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Most dynamic voltage and frequency scaling (DVS) techniques adjust only CPU parameters;
however, recent embedded systems provide multiple adjustable clocks which can be independently

tuned. When considering multiple components, energy optimal frequencies depend on task set
characteristics such as the number of CPU and memory access cycles. In this work, we propose a

realistic energy model considering multiple components with individually adjustable frequencies

such as CPU, system bus and memory, and related task set characteristics. The model is validated
on a real platform and shows less than 2% relative error compared to measured values. Based on

the proposed energy model, we present an optimal static frequency assignment scheme for multiple

DVS components to schedule a set of periodic real-time tasks. We simulate the energy gain of
the proposed scheme compared to other DVS schemes for various task and system configurations,

showing up to a 20% energy reduction. We also experimentally verified the result on a real

hardware platform.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management—Scheduling; C.0 [Com-
puter Systems Organization]: General—Modeling of computer architecture

General Terms: Energy Model, Embedded System, Real-time Scheduling

1. INTRODUCTION

Dynamic frequency and voltage scaling (DVS) schemes are common for reducing energy
consumption, and many devices support multiple frequency/voltage levels. However, most
DVS schemes only adjust CPU frequency and voltage and do not consider the energy
consumption of the bus and memory. Previous studies show that bus and memory also sig-
nificantly contribute to the total energy consumption [Shim et al. 2004]. Recent hardware
allows these components to have their own clocks and DVS capabilities that can be tuned
independently of the CPU frequency. Therefore, new DVS schemes must consider CPU,
bus, and memory frequency to reduce the system-wide energy consumption.

Table I shows how a multiple component DVS (multi-DVS) scheme can save energy
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Table I. Effect of task characteristics in energy saving measured on a real hardware platform.
Task CPU Mem Time Energy Energy

(MHz) (MHz) (s) (mJ) savings
dhrystone 200 100 4.26 2364 –

200 50 4.28 2106 10%
memxfer5b 200 100 3.46 1690 –

100 100 3.55 1182 30%

with a small performance penalty. We measured the energy consumption and execution
time of two tasks — dhrystone, a CPU intensive task, and memxfer5b, a memory intensive
task on an ARM926-ejs processor. For dhrystone, reducing memory frequency to half of
the maximum increases the execution time by only 0.5% but reduces energy consumption
by 10%. Lowering the CPU frequency to half of the maximum for memxfer5b results in
a 2.6% increase in execution time but achieves a 30% energy reduction. The results show
that a multi-DVS scheme can effectively reduce energy consumption.

In this paper, we propose a multi-DVS energy model that considers the energy consump-
tion of CPU, bus, and memory, and considers task set characteristics such as the number
of CPU and memory access cycles. We validate the model with a series of experiments on
an ARM based embedded system and show that it captures real system energy consump-
tion. Based on our energy model, we present a systematic method for assigning multiple
DVS frequencies for a set of periodic real-time tasks given system and schedulability con-
straints. We simulate various task sets and compare several DVS schemes by exploring the
effects of task and system parameters, such as idle power consumption.

In summary, we make the following contributions:

1. We propose a realistic multi-DVS energy model that considers CPU, system bus,
memory, and task set characteristics, at multiple frequency settings and validate it on a real
hardware platform.

2. Based on the proposed model, we present a multiple component DVS scheme for
energy optimal scheduling of periodic real-time tasks.

The remainder of this paper is organized as follows: Section 2 presents the energy model
and its validation on a real hardware platform. Section 4 defines and solves the frequency
assignment problem for a set of real-time tasks. Section 5 compares the proposed multi-
DVS scheme to other DVS schemes, and Section 6 discuss practical issues. Section 7
compares this study to related work. Section 8 conclude the paper.

2. ENERGY MODEL

Most recent ARM based systems are capable of independently tuning CPU, system bus and
memory frequencies [Freescale 2008; Samsung b]. Our model incorporates independent
frequency assignment and is validated on a real hardware platform. This section describes
the multi-DVS energy model that considers energy consumption on a platform with mul-
tiple independently adjustable component clocks. Table II presents a summary of notation
used throughout the paper.

We propose an energy model to reflect the actual characteristics of recent embedded
platforms by focusing on three components: CPU, system bus, and main memory. These
components are tightly integrated and contribute significantly to the total energy consump-
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Table II. Summary of notation.
E total energy consumption (mJ)
Ecomp pure execution block energy consumption(mJ)
Emem cache stall block energy consumption (mJ)
Eidle idle block energy consumption (mJ)
e execution time of a given task (s)
P period(=deadline) of a given task (s)
C CPU cycles of a given task (106 cycles)
M memory cycles of a given task (106 cycles)
r cache stall ratio
fc CPU clock (MHz)
fb system bus clock (MHz)
fm memory clock (MHz)
Vcpu CPU voltage (V)
Vbus system bus voltage (V)
Vmem memory voltage (V)
I idle time dynamic power consumption of CPU, bus, and

memory (mW)
R static power consumption of the system (mW)
Kca capacitance constant for active CPU (nF)
Kcs capacitance constant for standby(on but idle) CPU (nF)
Kba capacitance constant for active system bus (nF)
Kbs capacitance constant for standby system bus (nF)
Kma capacitance constant for active memory (nF)
Kms capacitance constant for standby memory (nF)

tion as shown in Table I. We also incorporate task set characteristics, specifically the
number of CPU and memory access cycles, into the energy model.

Fig. 1 illustrates our energy model for a single task. In the model, task execution time is
split into three blocks: (1) pure execution, (2) cache stall, and (3) idle. In the pure execution
block, the CPU core executes instructions while the system bus and main memory are in
standby. In the cache stall block, the cache fetches data from memory through the system
bus while the CPU core is in standby, waiting for the data to become available in its cache.
After the task finishes, all three components – CPU, system bus, and memory – are in an
idle state. While actual cache stall periods are scattered throughout the entire execution, we
aggregate them into a single block. This is valid since most embedded processors execute
in-order and there is no overlap between execution and off-chip memory fetch operations.
For out-of-order processors, there is an overlap period, but it is relatively small because
off-chip memory access takes much longer than executing out-of-order instructions.

Hence, the task execution time can be expressed as

e =
C

fc
+

M

fm
, (1)

where C is the number of CPU cycles needed to complete the task and M is the number of
memory cycles for off-chip memory access during cache stall handling; fc is CPU clock
frequency and fm is main memory frequency. Using Eq. (1), we are able to predict the
execution time of a task for a specific fc and fm. The first term, C

fc
, is the pure execution

time (the first block in Fig. 1), and M
fm

is the cache stall time (second block in Fig. 1). Idle
time is the period minus the execution time: P − e. We define cache stall ratio as
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Fig. 1. Energy model for a single task with deadline (e: task finish time, P : deadline).

r =
M

C +M
, (2)

describing the CPU or memory intensiveness of a task.
The total energy consumption shown in Fig. 1 is expressed by

E = Ecomp + Emem + Eidle, (3)

where Ecomp is the system-wide energy consumption during the pure execution block,
Emem is the consumption during the cache stall block and Eidle is the consumption during
the idle block. The total power consumption at any given time can be expressed as the sum
of each component’s power consumption. The power consumption of each component can
be described using a well known power equation, K · V N · f + R, where K is half of
the average capacitance, V is voltage, f is frequency of the component, N is the voltage
exponent, and R is static leakage power [Brooks 2000]. Note that K is unique to each
mode of operation. For example, during idle and cache stall time, the CPU consumes less
power than when it is actively executing instructions, although its operating frequency and
voltage may remain the same. The value of K for each operation mode may vary greatly for
different processors. To generalize the model, we consider three modes – active, standby,
and idle – and use multiple K values in our base equation. Other components – LCD,
flash, etc. – consume static power regardless of the voltages and frequencies of the CPU,
bus and memory. We do not consider a dynamic on/off strategy for those devices. In view
of the above, we can write

Ecomp = (Kca·V N1
cpu·fc +Kbs·V N2

bus ·fb +Kms · V N3
mem · fm +R)·C

fc
. (4)

Eq. (4) shows the energy consumption for the pure computation block. In this block, the
CPU is actively executing instructions while the system bus and memory are in standby.
Kca is the capacitance constant for the active CPU mode. Kbs and Kms are standby
capacitance constants for system bus and memory, respectively. R represents the static
power consumption of the entire system. Similarly,
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Fig. 2. Tested hardware platform. The CPU, system bus, and SRAM share a common voltage. The SRAM
operates at system bus frequency.

Emem = (Kcs·V N1
cpu·fc +Kba·V N2

bus ·fb +Kma·V N3
mem·fm +R)·M

fm
. (5)

Eq. (5) is the energy consumption during the cache stall block in which the CPU stalls the
execution and waits until the data becomes available in its cache. The CPU consumes less
power when it is waiting for the cache data due to clock gating technology [TI ], so we
introduce a constant factor, Kcs, for CPU standby mode. Both system bus and memory are
active in this phase. Kba and Kma denote capacitance constants of active mode bus and
memory, respectively. Finally,

Eidle = (I +R)·(P − e). (6)

Eq. (6) is the energy consumption during idle mode. Many recent embedded processors
support a special idle mode which significantly reduces power consumption [Dhiman et al.
2008], so we use a separate term, I , to represent the idle mode power consumption of the
CPU, system bus, and memory.

3. MODEL VALIDATION

In this section, we present validation results that demonstrate the accuracy of the model
(Section 2) in predicting the energy consumption of an embedded hardware platform with
an ARM926-ejs based processor [Freescale ]. On the same platform, we verified two dif-
ferent memory configurations – internal SRAM (Section 3.1) and external DRAM (Section
5.2.2) – to show the application of the model to different devices.

3.1 SRAM Configuration

Fig. 2 shows the block diagram of the tested STMP3650 SoC. The SoC includes an ARM
CPU core, L1 cache, system bus, and internal SRAM in a single package. The 256 KB
internal SRAM is connected to the system bus.

While the proposed model is applicable to many embedded systems, there are several
simplifications on our test platform; CPU, system bus, and internal SRAM all share the
same power source (Vcpu = Vbus = Vmem) and system bus and memory operate at a same
frequency (fb = fm). The resulting energy equation for our hardware platform is,
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Table III. Processor specifications.
CPU clock 20 - 200 MHz (2 MHz step)
Bus clock 20 - 100 MHz (fc/n)
Voltage 1.504 - 1.824 V (0.32 V step)

L1 cache 8 KB I, 8 KB D

E = (Kca·V N ·fc +K∗
ms·V N ·fm +R)·C

fc

+(Kcs·V N ·fc +K∗
ma·V N ·fm +R)·M

fm

+(I +R)·(P − e).

(7)

Because system bus and memory share a common voltage and frequency, we combine the
terms for these components in Eq. (4) and (5), and use combined capacitance constants
K∗

ms and K∗
ma to denote standby and active mode, respectively. These restrictions are

platform and architecture specific. For example, [Intel 2004] does not share a common
voltage between the CPU and system bus. Table III shows the basic specifications of the
tested processor. CPU frequency, fc, is adjustable from 20 MHz to 200 MHz, the system
bus and memory clock is divided from the CPU clock, fb = fm = fc/n where n is an
integer, and voltage can be adjusted with 0.32 V steps from 1.504 V to 1.824 V. We set the
voltage proportional to the CPU clock based on the recommendation of the processor data
sheet, V = afc + b. For this system a = 0.0016 V/MHz and b = 1.504 V.

In our experiments, energy consumption was measured for four synthetic tasks with
different cache stall ratios, 0%, 10%, 25%, and 55%. We measured the entire board level
power consumption which measures the power between the external supply and the input
to the board. Our energy model requires the number of CPU cycles, C, and memory cycles,
M to be known for a task. Note that M is the number of memory cycles to handle cache-
misses; cache hit memory references are not included in M . In many recent processors,
the cache stall cycles can be obtained by using a performance counter [Eranian ]; however,
the tested processor did not have a counter. Therefore, we devised a program with two
loops – a loop with 100% cache misses and another with 100% cache hits – and measured
their execution time. To construct a loop with 100% cache misses, we allocated an array
twice the size of the cache and sequentially read words separated by one cache-line size.
These reads always resulted in cache misses. By subtracting the execution time of the
100% cache-hit loop from the 100% cache-miss loop, we obtained cache stall time.

By varying the number of loop iterations, we synthesized tasks with different C and
M values. The instruction code of the synthetic tasks fit into the 8 KB I-cache to avoid
generating additional instruction fetch cache stalls. For each task, eight different fre-
quency/voltage settings were tested, and for each setting we measured energy consumption
and execution time. We set the voltage exponent, N = 2, and performed nonlinear least
squares analysis on the collected data to determine the value of each parameter in Eq. (7).

Fig. 3 plots the measured energy consumption and the model predicted energy consump-
tion. The R2 (the coefficient of determination that estimates the validity of a model) value
is 99.97% (where 100% is a perfect fit) and the maximum relative error is less than 2%,
suggesting that our energy model accurately captures system behavior. Table IV shows the
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Fig. 3. Energy model fitting. Comparison of measured and model predicted energy values for 32 configurations
with varying cache stall ratio and clock settings. R2 is 99.97%.

Table IV. Model parameters for the tested hardware.
Capacitance (nF ) Power (mW )

Kca Kcs K∗
ma K∗

ms I R
0.51 0.22 0.54 0.21 6.57 67.43

value of each parameter in Eq. (7) for the tested hardware.

3.2 DRAM Configuration

We changed the hardware configuration of Section 3.1 to use external DRAM. Figure 4
shows the modified system. DRAM is connected to on-chip DRAM controller, which is
attached to system bus. One key difference from SRAM is that DRAM does not share a
common voltage with the processor core, resulting in different system energy equation.

In our platform, the DRAM [Samsung a] uses a fixed 3.0V and operates at a multiple of
the system bus frequency. CPU and system bus use the same variable voltage, from 1.504V
to 1.824V, as the previous section.

The energy equation of this hardware configuration is

E = (Kca·V N ·fc +K∗
ms·(V N ·+ 3.0N )·fm +R)·C

fc

+(Kcs·V N ·fc +K∗
ma·(V N ·+ 3.0N )·fm +R)·M

fm

+(I +R)·(P − e).

(8)

Because system bus and DRAM do not share a common voltage and frequency, we used
separate capacitance constants Kba and Kbs for system bus, and Kma and Kms for DRAM.
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Fig. 4. Tested hardware platform with external DRAM.

Table V. Model parameters for the system with a external DRAM
Capacitance (nF ) Power (mW )

Kca Kcs K∗
ma K∗

ms I R
0.52 0.30 0.18 0.05 6.52 71.18

We set V = 0.0016fc + 1.504 and use N = 2, as in the previous section.
We measured energy consumption of four synthetic task configurations with varying

cache stall ratios – 0%, 10%, 25%, and 55% – similar to the experiments in Section 3.1.
However, all cache stalls are for DRAM; there are no SRAM accesses. For each task
configuration, eight different clock-voltage settings were tested, and for each setting we
measured the entire board level power consumption and execution time. As in the previous
section, we performed a nonlinear least square analysis on the collected energy consump-
tion data to determine the value of each parameter in Eq. 8.

Fig. 5 plots the measured energy consumption and the model predicted energy consump-
tion. The R2 (the coefficient of determination) value was 99.78% and the MAE was 1.25%,
suggesting that our energy model accurately captures the system behavior. Table IV shows
the value of each parameter in Eq. (8) for the tested hardware configuration with external
DRAM, obtained from the non-linear least square analysis. We used these parameters for
the evaluation of real applications in Section 5.2.2.

4. ENERGY OPTIMIZATION OF REAL-TIME TASKS

We formulate a problem to find the energy optimal frequency set, which contains the fre-
quency assignments of multiple DVS components, to schedule periodic real-time tasks. In
our solution, a single (possibly different) frequency is found for each component. All tasks
that share a component, share that frequency on the component. We call such a frequency
assignment static. In theory, it is possible to do better by implementing a dynamic fre-
quency assignment, that changes the frequency of each component on each context switch.
The problem of dynamic frequency assignment becomes one of finding the best frequency
for each component and for each task. We do not consider the latter problem, because it
is difficult to implement in practice. Nevertheless, in the evaluation section, we compare
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Fig. 5. Energy prediction error (residual)

the performance of our static scheme to the optimal dynamic solution (which we computed
by a brute-force search for small task sets). We show that the dynamic scheme does not
offer significant improvement in energy savings, further reinforcing our choice of a static
(multi-DVS) frequency assignment.

4.1 Problem Definition

Given a set T = T1, ..., Tn of n periodic real-time tasks, the period of Ti is denoted by
Pi, which is equal to the deadline. The tasks are scheduled on a single processor system
based on preemptive scheduling, and all tasks are assumed to be independent. In the worst
case, each task invocation requires Ci CPU cycles and Mi memory cycles. The worst case
execution time of task Ti is ei = Ci

fc
+ Mi

fm
, where fc is CPU frequency, fb is system bus

frequency, and fm is memory frequency (see Eq. (1)).
The energy consumption, Eact,i, of each invocation of task Ti is given by Eact,i =

Ecomp,i + Emem,i (see Eq. (4), (5)). CPU, system bus, and memory are idle if there is no
task to execute, and the power consumption is I + R (see Eq. (6)). The hyperperiod, H ,
is the least common multiple of P1, ..., Pn, and the total energy consumption, E, over H
is
∑n

i=1
H
Pi
· Eact,i + Eidle, where Eidle = (H −

∑n
i=1

H
Pi
· ei) · (I + R). A schedule

of periodic tasks is feasible if each task, Ti, is guaranteed Ci CPU cycles and Mi memory
cycles at each invocation.

The optimization formulation of the multi-DVS frequency assignment problem with
EDF scheduling is

minimize
n∑

i=1

H

Pi
Eact,i + Eidle (9)

subject to
n∑

i=1

ei
Pi
≤ 1. (10)
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Eq. (9) minimizes the sum of the energy consumption of all task invocations during hy-
perperiod H . Eq. (10) is the necessary and sufficient schedulability constraint because the
utilization of task Ti is

(
Ci

fc
+ Mi

fm

)
/Pi.

4.2 Static Multi-DVS Frequency Assignment

In this section, we present an optimal solution for assigning a single frequency set to a task
set, T , such that all the tasks in the set run at the same CPU frequency, fc, and the same
memory frequency, fm. The number of CPU execution cycles in a hyperperiod, CH , is∑n

i=1

(
H
Pi
· Ci

)
, and the number of memory access cycles, MH , is

∑n
i=1

(
H
Pi
·Mi

)
1.

Total execution time in the hyperperiod, eH , is CH

fc
+ MH

fm
.

LEMMA 1. (9) is equivalent to the sum of the right hand side of (4)–(6) by replacing
C with CH and M with MH .

PROOF. Let Wcomp be the power during the pure execution block and Wmem be the
power during the cache stall block. Thus we have

n∑
i=1

H

Pi
Eact,i + Eidle

=

n∑
i=1

(
H

Pi
Wcomp

Ci

fc
+

H

Pi
Wmem

Mi

fm
) + Eidle

=
1

fc

n∑
i=1

H · Ci

Pi
Wcomp +

1

fm

n∑
i=1

H ·Mi

Pi
Wmem + Eidle

= Wcomp
CH

fc
+Wmem

MH

fm
+ Eidle.

(11)

LEMMA 2. Under EDF, if the execution time, eH , does not exceed the hyperperiod, H ,
then the task set is schedulable.

PROOF. From Eq. (10),

n∑
i=1

ei
Pi

=

n∑
i=1

H · ei
H · Pi

=
1

H

n∑
i=1

H

Pi
· ei =

eH
H
≤ 1. (12)

Hence,

eH ≤ H. (13)

1While individual Mi, cache stall cycles of task Ti, can increase when preempted by other tasks, the effect the
increase is generally negligible – 0.25% of the total execution time in maximum when preempted 100 times for
3 seconds on an ARM926-ejs processor [David et al. 2007]. Nevertheless, we can measure task set cache stall
cycles, MH , including additional stall cycles caused by preemption, using performance counter.
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4.2.1 Methodology. The energy model presented in Eq. (11) can be combined with
system and deadline constraints to find the energy optimal fc, fb, and fm given a task set
defined with a single hyperperiod, H .

Frequency constraints on the CPU, memory, and bus arise from hardware specifications,

fc,min ≤ fc ≤ fc,max, (14)

fm,min ≤ fm ≤ fm,max, (15)

fb = fm. (16)

The procedure for determining the energy optimal frequency assignment requires finding
unconstrained energy minimizing frequency sets and finding solutions on the boundary
conditions and the boundary intersections imposed by the constraints. Each frequency set
must then be evaluated in the energy model and the energy minimal solution chosen.

The optimum frequency assignment is found assuming continuous variables, but real
systems have discrete frequency steps. The frequency assignment for the real system can
be found by testing possible frequencies that neighbor the continuous optimal frequency
solution. Neighboring frequencies can be enumerated by finding the nearest higher and
lower discrete frequencies. Frequency sets that violate the deadline constraint are elimi-
nated and the remaining sets must be evaluated and compared in the energy model.

The energy model presented in Eq. (11) and the constraints in Eqs. (13)–(16) result in
the following set of equations that find possible frequency assignments in the global search
space and on the boundary conditions.

4.2.1.1 Unconstrained Minima.

Find fm such that
∂E

∂fm
= 0 (17)

Find fc such that
∂E

∂fc
= 0 (18)

Substituting fm from Eq. (17) into Eq. (18) yields unconstrained energy minimum fre-
quency sets.

4.2.1.2 Minima on CPU Frequency Boundaries.

Find fm such that
∂E

∂fm
= 0 (19)

fc ∈ {fc,min, fc,max} (20)

Eq. (19) solved for the scenarios where fc = fc,max and fc = fc,min yields the energy
minimum frequency sets on the CPU frequency boundaries.

4.2.1.3 Minima on Memory Frequency Boundaries.

fm ∈ {fm,min, fm,max} (21)
11



Find fc such that
∂E

∂fc
= 0 (22)

Eq. (22) solved for the two scenarios where fm = fm,max and fm = fm,min yields the
energy minimum frequency sets on the memory frequency boundaries.

4.2.1.4 Minimum on Deadline Constraint Boundary. In order to meet the task set
deadline, H ,

fm =
MH

H − CH

fc

(23)

Find fc such that
∂E

∂fc
= 0 (24)

Substituting fm from Eq. (23) into Eq. (24) yields the energy minimum frequency set on
the deadline constraint boundary.

4.2.1.5 Boundary Intersections. All combinations of maximum and minimum CPU
and memory frequencies yield the frequency sets at frequency boundary intersections.
Eq. (23) solved for the scenarios where fc = fc,max and fc = fc,min, and backsolved
for fc when fm = fm,max and fm = fm,min yields the frequency sets on the deadline and
frequency boundary intersections.

4.2.2 Methodology Summary. The following steps summarize the procedure for find-
ing multiple component frequency assignments:

1.. Find unconstrained energy optimal frequency sets using Eqs. (17)–(18) and the en-
ergy optimal frequency sets on each boundary condition and boundary intersection using
Eqs. (19)–(24).
2.. Eliminate results that violate any constraints from Eqs. (13)–(16).
3.. Evaluate and compare each frequency set in the energy model from Eq. (11), and

choose the lowest energy set.
4.. Enumerate the frequency sets obtainable in the real system that neighbor the optimal

frequency set.
5.. Eliminate sets that violate the deadline constraint, Eq. (13), and evaluate the remain-

ing frequency sets in the energy model from Eq. (11), choosing the lowest energy set as
the final solution.

An example of applying the procedure is presented below.

4.2.3 Methodology Example. Consider a system with Vcpu = Vbus = Vmem and CPU
voltage as a linear function of fc, Vcpu = Afc + B. Let A = 0.0016 V/MHz and
B = 1.504 V. Other system parameters are given in Table IV. Let the task set be de-
scribed by CH = 140 · 106 cycles, MH = 30 · 106 cycles, and hyperperiod, H = 3 sec.

12



50
100

150
200

20
40

60
80

100
500

550

600

650

700

f
c
 (MHz)f

m
 (MHz)

E
 (

m
J)

50 100 150 200
20

30

40

50

60

70

80

90

100

520

530

540

550560

560 580
600

f
c
 (MHz)

f m
 (

M
H

z)

Deadline
Boundary
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evaluated in the proposed energy model.
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Fig. 6 shows the energy consumption of the task set as a function of fc and fm. No uncon-
strained minima are found within the limits of fc. The lowest energy frequency set from
all boundaries and boundary intersections is found on the deadline boundary at {fc, fm}
= {65.45 MHz, 35.35 MHz}. It can be seen from Fig. 6 that this frequency assignment
indeed results in the minimum energy consumption for the system. The neighboring ob-
tainable frequency sets are {66,36}, {66,34}, {64,36}, and {64,34} if fc and fm are ad-
justable in 2 MHz steps. Checking the frequency sets against the constraints reveals that all
sets except {66,36} violate the deadline constraint, so they are eliminated. Evaluating the
remaining frequency set in the energy model in Eq. (11) determines that the set {fc, fm}
= {66,36} has an energy value of 501.3 mJ for this task set.

5. EVALUATION

In this section, we present simulation results and experimental results performed on the
hardware platform to evaluate the multi-DVS scheme. In Section 5.1, we demonstrate that
our multi-DVS schemes can save energy compared to traditional CPU-only DVS scheme
and justify our choice of static multi-DVS over dynamic multi-DVS with simulations. In
Section 5.2, we show that the multi-DVS scheme saves energy with experiments that run
real applications on the previously described hardware.

5.1 Simulation

In this section we simulated the energy savings of the proposed multi-DVS scheme with
other DVS schemes. We performed simulations because (1) the choice of fm is limited in
our real hardware platform–fm = fc/n where n is an integer–but many new processors
[Freescale 2008; Samsung b] do not have this constraint, and (2) we wanted to investigate
the effects of varying the idle power and voltage range, which are fixed in the real hardware
platform. Nevertheless, we used the parameters obtained from the real hardware platform
as shown in Table IV. We use average power consumption, which is calculated by the total
energy consumption divided by the hyperperiod, as the evaluation metric.

Five schemes are compared in our evaluation: MAX, CPU-only DVS, Baseline multi-
DVS, Static multi-DVS, and Dynamic multi-DVS. In the Max scheme, tasks are executed
with the maximum CPU and maximum bus/memory frequency. In the CPU-only DVS
scheme, we set the optimal CPU frequency for each task while the system bus/memory
frequency is set to the maximum value. The Baseline multi-DVS scheme requires that both
the CPU and bus/memory frequencies be proportional to the task set CPU utilization at
maximum frequency1. The Dynamic multi-DVS scheme results from a brute-force search
for all possible combinations of frequencies to determine the optimal frequencies for each
individual task. The Static multi-DVS scheme is the proposed solution described in the
previous section which assigns a single CPU and memory frequency to the entire task set.
We normalize the average power consumption to the Max scheme (i.e., no DVS) in every
figure.

The system energy consumption was simulated by varying the task set utilization at max-
imum frequency, cache stall ratio, and idle power consumption while satisfying schedula-
bility constraints for Earliest Deadline First (EDF) scheduling.

1In the Baseline multi-DVS scheme, fc = fc,max ·
∑n

i=1 ui,max, and fm = fm,max ·
∑n

i=1 ui,max, where

ui,max =
(

Ci
fc,max

+ Mi
fm,max

)
/Pi.
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Fig. 7. Average power consumption with varying utilization and constant cache stall ratio = 0.3.

5.1.1 Varying Task Set Utilization. Fig. 7 shows the average power consumption of the
compared DVS schemes for varying utilization. As the utilization increases, the feasible
frequency scaling range decreases; as a result, the effectiveness of all the DVS schemes
reduces. When the utilization is low, the Static multi-DVS scheme consumes less energy
than the CPU-only DVS scheme, because it saves energy by setting a lower bus frequency
without violating the deadline constraints. Although the Baseline multi-DVS scheme is
close to Static and Dynamic optimum multi-DVS schemes in this figure, the effectiveness
of the Baseline multi-DVS highly depends on the cache stall ratio, which we will show in
the next subsection. The difference in energy consumption between the Static multi-DVS
scheme and the Dynamic multi-DVS scheme is less than 1%.

5.1.2 Varying Cache Stall Ratio. Fig. 8 shows the average power consumption of
the compared DVS schemes for varying task set cache stall ratio, MH

CH+MH
. The task set

utilization is fixed at 50%. When the cache stall ratio is low (representing a CPU intensive
workload), the Static multi-DVS scheme takes advantage of lowering the bus frequency
without violating the deadline constraints. In contrast, when the cache stall ratio is high, the
CPU-only DVS and the Static multi-DVS schemes have lower energy consumption than the
Baseline multi-DVS scheme, because they are able to set a lower CPU frequency. When the
cache stall ratio is between 0.1 and 0.2, which is common in many applications [Pellizzoni
and Caccamo 2007], the Static multi-DVS scheme shows a clear advantage. Note that the
Static multi-DVS scheme shows similar performance to the Dynamic multi-DVS scheme.

5.1.3 Varying Cache Stall Ratio Diversity. In the next experiment, we change the de-
gree to which different tasks differ in their cache stall ratio. Note that, when tasks are
more diverse (i.e., when a mix of CPU intensive and memory intensive tasks are present),
the Static multi-DVS scheme is expected to perform worse than the Dynamic multi-DVS
scheme because it cannot customize frequency settings to each task. As a proxy for task
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Fig. 8. Average power consumption with varying cache stall ratio and constant utilization = 0.5.
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Fig. 9. Comparisons on the average power consumption with different diversity of cache stall ratio and utilization
= 0.5, task set cache stall ratio = 0.45. The configuration [min, max] represents a task set in which half of the
tasks have a cache stall ratio of min and half have the ratio max.
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Fig. 10. Average power consumption with varying idle power and constant utilization = 0.5, and constant cache
stall ratio = 0.3.

diversity, we change the variance of the memory stall ratio across the task set keeping the
task set cache stall ratio fixed at 0.45. In Fig. 9, the average power consumption is plotted
against the variance in the cache stall ratio.

Note that, while the Dynamic multi-DVS scheme is 13% better than the Static multi-DVS
scheme for large variances, it is expected that in many realistic embedded task sets tasks
are reasonably homogeneous. For example, in a process control system, where different
tasks implement different controllers, it is likely that the controllers do not substantially
differ in memory stall ratio. For such sets, the performance hit of the Static multi-DVS
scheme is less than 0.5%, which we deem acceptable. Investigation of efficient dynamic
multi-DVS schemes is therefore left as a topic for future work.

5.1.4 Varying Idle Power Consumption. Fig. 10 shows the average power consump-
tion of the compared DVS schemes over varying idle power consumption of CPU, bus,
and memory. When idle power is zero, only static power contributes to the total energy.
When idle power is large, energy consumed during idle significantly contributes to the total
energy. Therefore, all DVS schemes achieve lower energy consumption by setting a lower
frequency and reducing the slack time. Moreover, all multi-DVS schemes outperform the
CPU-only DVS scheme by lowering the bus frequency and further reducing the slack time.

5.1.5 Varying Voltage Scaling Range. Fig. 11 shows the average power consumption
of the compared DVS schemes over varying voltage scaling range. The cache stall ratio
is 10% and the task set utilization is 50%. If the system provides a larger voltage scaling
range, all DVS schemes save more energy. However, all multi-DVS schemes are able to
take greater advantage of the larger scaling range by also controlling the bus frequency.

5.1.6 Simulation Summary. Evaluation results show that cache stall ratio is one of the
most important factors affecting the performance of the Static multi-DVS scheme. The
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Fig. 11. Comparisons on the average power consumption with different voltage scaling range and utilization =
0.5, cache stall ratio = 0.1.

Static multi-DVS scheme is effective for workloads with low cache stall ratio, because it is
able to set a low memory frequency without violating deadline constraints. Additionally,
the Static multi-DVS scheme has lower energy consumption compared to the CPU-only
DVS scheme when idle power is high, because it can lower both the CPU and memory
frequency and make the utilization close to unity. The proposed Static multi-DVS scheme
achieves good performance in a large range of evaluated configurations.

5.2 Experiments with Real Applications

In this section, we evaluate multi-DVS scheme on a real hardware using two applications:
madplay, a mp3 decoder, and dhrystone, a performance benchmark. The hardware config-
urations and the energy model are described in Section 5.2.2.

5.2.1 Obtaining C and M. Our energy optimization method requires knowing C and
M , the CPU and memory cycles, respectively. Previously, we controlled C and M directly
by changing the number of loops in our synthetic program (Section 3.1), however, there is
no direct method to obtain these values for an arbitrary program without hardware support
(e.g., performance counter).

Instead, we obtained C and M values indirectly with regression analysis using the fol-
lowing methodology: (1) measure the execution time for various clock configurations
(combinations of CPU and BUS frequencies), and then (2) perform a non-linear least
square analysis for Eq. 1 using the collected execution time data.

Figure 12 shows the execution time regression results for madplay and dhrystone 2. In
addition, a partial data crosscheck was performed on the regression to verify its predictive

2For madplay, we played a 10 second, 1KHz sine wave mp3 file. Note that we outputted the decoded pcm data to
/dev/null instead of /dev/dsp, because we did not consider the power consumption of the audio amplifier
and DAC convertor chip in our energy model. For dhrystone, we used an input value of 100000.
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full(1-8) 2.72% 0.69%
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(c) Mean Absolute Error (MAE)

Fig. 12. Execution time regression. (a) is madplay. (b) is dhrystone. (c) is MAE of each regression.

capability. The full(1-8) data set used all eight collected data points for the regression;
half(1-4) used four data points; half(5-8) used the complement of half(1-4). Table 12(c)
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MAX CPU-only Baseline Static Dynamic

Freq. (MHz) (200,100) (100,100) (40, 20) (40,20) [(40,20),(56,28)]
Energy(mJ) 1701.00 1588.63 1403.63 1403.63 1422.95
Saving(%) - 6.58 17.46 17.46 16.32

Fig. 13. Comparison of actual energy saving. madplay and dhrystone both have equal deadline of 10 second.
Saving was compared with MAX.

compares Mean Absolute Error (MAE) of each regression model suggesting that the pre-
dictive capability of the model is reasonable. Notice that MAE of dhrystone is very small
indicating that this method is very effective to estimate the execution time of CPU inten-
sive task. MAE of madplay is, however, relatively large – up to 3%. We conjecture that
frequent I/O operations (i.e., mp3 file read) and the complexity of DRAM accesses result
in this error.

5.2.2 Energy Optimal Frequency Selection. From the obtained C and M values, we
performed an experiment to compare the actual energy saving of our multi-DVS scheme.
We used a taskset that consisted of madplay and dhrystone with a deadline of 10 seconds
in both programs. We used (C, M ) values obtained from the regression: madplay-(137.09,
42.37), dhrystone-(169.37,0.00) and compared the five schemes – MAX, CPU-only DVS,
Baseline multi-DVS, Static multi-DVS, and Dynamic multi-DVS – as described in Section
5.1. The experiment was performed on the hardware platform described in .

Figure 13 shows the actual energy saving for various schemes. The results show that
all three multi-DVS schemes (Baseline, Static, and Dynamic) outperform CPU-only DVS
scheme as we predicted from simulations and the energy saving is up to 17% compared
to MAX. Interestingly, the dynamic multi-DVS scheme is slightly worse than our static
scheme. This is due to the hardware limitations of selecting clock frequencies. Specif-
ically, the calculated optimal clock configuration for madplay and dhrystone are (40,20)
and (56,20) respectively. However, (56,20) was not achievable due to the hardware con-
straint fm = fb/n. In practice, there are various hardware constraints. Therefore, fine-
grain clock settings for the dynamic scheme may not always be achievable, leading to
sub-optimal energy savings.

6. DISCUSSION

In this section, we discuss the validity of our energy model calibration method described in
Section 2. Figure 6 shows the main body of the synthetic program we used. The program
consists of two loops: (1) the computation loop with no cache misses, and (2) the memory
loop with 100% cache misses. By changing the repetition count of each loop, we synthe-
sized multiple tasks with varying C and M values, and then used those tasks to calibrate our
energy model. Notice that this program used only five instructions: MOV, ADD, CMP, BLT,
and LDR. However, other instructions, for example, MUL, may have different power con-
sumption per cycle [ARM ]. Also, while we include cache-hit memory access instructions,
for example, LDR on cached data, in computation cycles, it may consume more power than
normal computation instructions [Wan et al. 2002].

To investigate the effect of varying power consumptions for different instructions, we
compared power consumption of our synthetic program, synthetic, and dhrystone. dhrys-
tone generates almost no cache misses so we configured the synthetic program to only use
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...
// computation loop

cloop:
mov r0, r2 // no cache access
add r2, r2, r1
cmp r2, r3
blt cloop
...
// cache stall loop

mloop:
ldr r0, [ip, r2, asl #2] // 100% cache miss
add r2, r2, r1 // increment pointer to next cache line.
cmp r2, r3
blt mloop

Fig. 14. Synthetic program for calibration
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Fig. 15. Comparison of average power consumption of synthetic and dhrystone.

the computation loop for comparison. Figure 15, shows the average power consumption
of the two programs at eight different clock configurations. The result is normalized to the
synthetic program values. It shows that dhrystone consumes slightly more power (up to
4%) than synthetic, meaning that the model predicted power consumption, calibrated from
a set of synthetic programs, may be different from real power consumption depending on
the application’s instructions and the number of cache-hit memory accesses. One way to
improve the accuracy of the power model is to extend it to include instruction and cache
level power consumption as in [Šimunić et al. 1999]. However, to take into account these
details, the model will be significantly complicated.

Minimizing the error while maintaining the simplicity of the model is a challenging task
in general. A possible method to improve accuracy is to use representative real applica-
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tions for model calibration. To do this, we would need a precise method to obtain compu-
tation and memory cycles for each application, for example, using a hardware performance
counter as in [Snowdon et al. 2009].

7. RELATED WORK

There is a significant amount of previous work focusing on static DVS schemes for real-
time tasks under RM or EDF scheduling [Mejia-Alvarez et al. 2004; Gruian 2001; Je-
jurikar and Gupta 2006; Aydin et al. 2001]. [Aydin et al. 2001] formulated an energy mini-
mization problem and proposed an algorithm to find the optimal static frequency assuming
that individual tasks have different power characteristics. [Jejurikar and Gupta 2006] pro-
posed an energy model in which the deadline was not equal to the period, and presented
methods for finding weak-optimal slowdown factors for scheduling periodic tasks.

On-line slack time reclamation has been another realm of DVS research. [Pillai and Shin
2001] proposed dynamic reclamation techniques, cycle-conserving, and look-ahead, which
exploited unused slack time dynamically to save energy. Gruian’s dynamic algorithm also
utilized slack time to lower energy usage and employed both on-line and off-line schedul-
ing policies [Gruian 2001]. [Mejia-Alvarez et al. 2004] proposed an on-line scheduling al-
gorithm with discrete frequency steps for DVS. Zhong et al. proposed an analytical model
for scheduling without prior task information [Zhong and Xu 2005]. Our work focuses on
static frequency scaling but is novel because we adjust multiple component frequencies,
unlike previous work that focused exclusively on CPU frequency.

Several researchers account for the effects of I/O operations, such as main-memory ac-
cesses [Bini et al. 2005; 2009; Zhuo and Chakrabarti 2005; Aydin et al. 2006; Fan et al.
2002] because I/O operation time does not scale with the CPU frequency. [Bini et al. 2005;
2009] proposed an energy model that accounts for memory operations in the task execu-
tion time when only CPU frequency is adjustable. [Aydin et al. 2006] proposed a similar
energy model that also considered CPU frequency independent power components. Our
model incorporates CPU frequency independent components, such as bus and memory,
but also allows adjusting their frequencies. It can also be extended with dynamic power
management techniques such as forbidden regions [Devadas and Aydin 2008] in future
work.

Although the CPU consumes a significant amount of energy, other components such
as the main memory and system bus often consume energy on a similar order of magni-
tude. Without considering such components, energy savings may not be maximized. Some
previous work addresses power-saving with component standby modes in addition to a
DVS-capable CPU. [Zhuo and Chakrabarti 2005] proposed a system-wide energy model
that considered standby mode components and showed that as the number of components
grew, the effectiveness of DVS schemes decreased due to increased standby power. [Zhong
and Xu 2006] also presented an energy model accounting for standby modes for both peri-
odic and sporadic tasks. [Cho and Chang 2006] proposed an energy model that considered
both CPU and memory frequencies based on an idealistic energy model with no standby-
energy and did not consider real-time tasks. Snowdon et al. also proposed an execution
time and energy model [Snowdon et al. 2007; Snowdon et al. 2009] that considered mul-
tiple adjustable frequencies and task characteristics. Our model is simpler yet detailed
enough to explain our system behavior.

Dynamic Power Management (DPM) is another widely adopted mechanism to reduce
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power consumption by turning off the system components during idle period [Benini et al.
2002]. Several works proposed to combine DVS with DPM to achieve higher energy ef-
ficiency. [Simunic et al. 2001] proposed an algorithm to merge the DPM and the DVS
approaches based on the stochastic model. [Liu et al. 2008] proposed an algorithm combin-
ing both DVS and DPM for streaming applications on embedded multiprocessors. [Cheng
and Goddard ] presented system-wide Energy-Aware EDF (SYS-EDF), which integrates
DPM for I/O devices and DVS for the processor. [Rong and Pedram 2006] proposed a
three-phase solution framework to reduce the system-wide power consumption with the
consideration of task dependencies for periodic hard real-time tasks.

Recently, researchers have also considered DVS schemes for multicore processors or
multiprocessors. [Chen et al. 2004] investigated energy aware scheduling for general mul-
tiprocessors, and proposed a solution in which the CPU frequency was unbounded. While
previous work on multicore or multiprocessors treated cores as multiple DVS components,
the energy models only considered execution time on CPU cores. However, in many sys-
tems, CPU, bus, and memory are tightly coupled and jointly affect task execution time.

Finally, our work is based on a realistic energy and execution time model which is val-
idated on a real hardware platform. Our problem is novel because we consider multiple
DVS component frequencies that jointly affect task execution time.

8. CONCLUSIONS AND FUTURE WORK

In this study, we contribute a realistic and flexible energy model for embedded systems.
The model focuses on CPU, system bus, and memory and allows variable frequencies
for those components. Through experiments on a real hardware platform, we showed
that the model can accurately predict system-wide energy consumption. A solution was
then derived to find frequency assignments for multiple components considering system
constraints. Based on the model and the solution, we proposed a static multi-DVS scheme
to schedule periodic real-time tasks, and we compared our multi-DVS scheme with other
DVS schemes to demonstrate its effectiveness.

Future extensions of multi-DVS may include developing efficient dynamic multi-DVS
solutions where component frequencies are varied for each task. Such schemes may also
be integrated with DPM when individual devices have stand-by or off modes. This work
will be reported in future publications.
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