The 99 percentile execution
times are 10.68ms and 10.72ms in “solo” and “corun”
cases, respectively.

3.4 Throughput Impact

It should be noted, however, that the improved real-time
performance comes at the cost of reduced performance
of the X-server. In this subsection, we compare the
throughput impacts of bandwidth reservation and best-
effort bandwidth sharing.

Config. Util.(%) Diff.(%)
Linux 3.6.0 78 N/A
MemGuard(600,600) 6 -72
MemGuard(600,600)+PS 61 -17
MemGuard(900,300) 4 -74
MemGuard(900,300)+PS 48 -30

TABLE 1: CPU utilization of X-server at
Core1.

Config. 99 pct. deadline
(ms) miss(%)

Linux 3.6.0 14.33 28
MemGuard(600,600) 13.38 100
MemGuard(600,600)+PS 12.10 0
MemGuard(900,300) 11.23 0
MemGuard(900,300)+PS 10.72 0

TABLE 2: HRT runtime characteristics at
Core0.

Table 1 shows the observed CPU utilization of the
X-server at Core1. First, note that the X-server’s CPU
utilization is the highest at 78% under the unmodified
Linux 3.6.0 kernel. When we use MemGuard(600,600),
the CPU utilization is plummeted to mere 6%. This re-
sult suggests that the X-server needs significantly higher
memory bandwidth when it is actively updating the
screen and the reserved 600MB/s is not any close to
the requirement. We can visibly notice the performance
slowdown as screen updates (scrolling text) occurs much
less frequently. When we enable the best-effort band-
width sharing, MemGuard(600,600)+PS, however, the
CPU utilization is significantly increased to 61% and we
are not able to notice visible performance differences, al-
though numerically there is 17% performance reduction.
Remember that in this configuration, the HRT task is able
to meet the deadline 100% of time as shown in Table 2.
Similarly, MemGuard(900,300)+PS shows 30% perfor-
mance reduction of the X-server while it provides even
better real-time performance for the HRT task.

Clearly, there is a trade-off between the archived
real-time performance of the HRT task and the archived
throughput of the X-server. An important benefit of us-
ing MemGuard is that the system designers can control
the trade-off depending on their system requirements.
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3.5 Discussion

As shown in the previous section, MemGuard can effi-
ciently improve real-time performance in a controllable
manner. There are, however, several limitations which
we will discuss in this section.

First, one problem is that the total reservable memory
bandwidth—the guaranteed bandwidth—is small, com-
pared to the peak memory bandwidth. Although this is
needed in order to guarantee each core’s reserved band-
width in any circumstances, this also means that each
core can only reserve a fraction of bandwidth. For ex-
ample, in the case-study shown in the previous section,
the total reservable memory bandwidth is only 1.2GB/s
while the peak bandwidth is 10.6GB/s. The use of hard-
ware prefetchers further exaggerates the problem of lim-
ited reservable memory bandwidth because it would in-
crease overall memory bandwidth demand by prefetching
potentially unnecessary data.

Second, MemGuard is implemented in a OS kernel
and, therefore, the granularity of bandwidth regulation is
currently 1ms in line of the OS tick timer. As a result,
it cannot provide bandwidth guarantee for a task whose
execution time is less than 1ms. Using more fine-grained
timer, however, is not desirable considering interrupt han-
dling overhead. We are investigating other ways to pro-
vide more fine-grain bandwidth management.

4 Conclusions

In this paper, we presented a case-study that shows the
challenges of using multicore based platforms for real-
time applications, and demonstrated how MemGuard can
be used to improve real-time performance.

Under the standard Linux 3.6.0 kernel, the periodic
real-time task in our case-study suffers up to 41% exe-
cution time increases and 28% deadline violations due to
contention in shared memory from a non real-time task
(X-server), even though each task is running on a dedi-
cate core.

Using MemGuard, however, we can configure the
system in a way that significantly reduces the perfor-
mance variations and eliminates all deadline violations
with minimal throuput impact on the non-real-time task.

MemGuard is publicly available athttp://
github.com/heechul/memguard.
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