
Analyzable and Practical Real-Time Gang
Scheduling on Multicore Using RT-Gang

Waqar Ali, Michael Bechtel, Heechul Yun
University of Kansas

{wali, mbechtel, heechul.yun}@ku.edu

In this presentation, we will introduce a new real-time
gang scheduling framework in Linux, called RT-Gang [2], and
provide a brief tutorial and a demo of using the framework in
a self-driving car application [3].

Emerging safety-critical real-time control systems in auto-
motive and aviation applications often consist of a number
of highly computationally expensive and data intensive work-
loads (e.g., deep neural networks) with strict real-time re-
quirements for agile control (e.g., 50Hz). Guaranteeing timely
execution of these real-time tasks is an important requirement
for safety of the system. However, it is challenging to pro-
vide such a guarantee on today’s highly integrated embedded
computing platforms because they often show unpredictable
and extremely poor worst-case timing behaviors that are hard
to understand, analyze, and control [4], [8]—chiefly due to
interference in shared memory hierarchies. Broadly, timing
unpredictability is a serious problem especially in automotive
and aviation industries. For example, Bosch, a major auto-
motive supplier, reported “predictability on high-performance
platforms” as a major industrial challenge for which the
industry is actively seeking solutions from the research com-
munity [6]. In aviation, the problem was dubbed as “one-
out-of-m” problem [7] because the current best practice for
certification, which requires evidence of bounded interference,
is to disable all but one core of a multicore processor [5].

RT-Gang [2] is a new real-time gang scheduling framework
implemented in Linux to address the timing unpredictability
problem on COTS multicore platforms for safety-critical real-
time applications. In RT-Gang, all threads of a parallel real-
time task form a real-time gang and the scheduler globally
enforces a one-gang-at-a-time scheduling policy. When a
real-time task is released, all of its threads are scheduled
simultaneously if it is the highest priority real-time task, or
none at all if a higher priority real-time task is currently in
execution. Any idle cores, if exist, can be used to schedule
best-effort tasks but their shared memory access rates are
strictly regulated by a memory throttling mechanism to bound
their impact to the real-time task. Specifically, each real-time
task defines its tolerable maximum memory bandwidth budget,
which is strictly enforced by a kernel level regulator for any
co-scheduled best-effort tasks. (see Figure 1.)

RT-Gang eliminates the problem of contention in the shared
memory hierarchy between real-time tasks by executing only
one real-time task at any given time, which effectively trans-
forms parallel real-time task scheduling on a multicore into the
well-understood uni-core real-time scheduling problem. Be-

Core 1

Core 2

Core 3

Core 4
t1 t2 t3 t2 t1

timet1job 
release

completion

best-effortreal-time
t1 t2 t3< <

Fig. 1. Illustration of RT-Gang

cause of the strong temporal isolation guarantee offered by RT-
Gang, a real-time task’s worst-case execution time (WCET)
can be tightly bounded without making strong assumptions
about the underlying hardware. Thus, RT-Gang can improve
system schedulability while providing a mechanism to safely
utilize all cores of a multicore platform.

RT-Gang is currently implemented as a ”feature” of
the standard Linux SCHED FIFO real-time scheduler (ker-
nel/sched/rt.c), which can be enabled or disabled dynamically
at run-time [1]. In this presentation, we will provide a quick
tutorial on how to use the feature, and demonstrate its effects
on a real self-driving car application [3], which uses deep
neural networks (processed by TensorFlow).

REFERENCES

[1] RT-Gang code repository. https://github.com/CSL-KU/RT-Gang.
[2] W. Ali and H. Yun. RT-Gang: Real-Time Gang Scheduling Framework

for Safety-Critical Systems. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2019.

[3] M. G. Bechtel, E. McEllhiney, and H. Yun. DeepPicar: A Low-cost Deep
Neural Network-based Autonomous Car. In Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2018.

[4] M. G. Bechtel and H. Yun. Denial-of-Service Attacks on Shared Cache
in Multicore: Analysis and Prevention. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2019.

[5] Certification Authorities Software Team. CAST-32A: Multi-core Proces-
sors. Technical report, Federal Aviation Administration (FAA), 2016.

[6] A. Hamann. Industrial challenges: Moving from classical to high
performance real-time systems. In Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2018.

[7] N. Kim, B. C. Ward, M. Chisholm, J. H. Anderson, and F. D. Smith.
Attacking the one-out-of-m multicore problem by combining hardware
management with mixed-criticality provisioning. Real-Time Systems,
53(5):709–759, 2017.

[8] P. K. Valsan, H. Yun, and F. Farshchi. Taming non-blocking caches
to improve isolation in multicore real-time systems. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2016.


