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ABSTRACT
There is no ideal data layout. Even for pure analytical workloads,
different queries access a different subset of each relation’s columns.
This is further exacerbated by Hybrid Transactional/Analytical Pro-
cessing (HTAP) workloads, which have led to systems converting
from row to columnar or hybrid layouts, thereby increasingmemory
usage and code complexity. The recently proposed Relational Mem-
ory Engine (RME) is a hardware accelerator designed to address
these challenges by transparently presenting the optimal layout to
the CPU. The original RME prototype, built on a PS-PL platform,
had limitedmicro-architectural configurability and a fixed low clock
speed, restricting performance analysis and ASIC portability.

In this work, we re-implement RME on a RISC-V system-on-
chip (SoC) platform using FireSim to address these limitations by
enabling flexible SoC design parameterization and detailed perfor-
mance evaluation. We simplify and improve the prior RME hard-
ware design and leverage the increased flexibility of our platform to
further explore RME’s performance characteristics under various
micro-architectural settings. We show that hardware prefetching
significantly enhances RME performance by effectively masking
latency, even for low clock speeds. Out-of-order CPU cores further
amplify performance gains, indicating a synergistic relationship
between RME and high-performance core designs. We also identify
a critical RME clock speed threshold, beyond which performance
degradation becomes substantial. Finally, we open-source our de-
sign to facilitate further research on TileLink-based RISC-V SoCs.
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1 INTRODUCTION
Data Movement is the Main Bottleneck. Data analytics and
other data-intensive applications ship large amounts of data from
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Figure 1: The goal of RME is to capture the ideal cost for
any projectivity: match column-wise accesses cost for low
projectivity and when tuple reconstruction makes columnar
accesses inefficient, match row-wise cost as shown in the
original RME work [23].

slow storage and main memory to the CPU. As a result, the main
choke point is data movement through channels of limited band-
width [16]. Prior work has addressed this challenge by proposing
data layouts that better match the application’s access patterns.
Hybrid Data Layouts. In addition to the textbook row-wise [22]
and column-wise [2] data layouts, recent research on hybrid lay-
outs [3, 7, 14] proposes flexible data layouts that match the access
patterns of the queries. Unfortunately, these approaches create
the need to maintain and manage multiple data copies. This has
been further exacerbated by the advent of Hybrid Transaction-
al/Analytical Processing (HTAP) [27] workloads that have mixed
requirements. Many HTAP systems [3, 19, 27] ingest data in a row-
wise format, then gradually optimize their layout based on query
history, often resulting in a format that is neither a row store nor
a column store. However, maintaining multiple copies of data in
various layouts increases complexity, which makes these systems
less scalable. Furthermore, history-based schemes are significantly
impacted by sudden changes in column attributes.
On-the-fly Data Transformation. On the other hand, Relational
Memory [23] proposes a hardware-based solution that utilizes com-
mercially available PS-PL platforms [13], which integrate a tradi-
tional processing subsystem (PS) with programmable logic (PL).
Relational Memory utilizes a single in-memory row store and a
hardware engine, termed Relational Memory Engine (RME), in be-
tween the CPU and main memory, that transforms data on-the-fly
into any desired layout, which optimally works for any query.
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Table 1: Expanding RME evaluation setup.

Setup Details

RME [23] In-order core 1.5 GHz w/ prefetcher,
RME @ 100MHz

Design 1 In-order core 1.0 GHz (w/ prefetcher, w/o prefetcher),
RME @ 1 GHz

Design 2 Out-of-order core 1.0 GHz (w/ prefetcher, w/o prefetcher),
RME @ 1 GHz

Design 3 In-order core 1.0 GHz w/ prefetcher,
RME @ (1000, 500, 250, 167, 142, 125, 111, 100) MHz

RME successfully accelerates a wide range of database queries,
by offering ideal access cost, irrespectively of the query projectiv-
ity as qualitatively shown in Figure 1. Previous work implements
RME on a specific PS-PL platform to enable full-stack system eval-
uation. This presents a significant limitation: RME’s performance
can only be measured on this single platform with fixed architec-
tural settings. Thus, it is impossible to analyze RME’s performance
under different configurations of system components, such as the
CPU, prefetchers, cache, etc. Another limitation is that RME is syn-
thesized to operate at a 100 MHz frequency on an FPGA with a
333 MHz maximum frequency. Thus, analyzing the performance
improvement for RME with different—especially higher—working
frequencies becomes challenging. Finally, the original design uses
FPGA-specific resources such as BRAM, and it was yet to be seen
if the design could be ported to an ASIC. Table 1 summarizes the
setups we explore.
How does Relational Memory perform with different hard-
ware? In this work, we re-implement RME using Chisel HDL [9]
and integrate our design into the Rocket Chip [8] RISC-V system-
on-chip (SoC) framework. We make changes to the original RME
design to improve upon the previous design and to meet the con-
straints of the new environment. The Rocket Chip infrastructure
allows SoC designs with various micro-architectural parameters to
be readily generated, providing an ideal sandbox for testing RME.
We use the Xilinx UltraScale+ VCU118 FPGA [1] and FireSim [18]
simulation infrastructure to simulate our hardware designs and con-
duct analysis. Utilizing this setup, we want to answer the following
questions: (1)What is the impact of hardware prefetching on the per-
formance of RME? (2) What is the impact of utilizing an out-of-order
CPU core with RME? (3) What is the impact of RME’s clock speed
on achieved performance? We find that prefetching is extremely
beneficial and can effectively hide any extra latency incurred by
RME. Even when RME is under clocking constraints, prefetching
can hide any extra latency until RME is clocked 6× slower than the
baseline. Additionally, we find that the out-of-order core’s parallel
memory requests are not able to hide latency to the same degree
as prefetching. Finally, we find that a more powerful out-of-order
core with prefetching was able to gain even more from RME than
an in-order core with prefetching.
Contributions. In summary, we make the following contributions:
• We present an improved RME design, which is implemented

in Chisel HDL and can be integrated into any RISC-V SoC that
supports the standard TileLink interconnect.

• Wepresent extensive, realistic performance evaluation results of
RME under various micro-architectural settings using FireSim,

an FPGA-accelerated cycle-exact full-system simulator which
enables in-depth micro-architectural exploration.

• We answer the questions about the impact of hardware prefetch-
ing, the effect of using an out-of-order CPU core, and the effect
of RME’s clock speed—analyses that were difficult or impossible
on the original, fixed-configuration PS-PL platform.

• We open-source our updated RME design1.

Paper Organization. The remainder of this paper is organized as
follows: Section 2 provides the necessary background to inform
the rest of the paper. Section 3 shows how our design was inte-
grated into the Rocket Chip SoC, including engineering challenges
and architectural differences resulting from switching from AXI to
TileLink. Section 4 evaluates the performance of RME under various
micro-architectural settings. Section 5 briefly discusses avenues for
expansion and future research. In Section 6, we conclude the paper.

2 BACKGROUND
In this section, we provide the necessary background on Relational
Memory, the FireSim simulator, and the TileLink interconnect.

2.1 Relational Memory
Relational Memory [23] is a software/hardware co-design para-
digm for on-the-fly data transformation to optimize the view of
memory accessed by arbitrary relational queries. It consists of two
parts: Ephemeral Variables, a lightweight abstraction to use the
reorganized data, and the Relational Memory Engine (RME), i.e., a
hardware engine located between the cache hierarchy and main
memory that transforms the data into the optimal layout without
duplicating data in main memory.
Ephemeral Variables allow the CPU to access the reorganized
data while offering transparent control over RME. From a software
point of view, an ephemeral variable is exactly the same as a regular
variable. However, the ephemeral variable is not instantiated in
main memory. Instead, it is mapped to a special address that can
be recognized by RME, and always points to the reorganized data.
The ephemeral variable model enables transparent control of the
repacked data, presenting them to the CPU as if they were stored
sequentially but regardless of their contiguity in main memory.
RME is the actual hardware engine for data transformation. It sits
on the programmable logic (PL) in between the cache hierarchy and
main memory. As illustrated in Figure 2, RME has four components:
Trapper,Monitor Bypass, Requestor, and Fetch Unit. The Trapper cap-
tures access to ephemeral variables. When the CPU tries to access
an ephemeral variable, the Trapper checks the availability of the
requested data through the Monitor Bypass module. The Monitor
Bypass has two buffers (a.k.a., scratchpads, SPM), one for metadata
and one to hold cache lines of reorganized data. The metadata SPM
is used to monitor the completion of each cache line construction.
If the requested line is already in the data buffer, the Monitor By-
pass sends the data to the CPU via the Trapper. Otherwise, the
Monitor Bypass triggers the Requestor. The Requestor orchestrates
the access to main memory using knowledge of the query at hand
and database geometry, including row size, the number of rows to
be projected, and information about the columns to be projected.

1https://github.com/CSL-KU/relational-memory-firesim
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Figure 2: A high-level overview of the original RME design
[23] that shows the interaction between the four core mod-
ules: Requestor, Trapper, Monitor Bypass, and Fetch Unit.

It issues a set of request descriptors toward the Fetch Unit. Each
request descriptor contains addresses to read and where the useful
data to extract begins/ends. Finally, the Fetch Unit is the module
that reads the data, extracts the necessary parts following the de-
scriptor, packs the extracted data into a cache line, and then sends
the constructed line to the Monitor Bypass.

The original prototype of Relational Memory was deployed and
evaluated on a commercially available PS-PL platform, specifically
the Xilinx Zynq UltraScale+ MPSoC (ZCU102) [13]. This platform
incorporates a quad-core ARM Cortex-A53 [4] CPU within its pro-
cessing system (PS). RME resides in the programmable logic (PL),
communicating with the CPU via an interconnect subsystem that
employs Advanced eXtensible Interface (AXI) bus elements [5].
RME’s experimental evaluation demonstrated that it efficiently
mitigates data movement overhead by presenting an optimal data
layout to the CPU through on-the-fly data transformation [23].

2.2 FireSim
FireSim [18] is an FPGA-accelerated full-system simulation plat-
form for RISC-V architectures. FireSim offers higher simulation
speed than software simulators and offers better accuracy for perfor-
mance analysis when compared to conventional FPGA prototyping.
In FireSim, a simulation is derived from RTL and implemented on an
FPGA, with added abstractions to enable a decoupled design. Specif-
ically, one cycle of the FPGA is equal to one or more cycles in the
simulated design [21]. This feature of FireSim offers the benefit of
hiding and simulating latencies to host components such as DRAM
and grants the simulation substantial freedom from the constraints
of the physical FPGA platform. The ability to decouple latencies
from host DRAM allows FireSim to bridge any clock speed differ-
ences between the FPGA and the host and to accurately simulate
DRAM access time [11], making it superior to FPGA prototyping
for performance analysis of future ASIC implementations.

2.3 TileLink
TileLink [24] is a standard interconnect protocol for on-chip com-
munication on RISC-V SoCs. The protocol allows for coherent ac-
cess to shared memory resources and peripheral devices.

TileLink has three levels: TL-UL (TileLinkUncached Lightweight),
TL-UH (TileLink Uncached Heavyweight), and TL-C (TileLink
Cached). TL-C is the most feature-rich, providing support for cache
coherence. There are five channels of communication when us-
ing TL-C edges: A, B, C, D, and E. Clients issue Read requests and

Memory
Bus

TLSourceExpander

Relational Memory Engine

Periphery
Bus

To
DRAM

From
Cache

TL-UH

TL-UL

Figure 3: We integrate RME in a RISC-V SoC. We position
RME between DRAM and LLC, and connect over TL-UL. This
design allows RME to issue requests to DRAM, reorganize
the received data, and subsequently transmit it to LLC.

write-backs over Channel A and C, respectively. Managers pro-
vide requested data and acknowledge write-backs on Channel D.
Channel B allows managers to issue probes to clients.

TL-UL and TL-UH, on the other hand, only utilize Channel A and
D. Channel A is used for both read and write requests from clients,
while Channel D is used for manager responses. Neither of these
TileLink specifications supports cache coherency; as such, they are
meant for peripheral device and outer memory connections.

3 RELATIONAL MEMORY IN RISC-V SOC
In this section, we describe the design and implementation of RME
in RISC-V and FireSim.

3.1 Design Overview
Our RME implementation is designed for integration within RISC-
V SoCs that support the standard TileLink interconnect. Figure 3
shows a high-level, logical view of this integration, where RME is
positioned between the DRAM and the last level cache and utilizes
TL-UH for connectivity. This configuration enables RME to issue re-
quests to the DRAM, reorganize the received data, and subsequently
transmit it to the LLC.

Figure 4 shows a more detailed overview of our RME design
and its data flow. Note that our RME design is largely the same as
that seen in the original work [23] (see Section 2.1 for background),
albeit with two key differences: the absence of a large scratchpad
memory (SPM) and changes to account for semantic differences
between AXI and TileLink. We elaborate on these changes in the
next sections.

3.2 Design Changes
Absence of SPM. The scratchpad (SPM) memories of the original
design were included to assist with the reorganization of the cache
lines. When RME is implemented in an FPGA, the scratchpads can
make use of block RAM, but their large size would introduce a
significant area overhead that could be unacceptable for an ASIC
already wrestling with constrained real estate. With this in mind,
we choose to alter the design to do without them. In the absence
of scratchpad memories, there is no need to check if we have a hit
and bypass sending a request to main memory; hence, we rename

3
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Figure 4: A high-level overview of the amended RME design integrated into RISC-V SoC using FireSim. The fetch unit is split
up and each instance handles a single request descriptor. The ID Allocator is introduced to give each transaction a unique
source ID and allow out-of-order request handling.

the Monitor Bypass module to Control Unit. The removal of these
large buffers leaves us with a largely stateless design.
Interconnect Compatibility. The AXI interconnect standard,
used by the original design, tags transaction sequences with a
unique identifier to differentiate them. The semantics of AXI IDs
dictate that transactions with the same transaction ID, belonging
to a sequence, must be returned to the sender in the same order in
which they were issued [6]. On the other hand, TileLink requires
that every outstanding transaction between each source and sink
node use a unique source ID and allows these transactions to be
completed in any order [24]. These differences required us to alter
RME design such that it does not rely on any AXI-specific func-
tionality. The original design relied on this implicit ordering of AXI
transactions to designate placement in the reorganized cache line.
Additionally, this ordering principle allowed multiple outbound
requests to reuse the same transaction ID. We do not get either of
these functionalities when using TileLink; therefore, we introduce
architectural changes to work around these differences.

To account for the lack of implicit ordering, we alter the design
to allow for out-of-order completion of requests. We achieve this by
adding extra metadata to the request descriptors generated by the
Requestor module. This extra metadata acts as a placement marker
for where the retrieved data will be placed inside the reorganized
cache line. This dynamic placement of data also required changes
to the Packer module implementation, and we use a bit-masking
mechanism to allow mapping data received out of order to its cor-
rect location. To deal with the uniqueness requirement of TileLink,
we give each request descriptor a unique source ID. Inside the Re-
questor module, we introduce a FIFO queue-based ID allocator to
allocate these unique source IDs to each request descriptor. These
IDs will be placed back in the allocator for reuse once their cor-
responding requests have made the round trip back from DRAM.
RME generates many parallel memory requests, acting as a source
with high fan-out, and by default, will quickly exhaust the 2𝑛 source
IDs available on the interconnect channel, where 𝑛 is the number
of bits used in the source fields of the TL-A and TL-D channels.

To overcome this, we introduce a new Diplomacy [25] node that
expands the bit width of the source ID field to allow for a larger
number of source IDs to be used within RME and on the outgoing
interconnect to DRAM, which is referred to as TLSourceExpander
in Figure 3.
Multiple Fetch Units. We also alter the setup of the Fetch Unit
module by splitting it into multiple replications of itself, where each
instance will handle one request descriptor at a time. This setup
enables each allocated source ID to uniquely identify the Fetch Unit
instance that originated the request. When a reply comes from the
memory controller on the TileLink D channel, it is then broadcast
to each instance. If the source ID field of the reply matches that of
the pending request in a given instance, then the reply is accepted.
Splitting the Fetch Unit in this way reduces its complexity, allows
for out-of-order request completion, and enables a parameterized
design that can match the number of instantiated Fetch Units to
the maximum memory-level parallelism of main memory. Lastly,
because we split the Fetch Unit, we are forced to move the Column
Extractor and Packer modules, which were originally part of the
Fetch Unit [23], into the Control Unit, where all fetched data will
be funneled to be constructed into a cache line.

3.3 Data Flow
In this subsection, we provide an overview of the data flow in
our design, referencing the numbered steps shown in Figure 4.
(1) A request for data is received from the TL-A channel by the
Trapper module. (2) This request is passed into an internal queue for
processing by the Requestor module. (3) The Requestor generates
request descriptors that include the physical address of the data,
an allocated source ID, where the useful data begins and ends, and
a position within the cache line to be constructed. (4) The Fetch
Units generate a TL-A compatible request, and compete for access
to a round-robin arbiter to send those requests to DRAM. (5)When
a reply is received from DRAM on TL-D, it is broadcast to all fetch
units. If the reply’s source ID field matches the source ID field of
a valid waiting request, then it is accepted. (6) Once a request has
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Table 2: Evaluation platform specifications

Component Specifications

In-Order Core Rocket, 1GHz,
L1: 16K(I)/16K(D) (4-Way)

Out-of-Order Core BOOM, 1GHz, 2-wide, ROB: 64, LSQ: 16/16,
L1: 16K(I)/16K(D) (4-Way), 6 MSHRs

Shared L2 Cache 1MB (16-way), 1 Bank
Main Memory 4GB DDR3 1066 MHz, 1 Rank, 8 Banks
Prefetcher L1 4-Ahead Multi Next Line

RME Parameters 16 Fetch Units
Operating System Buildroot Linux v6.2.0

completed its round trip from DRAM, the fetch unit then attempts
to pass the request to the Control Unit for cache line construction.
The relevant data is extracted in the Column Extractor module. A
bit masking scheme is used within the Packer to move the extracted
data to its location within the cache line. Currently, only one cache
line is allowed to be constructed at a time. The necessary logic is
in place to only accept data from Fetch Units that originated from
the same base request as that currently being processed by the
Control Unit. This is an implementation artifact, and this portion
of the pipeline could be easily widened; however, our profiling of
internal RME latencies showed that this was unnecessary in our
setup. (7) After a request descriptor has reached the control unit,
the allocated source ID is retired back into the ID allocator module
inside the Requestor for later reuse. (8)When a cache line is fully
constructed, it is sent to the Trapper. (9) The Trapper constructs a
multi-beat reply and sends the constructed cache line back to the
request originator on the TL-D channel.

4 EVALUATION
In this section, we perform experiments to investigate how the
architectural variations considered in Table 1 affect RME’s perfor-
mance. As such, we focus on the following questions:
(1) What is the effect of prefetching on RME performance?
(2) What is the effect of an out-of-order core on RME performance?
(3) What is the effect of clock speed limitation on RME performance?

4.1 Experimental Setup
Weuse FireSim, an FPGA-accelerated cycle-exact full system simula-
tor, as our evaluation environment [18]. This allows us to accurately
evaluate the performance of the proposed hardware design when
deployed in an ASIC. FireSim is capable of simulating a System-on-
Chip (SoC) operating at more than 1 GHz while physically running
on the host FPGA at a lower clock speed.
Hardware Setup. Using FireSim, we evaluate RME under the fol-
lowing operating environments: in-order core, out-of-order core,
in-order core with prefetcher, out-of-order core with prefetcher,
and under constrained clocking. Each setup enables a different
amount of request-level parallelism, placing varying levels of pres-
sure on both the memory hierarchy and RME. As we vary each
micro-architectural aspect of interest [10], we leave the rest of the
system setup unchanged. Table 2 shows the basic system setup.
Workload. We use a subset of synthetic benchmarks from [23]
that are designed to mimic various database queries. In particular,

Listing 1: Evaluated Database Queries
Q0: SELECT A1, A2, A3 FROM S;
Q1: SELECT A1, A2, ..., Ak FROM S;

Listing 1 reports the two queries that are the focus of our evaluation.
Both Q0 and Q1 are projections of 𝑘 columns (either contiguous
or non-contiguous). For Q0, 𝑘 is fixed at 3, while we vary the size
of each column from 1 to 64 bytes. For Q1, on the other hand, we
vary 𝑘 from 1 to 11 while fixing the column size to 4 bytes. Both
queries are performed on a 27 MB in-memory database. We note
that our RME implementation can scale to much larger database
sizes while maintaining the same performance trends. Since we
simulate hardware using FireSim, the execution time is amplified,
thus, we select a data size that is large enough (larger than our
system’s LLC) to stress RME and small enough to complete the
benchmarks in a timely manner. We set the row size to 64 bytes.
We measure and compare the query execution time under three
setups: (1) using RME as opposed to employing a traditional (2)
row or (3) column store memory layout without on-the-fly data
transformation. As such, most of our experiments adopt the same
convention: the ‘rme’ legend entry refers to the first setup, while the
entries labeled ‘row’ and ‘col’ refer to setups (2) and (3), respectively.
In all the figures reporting said comparisons, execution times are
normalized to the row store baseline.

4.2 Effect of Hardware Prefetching
In this experiment, we evaluate the effect of the hardware prefetcher
on the performance of RME. Because the ephemeral variable model
of RME transforms complexmemory access patterns into prefetcher-
friendly sequential patterns, prefetchers can significantly improve
RME’s performance. However, the effect of prefetchers was not
quantitatively studied in the original work [23], due to limitations
of the hardware platform, which prevented disabling the prefetch-
ers. In this work, we instantiate two system configurations—both
utilizing an in-order Rocket Core, similar to the in-order Cortex-A53
core used in [23]—one with and one without a hardware prefetcher,
using FireSim to quantitatively assess the impact of prefetching on
the performance of RME.

Figure 5 shows the performance on the Rocket core with a hard-
ware prefetcher. First, in Figure 5a, which shows the performance
of the Q0 query under varying column sizes, RME delivers perfor-
mance comparable to the column-store baseline and even slightly
outperforms it when the column size is large (16 bytes). When the
column size is small, both RME and the column-store significantly
outperform the row-store baseline due to their preferable data lay-
outs that enable more efficient data delivery to the CPU. Second,
in Figure 5b, which shows the performance of the Q1 query with
a varying number of enabled columns from 1 to 11, RME shows
consistently better performance over the row store baseline, while
the column store baseline performs poorly when the number of
enabled columns exceeds 4. RME’s superior performance over both
the row-store and column-store baselines is due to its low column
reconstruction cost, as reported in [23]. Note that Figure 5a and 5b
correspond to the same evaluation scenarios (on different hardware)
as Figures 7 and 8 of the original RME work [23], respectively. The
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(a) Executing Q0: RME is always able to outperform the row-store
execution. Further, it is competitive with the column-store execution
and even outperforms it for a large column size.
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(b) Executing Q1: As we increase projectivity, the tuple reconstruction
cost kicks in, making RME substantially faster than column-store.
The jump between 4 and 5 projected columns is attributed to the
prefetching capabilities of the Rocket processor. We note that RME
is always faster than row-store, even for high projectivity.

Figure 5: Normalized execution time for Q0 and Q1 queries
on Rocket (in-order) with hardware prefetching enabled.

trends we observe here closely match those reported for the original
RME design [23], suggesting the validity of our RME implementation
as well as the similarity of the CPU’s micro-architectural characteris-
tics—both are in-order CPUs with prefetchers.

Figure 6 shows the results of the same experiments on the Rocket
core without a hardware prefetcher. First, for the Q0 query, shown
in Figure 6a, RME’s performance is somewhat worse than that of
the column store baseline when the column size is small. This is
likely due to RME’s overhead, which cannot be hidden without
the help of the prefetcher. However, as the column size increases,
the gap reduces and eventually reverses, similar to the trend we
observe on the CPU with a prefetcher (Figure 5a).

For the Q1 query, shown in Figure 6b, RME again performs consis-
tently well against the row store baseline, although the performance
advantage shrinks and eventually reverses, ever so slightly, as the
number of enabled columns increases. On the other hand, the col-
umn store baseline exhibits significant performance degradation
when the number of enabled columns exceeds 4, again similar to
what we observe on the CPU with a prefetcher (Figure 5b).

In summary, we find that the presence of a data prefetcher
consistently enablesRME to deliver better performance.With-
out a prefetcher, RME’s performance is more nuanced compared to
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(a) Executing Q0: RME outperforms row-store for column sizes up to
8 bytes. We also observe that prefetching is more beneficial for RME
vs. column-store for low column sizes.
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(b) Executing Q1: Turning off hardware prefetching affects RME, how-
ever, it does not change the high-level trends. For increased projectiv-
ity, the tuple reconstruction cost kicks in, making RME substantially
faster than column-store. Further, the lack of prefetching makes
row-store for high projectivity more competitive than RME.

Figure 6: Normalized execution time for Q0 and Q1 queries
on Rocket (in-order) without hardware prefetching.

a column store, with some performance loss under low projectivity.
In all cases, RME remains equivalent to or better than a row store.

4.3 Effect of Out-of-Order Core
In this experiment, we evaluate the performance of RME using
an out-of-order BOOM core [12]. An out-of-order core generally
achieves higher instruction throughput than an in-order one be-
cause the former can execute many instructions in parallel and in
non-sequential order. In the original work on RME [23], however,
the evaluation platformwas equipped with an in-order CPU and did
not include an out-of-order alternative. In this work, using FireSim,
we instantiated BOOM-based system configurations to study the
effect of using an out-of-order CPU on the performance of RME.

Figures 7 and 8 show the results of the same experiments us-
ing the BOOM core with and without a prefetcher, respectively.
We initially hypothesized that the BOOM core’s ability to extract
parallelism might make hardware prefetchers less important for
RME. Conversely, the results show that this is not the case, as even
with the BOOM core, RME still benefits significantly from hard-
ware prefetchers, similar to the results observed with the Rocket
core in the previous subsection. In fact, we find that the prefetcher
provides an even higher performance boost for RME on the BOOM
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(a) Executing Q0: RME is always able to outperform both the row-
store and the column-store.
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(b) Executing Q1: As we increase projectivity, the tuple reconstruction
cost kicks in, making RME substantially faster than column-store.
RME is always faster than row-store, even for high projectivity.

Figure 7: Normalized execution time for Q0 and Q1 on BOOM
(out-of-order) with hardware prefetching enabled.

core (out-of-order) than on the Rocket (in-order) compared to the
row-store baselines on the respective platforms. For instance, for
Q1 query processing with 11 enabled columns, RME’s normalized
execution time is 0.75 on the BOOM (see Figure 7b), while it was
0.89 on the Rocket (see Figure 5b). This is because RME can feed
data to the CPU in a compact and efficient manner, allowing a high-
performance core to extract more parallelism, resulting in higher
performance.

In summary, we find that the RME improves performance
regardless of whether the CPU is in-order or out-of-order,
and its performance gain is maximized on a high-performance,
out-of-order CPU that also includes a hardware prefetcher.

4.4 Effect of RME Clock Speed
In this experiment, we vary RME’s clock speed to understand its
impact on the overall performance. Note that the original RME
implementation on a PL-PS system required a request to be han-
dled by an FPGA, with a synthesis frequency that was limited to
100 MHz, while the CPU was running at a much higher 1.5 GHz
clock speed [23]. In our implementation, shown in Figure 3, the de-
fault case (and normalization baseline) corresponds to a setupwhere
RME shares the same clock domain as the memory bus, operating
at a frequency of 1 GHz. The FireSim memory bus interfaces with
the FASED [11] DRAM controller. It is challenging to directly vary

1 2 4 8 16
Column Size (bytes)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e

rme col row

(a) Executing Q0: Prefetching is more beneficial for RME vs. row-store
the column-store execution.
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(b) Executing Q1: Turning off hardware prefetching affects RME, how-
ever, it does not change the high-level trends. The lack of prefetching
makes row-store for high projectivity more competitive than RME.

Figure 8: Normalized execution time for Q0 and Q1 on BOOM
(out-of-order) without hardware prefetching.

its frequency because DRAM-specific timing parameters would
require manual recalibration to account for the frequency change.
Instead, we developed a clock-gating mechanism that allows us to
run RME at a lower frequency (while the rest of the system still
operates at the 1 GHz frequency) to study the impact of RME’s
clock frequency on the overall performance.

For this experiment, we utilize an in-order rocket core with
prefetching enabled as the baseline hardware configuration. Amulti-
column projection query, Q1, is performed for different numbers
of enabled columns across different RME clock speeds using the
clock gating mechanism. Figure 9 shows the results, which are
normalized to the base 1 GHz RME clock speed result. First, note
the sharp increase in execution time as the clock speed is decreased
below 167 MHz, or 6× slower than the original clock speed. Up to
this point, query execution time is largely unaffected by the lower
RME clock speed. This is because prefetching is able to hide the
increased latency from RME up to this threshold. Beyond that, how-
ever, performance can be significantly impacted by the increased
latency of RME. As such, in future on-chip designs, integrating
RME(s) in a clock domain that is different and anywhere between
1×-6× slower than that of the main CPUs is certainly an option.
This also means that the limited clock speed of the FPGA in the PS-
PL system used in the original RME study [23] might have limited
RME’s performance depending on other factors such as memory
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Figure 9: Effect of Clock Speed on RME Performance, normalized to the setup where RME shares the same clock domain as the
memory bus, operating at a frequency of 1 GHz. RME’s clock can be a performance-limiting factor. After a certain threshold,
the overall RME performance is significantly affected.

bus clock speed and prefetcher efficacy. Indeed, in that study, RME
was operating at a clock frequency that was 15× slower than the
main CPU cluster.

In summary, we find the clock speed of RME can be a crucial
performance-limiting factor, and a certain threshold exists, after
which its impact is significantly pronounced.

5 FUTUREWORK
As discussed in the original RME paper [23], multiple Fetch Units
can enable higher memory controller utilization. Since we made
such changes in our new design, it is now possible to explore DRAM
organization-aware policies that exploit knowledge of DRAMmicro-
architecture, such as bank-aware scheduling of the Fetch Units. In
addition, we would also like to integrate RMEwith other techniques
for managing the memory hierarchy. We observe that many data-
base queries stream large amounts of data to the cache, hence we
envision techniques to intelligently coordinate writeback policy
at the cache level with RME. Techniques similar to Eager Write-
back [20] can be used to reduce contention between demand fetches
and dirty writebacks to maximize RME bandwidth. There is also
room for coordinating with the memory controller to reduce con-
tention at the level of shared DRAM resources. We envision that
techniques like the virtual write queue [26] can be used to coordinate
write-back policies with the memory controller such that they do
not conflict with a busy RME and inflate the latency of constructing
a cache line. In terms of analysis, a look at multi-threaded work-
loads has yet to be done. The scalability of RME across multiple
parallel threads is something we plan to look into. In the future,
we would also like to integrate RME and other data transformation
methods more tightly into RISC-V. There is an open question of
how best to accomplish this, whether it be through OS control via
similar methods to the deterministic memory abstraction [15] and
SpectreGuard [17], or by taking advantage of RISC-V readiness for

ISA extensions. We plan to explore both routes and programming
models for each in the future.

6 CONCLUSION
In conclusion, in this work we re-implemented RME in Chisel HDL
and integrated the design into the RISC-V Rocket Chip SoC ecosys-
tem. We used this new environment along with FireSim, a cycle
accurate ASIC simulator, to perform an in-depth analysis of how
RME interacts with various components of the system. In our eval-
uation we observed that RME is able to benefit systems that do not
have hardware prefetching, but to a lesser degree than when it is
present. We found that prefetching is able to hide nearly all of the
latency incurred by RME, even under constrained clocking. We also
found that an out-of-order core is able to act synergistically with
RME and prefetcher and incur even greater relative speedup.
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