
RT-Gang: Real-Time Gang Scheduling Framework
for Safety-Critical Systems

Waqar Ali, Heechul Yun
University of Kansas, USA.
{wali, heechul.yun}@ku.edu

Abstract—In this paper, we present RT-Gang: a novel real-
time gang scheduling framework that enforces a one-gang-at-a-
time policy. We find that, in a multicore platform, co-scheduling
multiple parallel real-time tasks would require highly pessimistic
worst-case execution time (WCET) and schedulability analysis—
even when there are enough cores—due to contention in shared
hardware resources such as cache and DRAM controller.

In RT-Gang, all threads of a parallel real-time task form a
real-time gang and the scheduler globally enforces the one-gang-
at-a-time scheduling policy to guarantee tight and accurate task
WCET. To minimize under-utilization, we integrate a state-of-
the-art memory bandwidth throttling framework to allow safe
execution of best-effort tasks. Specifically, any idle cores, if
exist, are used to schedule best-effort tasks but their maximum
memory bandwidth usages are strictly throttled to tightly bound
interference to real-time gang tasks.

We implement RT-Gang in the Linux kernel and evaluate it
on two representative embedded multicore platforms using both
synthetic and real-world DNN workloads. The results show that
RT-Gang dramatically improves system predictability and the
overhead is negligible.

Index Terms—gang-scheduling, response-time analysis, safety
critical system, resource contention

I. INTRODUCTION

Safety-critical embedded real-time systems in automotive
and aviation industries increasingly demand efficient, high-
performance computing platforms to execute compute and data
intensive workloads (e.g., deep neural networks) in real-time,
while meeting size, weight, power and cost constraints [28].
However, engineers and researchers developing and studying
these safety-critical systems have had troubles to deal with
modern high-performance computer architectures because of
their unpredictable and extremely poor worst-case timing
behaviors that are too complex to understand and analyze [5].

In a safety-critical real-time system, the use of high-
performance multicore platforms is challenging because
shared hardware resources, such as cache and memory con-
trollers, can cause extremely high timing variations [49], [55].
The timing unpredictability is a serious problem in both auto-
motive and aviation industries. For example, Bosch, a major
automotive supplier, recently announced “predictability on
high-performance platforms” as a major industrial challenge
for which the industry is actively seeking solutions from the
research community [20]. In aviation, the problem was dubbed
as “one-out-of-m” problem [24] because the current industry
practice is to disable all but one core as recommended by the
Federal Aviation Administration (FAA) for certification, which
requires evidence of bounded interference [12].

Prior efforts to address the timing predictability problem
have been largely based on the two basic ideas: (1) design-
ing simpler time-predictable architectures and (2) partitioning
shared resources. Unfortunately, simpler architectures tend to
trade-off too much performance in favor of predictability,
which we can no longer afford. Partitioning shared resources
improves predictability but cannot guarantee tight worst-case
timing in high-performance multicore architectures because
there are too many important but unpartitionable shared re-
sources [49]. Moreover, not only partitioning generally reduces
efficiency and maximum achievable performance, it is also
very difficult to partition properly for parallel tasks, while
many emerging real-time workloads, such as deep neural
network (DNN) [9], [35], are highly parallel.

In this paper, we present RT-Gang: a novel real-time gang
scheduling framework that can efficiently and predictably
utilize modern high-performance multicore architectures for
safety-critical real-time systems. We focus on supporting
emerging parallel real-time workloads, such as DNN-based
real-time sensing and control tasks [9], [35], while also
supporting legacy single-threaded real-time applications. Our
key observation is that, from the worst-case execution time
(WCET) standpoint, scheduling one parallel real-time task at
a time is better than co-scheduling multiple parallel real-time
tasks, because the latter case must assume highly pessimistic
WCETs on multicore architecture (see Section II).

In RT-Gang, all threads of a parallel real-time task forms a
real-time gang and the scheduler globally enforces a one-gang-
at-a-time scheduling policy to guarantee tight and accurate
task WCET. Assuming all real-time tasks are parallelized and
each parallel task can fully take advantage of all the available
computing resources on the platform, this one-gang-at-a-time
approach essentially renders parallel real-time task scheduling
on multicore into the well-understood single-core real-time
scheduling problem [41]. The most significant benefit of this
transformation is that we no longer need to worry about shared
resource interference because all scheduled threads are part of
a single real-time task and that resource sharing is constructive
rather than destructive in this setting. Assuming the WCET of
a parallel real-time task is estimated in isolation, RT-Gang
guarantees that the WCET will be respected regardless of
other tasks on the system. Furthermore, we can apply well-
understood single-core based real-time task scheduling poli-
cies and analysis methodologies [4], [27], [45] without making
strong assumptions on the underlying multicore architectures.

Assuming all real-time tasks are perfectly parallelized is,
however, unrealistic. Many real-time tasks are difficult or
impossible to parallelize. Also, parallelized code often does
not scale well. Therefore, our one-gang-at-a-time policy can
significantly under-utilize computing resources when imper-
fectly parallelized or single-threaded real-time tasks are sched-
uled one-at-a-time. We address the potential resource under-
utilization problem in the following two ways.

First, we introduce the notion of a virtual gang. We define
a virtual gang task as a group of real-time tasks that are
explicitly linked and scheduled together as if they are threads
of a single parallel real-time task under our gang scheduler.
Although real-time tasks in a virtual gang could interfere with
each other, because the members of a gang are statically
determined at design time, analyzing their WCET impacts,
while not the focus of this paper, is easier under RT-Gang
(e.g., via measurement).

Second, we allow co-scheduling of best-effort tasks on
any available idle system cores but with a condition that the
cores are strictly regulated by a memory bandwidth throttling
mechanism [53]. Each real-time gang defines its tolerable
maximum memory bandwidth, which is then strictly enforced
by the throttling mechanism to ensure bounded interference to
the real-time gang task.

We implement RT-Gang in Linux kernel and evaluate it
on two representative embedded multicore platforms, NVIDIA
Jetson TX-2 and Raspberry Pi 3, using both synthetic and real-
world workloads. The results show that RT-Gang dramatically
improves system predictability while the measured overhead
is negligible.

In summary, we make the following contributions:
• We propose RT-Gang, a novel gang scheduling frame-

work that enables analyzable parallel real-time scheduling
on multicore platforms.

• We introduce the virtual gang concept to minimize re-
source utilization by statically grouping multiple real-
time tasks as a single schedulable real-time gang.

• We further improve efficiency by integrating a state-of-
the-art memory bandwidth throttling framework to enable
safe best-effort task execution on any existing idle cores.

• We implement RT-Gang in Linux kernel and present its
evaluation results on two different embedded platforms
using both synthetic and real-world workloads. We also
provide RT-Gang as open-source [2].

The rest of this paper is organized as follows. We present a
motivating case-study in Section II. In Section III, we present
the design of RT-Gang, and in Section IV, we describe its
implementation details in Linux. In Section V, we present
our evaluation results. After discussing potential use-cases and
related work in Section VI and Section VII, respectively, we
conclude in Section VIII.

II. MOTIVATION

In this section, we provide evidence that shows why
scheduling one real-time gang at a time can be better from
the perspective of task WCETs through a case-study.

 0

 20

 40

 60

 80

 100

1 2 3 4

20
Hz

30
Hz

A
v
g

.
p

ro
ce

ss
in

g
 t

im
e

 (
m

s)

#of cores

46.30

30.95
25.66 22.86

(a) Effect of DNN parallelization

 0

 2

 4

 6

 8

 10

 12

DNN (Core 0,1) BwWrite (Core 2,3)

N
o
rm

a
liz

e
d

 E
xe

cu
ti

o
n

 T
im

e Solo
Corun

(b) Effect of co-scheduling

Fig. 1: (a) Average control loop execution time vs. #of CPU
cores; (b) performance impact of co-scheduling (DNN on Core
0,1; BwWrite, a memory benchmark [49], on Core 2,3)

In this case-study, we use a deep neural network (DNN)
based real-time control task of DeepPicar [7] as our workload.
The control loop uses a single deep neural network (DNN) to
produce the car’s steering angle control output from raw im-
ages of the car’s front-facing camera in real-time. Importantly,
its DNN architecture is the same as the one used in NVIDIA’s
real self-driving car called DAVE-2 [9].

Note that DNN processing is highly compute and data inten-
sive, which is thus often parallelized to improve performance.
Figure 1(a) shows the average execution times of the control
loop while varying the number of CPU cores used on a quad-
core embedded platform (Raspberry Pi 3). It can be seen that
as we assign more cores for DNN processing, the performance
improves—from 46.30 ms on a single core to 22.86 ms on four
cores. If the real-time requirement is 30Hz, one might want
to parallelize the DNN using two cores, while co-scheduling
other tasks on the other two remaining cores.

Figure 1(b) shows the timing impact of such co-scheduling,
where the DNN control task and a memory intensive task are
scheduled first in isolation (Solo) and then together (Corun).

The interesting, and troubling, observation is that the two
tasks experience dramatically different timing impact: the

2

Core 1

Core 2

Core 3

Core 4

t1 t2 t3 t2 t1

time

t1

release

completion

priority: t1 < t2 < t3

Idle or best-effort

real-time
t1 t2 t3

Fig. 2: Proposed real-time gang scheduling approach

DNN control task suffers 10.33X slowdown, while the mem-
ory benchmark suffers only 1.05X slowdown.

For safety-critical real-time systems, this means that ex-
tremely pessimistic task WCETs must be assumed to be safe.
The potential timing impact of interference highly depends on
task’s memory access patterns and the underlying hardware.
For example, we observed more than 100X slowdown (two
orders of magnitudes) using a linked-list iteration task on the
same computing platform used above, even after we partition
core as well as the shared cache among the tasks. Similar
degrees of timing impacts of interference have been reported in
recent empirical studies on contemporary embedded multicore
platforms [7], [8], [49], [50], [55].

When a task’s WCET has to be assumed 10X or 100X of
its solo execution time, we can see why in aviation industry, it
makes perfect sense to disable all but one core [24] and why
the certification authorities in US and Europe recommend it
for certification [11], [12]. However, disabling cores obviously
defeats the purpose of using multicore platforms in the first
place—the need of more performance.

In our DNN control-task case-study above, a better approach
is to use all four cores just for the parallelized DNN processing
task—without co-scheduling—which would result in quicker
completion of the control task. More importantly, because
there would be no other competing co-scheduled tasks, there’s
no need to pessimistically estimate the task’s WCET. This in
turn will achieve better overall schedulability.

In this sense, from the WCET standpoint, scheduling fully
parallelized tasks one-at-a-time might be better than co-
scheduling multiple of them at the same time. Generally
applying this approach, however, has two major issues. First,
not all real-time tasks can be easily parallelized. Second,
parallelization often does not scale due to synchronization and
other overheads. Therefore, the danger is that some cores may
be under-utilized under the one-at-a-time scheduling policy.

In summary, we have made a case why, from the WCET
standpoint, scheduling one parallel real-time task at a time can
be better than co-scheduling multiple parallel tasks simulta-
neously, although possible under-utilization of the computing
resources is a concern.

III. RT-GANG

In this section, we describe the design of RT-Gang.

A. Assumptions and Objectives

We consider a shared memory based multicore processor.
We assume a hierarchical OS scheduling framework in which
real-time tasks are strictly prioritized over best-effort tasks
(e.g., Linux). We assume that each task is composed of one or
more threads. We assume that the thread to core assignment of
each parallel real-time task, but not best-effort ones, is given
and fixed (i.e., no migration). We assume that the WCET of
each real-time task is experimentally measured or analytically
computed (e.g., [42]) in isolation.

Our objective is to eliminate the need to analyze interference
between the real-time tasks on a multicore by turning multicore
parallel real-time scheduling into an equivalent of single-
core real-time task scheduling, while minimizing potential
utilization loss.

B. Design Overview

RT-Gang is based on a simple idea: schedule one real-time
task—parallel or not—at a time. When a real-time task is
released, all of its threads, called a gang, shall be scheduled
all at once—if the task is the highest priority one—or not at
all—if the task’s priority is lower than the currently scheduled
real-time task—even if there exist some idle cores. In other
words, we implement a version of gang scheduler, but unlike
prior gang scheduler designs [17], [19], [22], we do not allow
co-scheduling of other real-time tasks even when there are
available idle cores. We do allow, however, co-scheduling best-
effort tasks with strictly imposed limits on their allowed mem-
ory access rates by integrating an existing memory bandwidth
throttling mechanism [3], [53].

In our approach, each real-time task declares its maximum
allowed interfering memory traffic from the best-effort tasks
on different cores, which is then enforced by the OS at runtime
for the cores that schedule best-effort tasks, if such cores exist.
In this way, the parallel real-time task, a real-time gang, is
guaranteed to be able to use all available computing resources,
and the maximum interference is strictly limited to a certain

3

Core 1

Core 2

Core 3

Core 4

Core 1

Core 2

Core 3

Core 4

Virtual gang

tg

(a) Virtual gang priority is higher: tg > t4

t1

t2

t3

t3

t4

t4

t4

t4

t4 tg t4 tg

Virtual gang

(b) Virtual gang priority is lower: tg < t4

Fig. 3: Virtual gang scheduling example

threshold value, determined by the task itself in advance. If
the real-time gang needs maximum isolation, it can set its
interference threshold value to be zero, preventing any co-
scheduling of best-effort tasks.

Figure 2 shows an example schedule under RT-Gang frame-
work. In this example, three real-time tasks t1, t2, and t3 (in
increasing priority) are scheduled. The task t1 has four threads,
while t2 and t3 have three threads and one thread, respectively.

At first, t1 is scheduled. When t2 is released, it preempts
t1 because it has higher priority. Note that even if Core 3 and
4 are idle at the time, t1 cannot use the cores. When t3, a
single-threaded task, becomes ready, all cores except Core 3
become idle to guarantee that t3 is the only real-time task in
the entire system. In this way, our real-time gang scheduler
strictly enforces the one real-time gang at a time policy.

Note that the dot-filled rectangles are slack-durations during
which best-effort tasks can be scheduled, using a general
purpose scheduler, such as Linux’s Completely Fair Scheduler
(CFS) [33], but they will be throttled based on each real-time
task’s declared tolerable threshold value.

RT-Gang’s design approach offers several major benefits.
First, by scheduling one real-time gang at a time, we no
longer need to worry about interference from other real-time
tasks. Possible interference from best-effort tasks is strictly
regulated by the threshold value determined by the task itself.
Thus, we can obtain accurate WCET estimates of a real-time
task (e.g., measure the timing while injecting the threshold
amount of memory traffic). Also, as shown in [37], we can
obtain better analytic memory interference bounds when we
can control the amount of competing memory traffic. In other
words, we no longer need to deal with highly pessimistic 10X
or 100X WCETs. An equally desirable aspect of this approach
is that it renders the problem of scheduling parallel real-time
tasks on multicore as the simple, well-understood classical
real-time scheduling problem on single-core systems [27],
[45]. Thus, we can directly apply classical single-core analysis
methods [4].

C. Virtual Gang

Our basic real-time gang scheduling approach described
above would work well when all real-time tasks are perfectly
parallelized, but it may under-utilize the system if real-time
tasks are single-threaded and best-effort tasks are not available.
Furthermore, some of them may miss the deadlines, while they
might be schedulable if all cores are used.

We propose the virtual gang concept to mitigate the re-
source under-utilization problem of imperfectly parallelized
real-time tasks under our gang scheduling policy. We define
a virtual gang as a group of real-time tasks that are explicitly
linked and scheduled together as if they are threads of a single
real-time task under our gang scheduler. A virtual gang task
has a fixed priority value that applies to all of its members.
From the gang scheduler’s point of view, a virtual gang is just
like a normal real-time task, except the scheduled threads are
not from the same task but from multiple different tasks. The
composition of a virtual gang must be explicitly determined
by the system designer at design time. Once a real-time task
becomes a member of a virtual gang, all of its threads are
scheduled simultaneously with the threads of the other member
real-time tasks of the virtual gang.

Figure 3 shows two example schedules involving a virtual
gang tg , which consists of three separate real-time tasks: t1, t2
and t3. Note that t1 and t2 are single-threaded while t3 is
multi-threaded but only two threads are used. All real-time
tasks in the virtual gang tg share the same priority. Therefore,
from the scheduler’s point-of-view, all threads of the three
tasks are treated as a single (virtual) real-time task tg , the
virtual gang task. For instance, in inset (a) of Figure 3, a newly
arrived task t4 cannot be scheduled until t1’s last thread is
completed because tg’s priority is higher than t4. In inset (b),
on the other hand, t4 immediately preempts all active threads
of the virtual gang tg , because tg’s priority is lower than t4’s.

Although the real-time tasks in a virtual gang can destruc-
tively interfere with each other, their membership is explicitly
determined at the design time. Therefore, the effect of shared

4

Task WCET (C) Period (P) # Thread

τRT
1 2 10 2

τRT
2 4 10 2

τBE
3 ∞ N/A 4

TABLE I: Taskset parameters of the illustrative example

resource interference among the tasks in a virtual gang can
be carefully analyzed, either empirically or analytically, and
taken into account for system-level schedulability analysis.

D. Safe Best-Effort Task Co-Scheduling

Because our real-time gang scheduling approach strictly
disallows concurrent real-time tasks, which are not part of the
currently scheduled real-time gang, it is possible that some
cores may be idle. As we discussed earlier, we allow schedul-
ing of best-effort tasks on those idle cores with a condition that
their interference is strictly bounded by integrating a memory
bandwidth throttling mechanism as found in [53].

The throttling mechanism in [53] uses per-core hardware
performance counters to bound the maximum number of mem-
ory transactions within a given time interval (e.g., 1-msec
period) to a certain programmable threshold (budget). When
the core reaches the programmed threshold, the hardware
counter generates an overflow interrupt, which is then handled
by the OS to stop the core until the next time period begins.

Assuming that the currently scheduled real-time gang is
actively using k cores out of m cores (k ≤ m), there are
m−k idle cores on which we can schedule best-effort tasks—
i.e., those that do not have hard real-time requirements. The
best-effort tasks scheduled on the idle cores are given strict
limits in terms of their memory bandwidth usage so that
their impact to the real-time gang is bounded. The bandwidth
limit of the best-effort tasks is determined by the currently
scheduled real-time gang in the system. When the real-time
gang is being scheduled on k cores, all the m − k cores are
throttled according to the bandwidth threshold of the gang.

E. Illustrative Example

In this subsection, we provide an illustrative example to
compare scheduling under RT-Gang with a traditional co-
scheduling approach.

Let us consider a multicore system with four homogeneous
CPU cores. We want to schedule a parallel taskset, shown
in Table I, in the system. τRT

1 and τRT
2 are real-time tasks.

τBE
3 is a best-effort task, which is scheduled under the default

CFS scheduler. For the sake of simplicity, we assume that all
threads of a task have the same compute time and are released
simultaneously at the start of the period. We assume that all
threads are statically pinned to specific CPU cores and they
do not migrate during their execution. The OS scheduler tick
interval is assumed to be 1-msec.

Figure 4(a) shows the scheduling timeline under a tradi-
tional co-scheduling approach. For this figure, we assume
that tasks on different cores do not suffer interference due to

Core 1

Core 2

Core 3

Core 4 time

!"#$!%&'

!%&'

!(&'

!(&'

!"#$

!"#$

!"#$
1 2 3 4 5 6 7 8 9

(a) Example schedule of a co-scheduling scheme (w/o interference)

Core 1

Core 2

Core 3

Core 4 time

!"#$

!"#$

!"#$

!"#$

!"#$

!"#$

!%&'

!%&'

!(&'

!(&'

1 2 3 4 5 6 7 8 9

(b) Example schedule of RT-Gang

Core 1

Core 2

Core 3

Core 4 time

!"#$

!"#$

!%#$

!%#$

!&'(

!&'(

!&'(

!&'(
1 2 3 4 5 6 7 8 9

(c) Example schedule of a co-scheduling scheme (with interference)

Fig. 4: Example schedules under different scheduling schemes

contention in shared hardware resources. Under co-scheduling,
τRT
1 completes its execution at 2-msec. This leaves 8-msec

slack duration on the two cores on which this task was
executing. Similarly, τRT

2 leaves a slack duration of 6-msec
on its cores. Considering the system as a whole, the total slack
duration left in this schedule is 28-msec. The slack duration
can be used to schedule the best-effort task τBE

3 .
Figure 4(b) shows the scheduling timeline under RT-Gang.

Under this schedule, τRT
1 gets to run first. While τRT

1 is
executing, τRT

2 is blocked thanks to our one-gang-at-a-time
policy. Once τRT

1 finishes its execution at 2-msec mark, τRT
2

starts executing and completes at 6-msec mark. Under this
scheme, the total slack duration left in the system is again
28-msec, assuming that τBE

3 is not throttled (i.e., its memory
bandwidth usage is less than the allowed threshold).

Now we consider the case where the real-time tasks can de-
structively interfere with each other due to resource contention.
Borrowing from the DNN case-study introduced in Section II,
we assume that the execution time of τRT

1 increases 10X,
when it is co-scheduled with τRT

2 . τRT
2 , on the other hand,

stays unaffected under co-scheduling. Figure 4(c) shows the

5

scheduling timeline for this case under co-scheduling scheme.
As can be seen from the figure, while τRT

2 is executing, the
progress of τRT

1 would be slowed due to interference. At
4-msec mark when τRT

2 finishes its execution, τRT
1 has only

made 20% progress and it still has 1.6-msec of its original
compute time left. For this reason, τRT

1 completes its execution
at 5.6-msec. In this case, the total slack duration for best-
effort tasks is 20.8-msec.

Under RT-Gang, the scheduling timeline of the real-time
tasks remains the same as the one shown in Figure 4(b)
because τRT

1 and τRT
2 can never run at the same time. In other

words, regardless of task and hardware characteristics, real-
time tasks’ execution times would remain the same. The slack
duration remains unchanged as well, which can be utilized for
scheduling best-effort tasks although they are strictly regulated
with a memory bandwidth throttling mechanism, shown as the
“locked” duration in Figure 4(b).

In summary, the major benefits of RT-Gang are: (1) Parallel
real-time tasks enjoy highly predictable task WCETs regard-
less of the characteristics of scheduled tasks and the underlying
hardware because only one real-time task is scheduled at a
time; (2) Best-effort tasks can be safely scheduled on any idle
cores because the integrated throttling mechanism guarantees
bounded interference.

IV. IMPLEMENTATION

In this section, we describe the implementation details of
RT-Gang in Linux kernel.

Algorithm 1 shows the high-level pseudo-code of RT-Gang.
The implementation revolves around a data-structure struct
glock declared in Line-2 of the algorithm. This data-structure
is used for the following main purposes:

• Quickly check whether the gang scheduling lock is cur-
rently being held (held flag)

• Track the cores, which are currently running real-time
threads using a bitmask (locked cores)

• Track the blocked cores, which have real-time tasks in
their queues but cannot execute them due to the gang
scheduling policy (blocked cores)

To simplify the implementation complexity, we assume that
each real-time gang in our system has a distinct real-time
priority value. In the following sections, we explain the main
parts of the algorithm in detail.

A. Gang Lock Acquisition

Before a real-time task can get scheduled, it needs to acquire
the gang scheduling lock. Algorithm 2 shows the pseudo-code
of the lock acquisition function. In this function, the gang-
scheduling lock is marked as held by setting the boolean flag
in the global glock data-structure. The CPU core on which
this function is invoked, is marked “locked” by setting its bit
inside the locked_cores bitmask. The task that acquires
the gang lock is marked as the gang-leader and its task pointer
is tracked inside an array, which is later used at the time of
lock release.

Algorithm 1: RT-Gang in Linux

1 struct glock

2

spinlock t lock;
bool held flag;
bitmask locked cores;
bitmask blocked cores;
task struct t∗ leader;
task struct t∗ gthreads [NR CPUS];

3 function __schedule(task struct t ∗prev)
4 for each sched class (class)
5 next = class→pick next task (prev);
6 if (next) then
7 context switch (prev, next);

8 return

9 function ∗pick_next_task_rt(task struct t ∗prev)
10 spin lock (glock→lock);

if (glock→held flag) then
11 try glock release (prev);

12 next = rt queue [this cpu]→next task;
if (glock→held flag == false) then

13 acquire gang lock (next);
14 else if (next→prio == glock→leader→prio) then
15 set bit (this cpu, glock→locked cores);

glock→gthreads [this cpu] = next;
16 else if (next→prio > glock→leader→prio) then
17 do gang preemption ();

acquire gang lock (next);
18 else
19 set bit (this cpu, glock→blocked cores);

next = null;
20 spin unlock (glock→lock);

21 return next

Algorithm 2: Gang Scheduling: Lock Acquisition

1 function acquire_gang_lock(task struct t ∗next)
2 glock→held flag = true;

set bit (this cpu, glock→locked cores);
glock→gthreads [this cpu] = next;
glock→leader = next;

3 return

B. Gang Lock Release

This function is called to release the gang-scheduling lock
on behalf of a task which is going out of schedule. The
pseudo-code of this function is shown in Algorithm 3. Upon
entering this function, it is checked whether the thread going
out of execution is part of the currently executing gang. If this
condition is true, the current CPU core is marked as unlocked,

6

by clearing its bit from the locked_cores bitmask.
The next condition checked in this function is to make sure

if all of the threads belonging to current gang have finished
their execution, which would imply that the gang-lock is now
free. This is done by checking if the locked_cores bitmask
is zero. If this is the case, the gang-scheduling lock is marked
free and rescheduling inter-processor interrupt (IPI) is sent to
the CPU cores, which have blocked real-time tasks in their
ready queues by using the blocked_cores bitmask.

Algorithm 3: Gang Scheduling: Lock Release

1 function try_glock_release(task struct t ∗prev)
2 for each locked core (cpu, glock→locked cores)
3 if (gthreads [cpu] == prev) then
4 clear bit (cpu, glock→locked cores);

gthreads [cpu] = null;
if (mask is zero (glock→locked cores)) then

5 glock→held flag = false;
reschedule cpus (glock→blocked cores);
clear mask (glock→blocked cores);

6 return

C. Gang Preemption

The purpose of this function is to preempt all threads, which
are part of the currently running gang, so that a new higher
priority gang may start its execution. The pseudo-code of
this function is shown in Algorithm 4. In this function, the
locked_cores bitmask is traversed to send rescheduling
IPIs to all the cores, which are currently marked as locked.
Once this is done, the locked_cores bitmask is cleared
and the threads being tracked in the gthreads array are
removed.

Algorithm 4: Gang Scheduling: Gang Preemption

1 function do_gang_preemption()
2 for each locked core (cpu, glock→locked cores)
3 gthreads [cpu] = null;

4 reschedule cpus (glock→locked cores);
clear mask (glock→locked cores);

5 return

D. Main Gang Scheduling Algorithm

The gang-scheduling algorithm resides in the critical path
of the main scheduler entry point function (__schedule) in
Linux and it works by modifying the task selection heuristics
of the real-time scheduling class.

Algorithm 1 shows the main scheduling function of RT-
Gang. The algorithm starts by checking whether gang-
scheduling lock is currently being held by any real-time task.

If that is the case, the algorithm tries to release the gang-
scheduling lock on behalf of the prev task which is going
out of schedule (Line-11).

If the gang-scheduling lock is currently free, the algorithm
acquires the lock on the current core on behalf of the next
real-time task (Line-13).

If the lock is currently not free, the algorithm checks
whether the next real-time task on this CPU core belongs to
the same gang that is holding the gang-scheduling lock (Line-
14). Here, we exploit the fact that each real-time gang has a
distinct priority as mentioned earlier this section. Hence, if the
next task and the gang leader task have the same real-time
priority value, they are considered as part of the same gang.
In this case, the current core is marked “locked” by setting its
bit in the locked_cores bitmask (Line-15).

If the lock is not free and the next real-time task does not
belong to the currently executing gang, it is checked whether
this task has a higher priority than the gang in execution
(Line-16). If that is the case, the currently executing gang is
preempted and the gang-scheduling lock is acquired on behalf
of the next task (Line-17).

If all of the above conditions fail—i.e., the gang-scheduling
lock is not free, the next real-time task does not belong to the
currently executing gang, and it is of lower priority, then the
next task is deemed ineligible for scheduling. In this case,
the current CPU core is marked as blocked by setting its bit in
the blocked_cores bitmask (Line-19) and the next task
pointer is set to null so that no real-time task is returned to
the scheduler by the real-time scheduling class.

Finally, the spinlock is released (Line-20) and control is
returned to the scheduler (Line-21); to either schedule the next
real-time task (if any) or go to the next scheduling class (CFS)
to pick a best-effort task.

E. Creation of Virtual Gangs

In our implementation of RT-Gang in Linux, creation of
virtual gang tasks is straight-forward. Because each real-time
gang task has a distinct real-time priority in our system, the
only thing that a system programmer has to do to mark
different real-time tasks as part of the same virtual gang, is
to assign them the same real-time priority value under Linux.
Once this is done, RT-Gang framework allows simultaneous
execution of such tasks just like real gangs.

F. Memory Bandwidth Throttling of Best-Effort Tasks

We incorporated a memory bandwidth throttling framework
based on [53] in RT-Gang. This framework provides system
programmers with a system-call; to mark the entire duration
of a real-time application as memory bandwidth sensitive (i.e.,
Coarse-Lock). We update this system call such that instead
of providing a binary value to start/stop throttling, the caller
provides the acceptable memory threshold value for the real-
time gang in execution. This value is stored in the task
structure of the RT-Gang leader as an integer. We also modify
the framework in [53] such that in every regulated interval, the
memory bandwidth threshold value of the executing gang is

7

CPU 0

CPU 1

CPU 2

CPU 3

20-msec
!" !# !$%$&' !()*&' +,ℎ./,,01

(a) without RT-Gang (Baseline Linux)

CPU 0

CPU 1

CPU 2

CPU 3

(b) with RT-Gang

Fig. 5: Task execution traces. τ1(C1 = 3.5, P1 = 20), τ2(C2 = 6.5, P2 = 30): parallel RT tasks (2 threads / task); τBE
mem, τBE

cpu :
memory and cpu intensive best-effort tasks respectively; kthrottle: injected kernel thread for throttling

automatically enforced on all CPU cores executing best-effort
tasks. In this manner, we ensure that the real-time gang is
protected from unbounded interference from best-effort tasks.

V. EVALUATION

In this section, we present the evaluation results of RT-Gang.

A. Setup

We evaluate RT-Gang on two embedded platforms: Rasp-
berry Pi3 and NVIDIA Jetson TX2. Raspberry Pi3 is equipped
with a Cortex-A53 based quad-core CPU, which is repre-
sentative of an energy efficient low-cost embedded multicore
processor, while NVIDIA Jetson TX2 is equipped with a six-
core heterogeneous CPU (4X Cortex-A57 and 2X Denver 1),
which is representative of a high-end embedded processor.

On both platforms, we use Linux 4.4 kernel and im-
plement RT-Gang by modifying its real-time scheduler
(kernel/sched/rt.c). Our modification is about 500
lines of architecture neutral C code.

In all our experiments, we place the platform in the max-
imum performance mode and disable the dynamic frequency
scaling of CPU cores. We also shutdown the graphical user
interface and disable networking to minimize run to run
variation in the experiments.

B. Synthetic Workload

In this experiment, we show the benefits of RT-Gang using
a synthetic taskset on Raspberry Pi3. The taskset is composed

1We do not use the Denver complex in our experiments due to its lack of
hardware counter support needed to implement throttling mechanism [3]

of two periodic multi-threaded real-time tasks (τ1 and τ2) and
two single-threaded best-effort tasks (τBE

mem and τBE
cpu). Using

this taskset, we explore task execution time impacts to the real-
time tasks and throughput impacts to the best-effort tasks.

We use a modified version of the BwRead benchmark—
which sequentially accesses a 1-D array of a chosen size—
from the IsolBench [49] benchmark suite to construct the
taskset 2. Concretely, τ1 creates two threads and is configured
to use three quarters of the last-level cache size (384KB out
of 512KB L2 cache of the Pi 3) as its working-set (which is
shared between the two threads). It is periodically released at
a 20ms interval and each job takes about 3.5ms in isolation.
Similarly, τ2 is also a dual-threaded periodic real-time task
with the same working-set size (384KB), but differs in its
period (30 ms) and job execution times (6.5ms in isolation).
We set the priority of τ1 higher than that of τ2, and schedule
τ1 on Core 0,1 and τ2 on Core 2,3 (pinned using CPUSET
interface).

Note that τ1 and τ2 are scheduled by SCHED FIFO real-
time scheduler with and without RT-Gang enabled 3. On the
other hand, τBE

mem and τBE
cpu are both single-threaded best-

effort tasks, which are scheduled by the CFS scheduler [33];
they differ in that τBE

mem’s working-set size is two times
bigger than the L2 cache size, while τBE

cpu ’s working-set is
smaller than the core’s private L1 cache size. Thus, τBE

mem may
cause interference to co-scheduled real-time tasks (if any) on

2Our additions include support for multi-threaded and periodic task invo-
cation. The code can be found in the IsolBench repository [1].

3RT-Gang can be enabled or disabled at runtime via:
/sys/kernel/debug/sched_features

8

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
DNN Inference Time (msec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Solo Co-Sched RT-Gang

(a) TX2: DNN (2 Core)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
DNN Inference Time (msec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Solo Co-Sched RT-Gang

(b) TX2: DNN (3 Cores)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
DNN Inference Time (msec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Solo Co-Sched RT-Gang

(c) TX2: DNN (4 Cores)

0 20 40 60 80 100
DNN Inference Time (msec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Solo Co-Sched RT-Gang

(d) Pi3: DNN (2 Core)

0 20 40 60 80 100
DNN Inference Time (msec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Solo Co-Sched RT-Gang

(e) Pi3: DNN (3 Cores)

0 20 40 60 80 100
DNN Inference Time (msec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Solo Co-Sched RT-Gang

(f) Pi3: DNN (4 Cores)

Fig. 6: Performance of DNN inference loop under different scheduling schemes

different cores, due to contention in the shared L2 cache, while
τBE
cpu may not. We collect the execution traces of the taskset

without and with RT-Gang for a duration of 10 seconds using
the trace-cmd and KernelShark [38].

Figure 5 shows the execution traces. In inset (a), during
the first 20 msec duration, τ1 and τ2 were overlapped with
each other, which resulted in significant job execution time
increase for both tasks because their working-sets could not
fit into the shared L2 cache simultaneously. During the next
20 msec duration, although τ1 and τ2 did not overlap, τ1
was overlapped with the two best-effort tasks, τBE

mem and
τBE
cpu , which also resulted in a significant increase in τ1’s job

execution time (albeit to a lesser degree).
In inset (b), on the other hand, RT-Gang almost completely

eliminates job execution time variance. In the first 20 msec
duration, τ1 is overlapped with the two best-effort tasks.
However, τBE

mem (the memory intensive one) was throttled most
of the time, which protected the execution time of τ1. At
around 40ms in the timeline, τ1 preempted τ2, the real-time
task. In place of τ2, two best-effort tasks were scheduled, of
which τBE

mem was again throttled as per τ1’s specified memory
bandwidth threshold setting.

Note that in RT-Gang, the execution times of τ1 is de-
terministic. Furthermore, τ2 is also highly predictable as we
only need to consider the preemption by the higher priority
τ1, according to the classic response time analysis (RTA) [4].
Furthermore, because the two real-time tasks do not experience
significant execution time increases, there are more “slacks”

left for the best-effort tasks—compared to without using RT-
Gang in inset (a)—which improves throughput of the best-
effort tasks.

C. DNN Workload
To establish the practicality of RT-Gang for real-world

safety critical applications, we used the DNN workload in-
troduced in Section II and executed it under different config-
urations on Raspberry Pi3 and NVIDIA Jetson TX2, with and
without RT-Gang. The Cortex-A53 cores in Raspberry Pi-3 are
much less capable than the four Cortex-A57 cores in Jetson
TX2 platform. Moreover, the memory system in Raspberry
Pi3 offers significantly less bandwidth than the one in Jetson
TX2. Consequently, co-scheduled workloads in Raspberry Pi-
3 are much more prone to the negative effects of resource
contention. By evaluating RT-Gang on these two disparate
platforms, we demonstrate its applicability to the range of
embedded devices available today.

The taskset parameters for this experiment are shown in
Table II. First, we use a multi-threaded DNN application as the
high priority periodic real-time task (τRT

dnn(c) where c denotes
the number of cores used). The period of DNN inference
operation is selected to keep the per-core utilization of DNN
threads close to 45%. Second, as a lower priority real-time
task, we use a periodic multi-threaded BwWrite benchmark
(τRT

bww). The working set size of BwWrite was chosen to
be twice the size of LLC in each platform so as to stress
memory subsystem (due to cache misses). The compute time
(C) of BwWrite is selected to keep its per-core utilization less

9

Task WCET (C ms) Period (P ms) # Threads
Common

τBE
cutcp ∞ N/A 4
τBE
lbm ∞ N/A 4

Jetson TX2
τRT
bww 40.0 100.0 4
τRT
dnn(2)

10.7 24.0 2

τRT
dnn(3)

8.8 19.0 3

τRT
dnn(4)

7.6 17.0 4

Raspberry Pi 3
τRT
bww 47.0 100.0 4
τRT
dnn(2)

34.0 78.0 2

τRT
dnn(3)

27.90 65.0 3

τRT
dnn(4)

24.81 56.0 4

TABLE II: Taskset parameters for the DNN experiment.

than 50% in all experiments. Lastly, we use two benchmarks
from Parboil suite [46], lbm (τBE

lbm) and cutcp, (τBE
cutcp)) as

best-effort tasks, which represent memory and CPU intensive
parallel OpenMP applications respectively.

We vary the thread count (= # of assigned CPU cores) of
the DNN task while keeping the thread count of τRT

bww and
the best-effort tasks (τBE

lbm and τBE
cutcp) fixed at four. For the

experiment, we first measure the performance of τRT
dnn(c) in

isolation, then co-scheduled with the rest of the taskset on
baseline Linux, and finally using RT-Gang.

Figure 6 shows the cumulative distribution function (CDF)
of the per-frame DNN inference time in each configuration
(Solo: alone in isolation, Co-Sched: co-scheduled under base-
line Linux, RT-Gang: co-scheduled under RT-Gang enabled
Linux). Note first that execution times of the DNN task vary
significantly under the co-scheduling scheme (Co-Sched). On
Raspberry Pi3, the WCET across all configurations is more
than 2X of its solo WCET. On TX2, the co-scheduling graphs
again show deteriorated performance, albeit to a lesser extent
than Raspberry Pi3.

Under RT-Gang, on the other hand, the execution times of
the DNN workload are highly deterministic and match closely
with its solo execution times in all tested configurations on
both platforms. On Raspberry Pi3, however, although DNN’s
performance is deterministic (i.e., low variance), noticeable
performance constant increase is observed under RT-Gang
when compared to the solo execution of the DNN task. We
believe that this is caused by Cache Related Preemption Delay
(CRPD) [26], as the memory system of Raspberry Pi3 is
significantly less powerful than that of Jetson TX2.

Note that taking CRPD into analysis is well known in the
context of single-core processors, but its applications have
been difficult in multicore due to cache contention among
the co-scheduled tasks on different cores, as shown in the
CDF plots of Co-Sched. The determinism that RT-Gang brings
thus make CRPD analysis valid on multicore processors again,
enabling effective timing analysis.

D. Overhead

There are two main sources of overhead in our implemen-
tation of RT-Gang: 1) The serialization overhead associated
with the critical section of our gang scheduling algorithm
in selecting next real-time task. 2) The overhead involved in
sending cross-core interrupts (IPIs) and acquiring ready-queue
locks for gang preemption.

The serialization overhead of RT-Gang is only incurred
during the selection of real-time tasks due to the use of a
spinlock. However, the length of the critical section of RT-
Gang is small—comparable to existing spinlocks used in the
various parts of the Linux kernel scheduler. On the other hand,
the overhead associated with gang-preemption due to the IPIs
can pose a scalability problem as the number of necessary IPIs
can be as many as all the rest of the cores.

In order to estimate both these overheads, we conducted
an experiment on the NVIDIA Jetson TX2 platform in which
a high priority real-time gang preempts a multi-threaded low
priority real-time gang, a fixed number of times (100000), with
and without RT-Gang. We also varied the number of threads
of the low priority gang to see the effect of gang size on the
gang preemption overhead. The result from this experiment is
shown in Table III.

Scenario Context Switch Cost (usec)

1-Thread-Lowprio (Linux) 6.81
1-Thread-Lowprio (RT-Gang) 7.19
2-Thread-Lowprio (RT-Gang) 7.37
3-Thread-Lowprio (RT-Gang) 7.55
4-Thread-Lowprio (RT-Gang) 7.72

TABLE III: RT-Gang Overhead in Linux

As can been seen from the table, RT-Gang adds very
small overhead to the overall cost of a context-switch under
Linux; considering the fact that for a well-designed system,
a context-switch is not supposed to happen too frequently.
The findings from this experiment also match the results seen
during evaluation with DNN workloads; in which, we saw
that the performance of these workloads remain completely
unaffected under RT-Gang.

VI. DISCUSSION

In this section, we briefly discuss potential use-cases of RT-
Gang. We believe that our simple design and practical im-
plementation leveraging existing real-time scheduler in Linux
offer broader practical use-cases in many application domains
that concern timing predictability and need to run parallelized
multi-thread applications. Time critical parallel real-time ap-
plications in automotive and aviation domains (e.g., perception
and control applications in a self-driving car) are our main
target use-cases. Also, barrier based scientific applications in
high-performance computing (HPC) can potentially benefit
from using RT-Gang as they are sensitive to thread imbalance,
and thus motivated original gang scheduling research [18] in
the first place. Although we mainly target embedded multicore

10

processors (typically having 4-8 cores) in this work, we
recently were able to apply our RT-Gang kernel patch on a
12 hardware thread (6 core) x86 PC, successfully performing
gang scheduling across the 12 hardware threads. Effectiveness
and scalability of RT-Gang in other application domains, such
as HPC, is left as future work.

VII. RELATED WORK

Parallel Real-Time Scheduling. Parallel real-time tasks are
generally modeled using one of following three models: Fork-
join model [13], [25], [34], [40], dag model [6], [39] and gang
task model [17], [19], [22]. In the fork-join model, a task
alternates parallel (fork) and sequential (join) phases over time.
In the dag model, a task is represented as a directed acyclic
graph with a set of associated precedence constraints, which
allows more flexible scheduling as long as the constraints
are satisfied. Lastly, in the gang model, a task is simply
represented with an execution time e and a number of cores
k it needs to run. While most simple among the three, it
matches well with real-world parallel applications where users
or scheduler selects the number of threads an application might
use at the start time, which is also the case in DNN workload
we used in Section II.

Our one-gang-at-a-time scheduling policy is essentially a
restrictive form of gang scheduling [18]. In traditional gang
scheduling, all threads of an application are scheduled simul-
taneously, and more than one application is allowed to be
scheduled as long as there are available cores. In contrast, our
approach is restrictive in the sense that such co-scheduling is
not allowed. Gang scheduling was originally studied in high-
performance computing as a way to maximize performance of
parallel applications [18] or virtual machine scheduling [14].
More recently, gang scheduling was investigated as a way
to improve security [44], by preventing simultaneously co-
scheduling different security domains, similar to our one-
gang-at-a-time policy, but it was implemented in Linux’s CFS
scheduler and thus does not support real-time task scheduling.

In the real-time systems community, fixed-priority and dy-
namic priority real-time versions of gang scheduling policies,
namely Gang FTP and Gang EDF, respectively, are studied and
analyzed [17], [19], [22]. However, these prior real-time gang
scheduling policies also allow co-scheduling of multiple gangs
as long as there exist available cores because they mainly
focus on CPU utilization, without considering the negative
WCET impact of co-scheduling on shared memory multicore
platforms. Also, to the best of our knowledge, these real-time
gang scheduling policies were not implemented in Linux (or
in any other commercial OSes). Our work is, to the best of our
knowledge, the first real-time gang scheduler implementation
in Linux, which implements a fixed-priority real-time gang
scheduling, enforcing the one-gang-at-a-time policy. Further-
more, we enable safely co-scheduling best-effort tasks, by
integrating an OS-level throttling mechanism [53], to improve
system utilization when there are best-effort tasks—a common
situation in practice.

Real-Time Scheduling in Linux. A number of ef-
forts in the real-time systems community have been aimed
at improving real-time scheduling in Linux. For example,
LITMUSRT [10] developed a set of global, partitioned, and
semi-partitioned real-time schedulers, outside of the existing
Linux’s real-time scheduler; ChronOS Linux developed global
and local scheduling layers built on top of Linux’s O(1)
scheduler [15]. In contrast, RT-Gang is developed as an
extension (a feature) of Linux’s default real-time scheduler
that enforces a simple invariant—one real-time gang across
all cores—otherwise respecting standard fixed-priority real-
time scheduling, and does not maintain its own scheduling
queues, unlike the aforementioned two prior implementations.
We believe our design is simpler and easier to maintain in the
face of rapid change in Linux kernel.

OS-level Shared Resource Partitioning. Many researchers
have attempted to make COTS multicore platforms to be
more predictable with OS-level techniques. A majority of prior
works focused on partitioning of shared resources among the
tasks and cores to improve predictability. Page coloring has
long been studied to partition shared cache [16], [23], [29],
[30], [43], [51], [52], [56], DRAM banks [31], [48], [54],
and TLB [36]. Some COTS processors [21], [32] support
cache-way partitioning [47]. Mancuso et al. [32] and Kim et
al. [24], used both coloring and cache way partitioning for
fine-grained cache partitioning. While these shared resource
partitioning techniques can reduce space conflicts of some
shared resources, hence beneficial for predictability, but they
are not enough to guarantee strong time predictability on
COTS multicore platforms because there are too many hard-
ware resources (e.g., cache MSHRs, DRAM controller buffers,
etc.) that have profound impact on task timing [49], but are
unpartitionable and out of control of software. Moreover,
majority of them are mainly aimed at partitioning between
single-threaded real-time tasks. When multiple parallel tasks
are co-scheduled, however, finding a right partitioning strategy
is challenging due to the differing effects of resource sharing
depending on the nature of the co-scheduled threads.

VIII. CONCLUSION

We presented RT-Gang: a novel real-time gang schedul-
ing framework for predictable and efficient parallel real-time
scheduling on multicore.

RT-Gang implements a novel gang scheduling policy that
eliminates inter-task interference by enforcing an invariant that
only one (parallel) real-time task (gang) can be scheduled at
any given time. This enables tighter task WCET estimation
and simpler schedulability analysis. RT-Gang also provide
additional mechanisms, namely virtual gang and best-effort
task throttling, which can help maximize system utilization
while providing strong time predictability to real-time tasks.

We implemented RT-Gang in Linux and evaluated it on two
embedded multicore platforms. The evaluation results show
the predictability and efficiency benefits of RT-Gang. In future,
we plan to extend our RT-Gang approach to heterogeneous
multicore platforms.

11

ACKNOWLEDGEMENTS

This research is supported by NSF CNS 1718880, CNS
1815959, and NSA Science of Security initiative contract
#H98230-18-D-0009.

REFERENCES

[1] IsolBench code repository. https://github.com/CSL-KU/IsolBench.
[2] RT-Gang code repository. https://github.com/CSL-KU/RT-Gang.
[3] W. Ali and H. Yun. Protecting Real-Time GPU Kernels on Integrated

CPU-GPU SoC Platforms. In Euromicro Conference on Real-Time
Systems (ECRTS), 2018.

[4] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings.
Applying new scheduling theory to static priority preemptive scheduling.
Software Engineering Journal, 8(5):284–292, 1993.

[5] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan, B. Jonsson,
P. Marwedel, J. Reineke, C. Rochange, M. Sebastian, R. V. Hanxle-
den, R. Wilhelm, and W. Yi. Building timing predictable embedded
systems. ACM Transactions on Embedded Computing Systems (TECS),
13(4):82:1–82:37, 2014.

[6] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese. A generalized parallel task model for recurrent real-time
processes. In Real-Time Systems Symposium (RTSS), pages 63–72. IEEE,
2012.

[7] M. G. Bechtel, E. McEllhiney, and H. Yun. Deeppicar: A low-cost deep
neural network-based autonomous car. In IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2018.

[8] M. G. Bechtel and H. Yun. Denial-of-service attacks on shared cache
in multicore: Analysis and prevention. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2019.

[9] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao,
and K. Zieba. End to End Learning for Self-Driving Cars. CoRR,
abs/1604.07316, 2016.

[10] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson. LITMUSˆ RT: A Testbed for Empirically Comparing Real-
Time Multiprocessor Schedulers. In Real-Time Systems Symposium,
2006. RTSS’06. 27th IEEE International, pages 111–126. IEEE, 2006.

[11] Certification Authorities Software Team. CAST-32: Multi-core Proces-
sors (Rev 0). Technical report, Federal Aviation Administration (FAA),
May 2014.

[12] Certification Authorities Software Team. CAST-32A: Multi-core Pro-
cessors. Technical report, Federal Aviation Administration (FAA),
November 2016.

[13] H. S. Chwa, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin. Global
edf schedulability analysis for synchronous parallel tasks on multicore
platforms. In Euromicro Conference on Real-Time Systems (ECRTS),
pages 25–34. IEEE, 2013.

[14] N. A. Dadhania. Gang scheduling in CFS. https://lwn.net/Articles/
472797/.

[15] M. Dellinger, P. Garyali, and B. Ravindran. ChronOS Linux: a best-
effort real-time multiprocessor Linux kernel. In Proceedings of the 48th
Design Automation Conference, pages 474–479. ACM, 2011.

[16] X. Ding, K. Wang, and X. Zhang. Srm-buffer: An os buffer management
technique to prevent last level cache from thrashing in multicores. In
Proceedings of the Sixth Conference on Computer Systems, EuroSys,
pages 243–256, 2011.

[17] Z. Dong and C. Liu. Analysis Techniques for Supporting Hard Real-
Time Sporadic Gang Task Systems. In Real-Time Systems Symposium
(RTSS), pages 128–138, 2017.

[18] D. G. Feitelson and L. Rudolph. Gang scheduling performance benefits
for fine-grain synchronization. Journal of Parallel and distributed
Computing, 16(4):306–318, 1992.

[19] J. Goossens and V. Berten. Gang FTP scheduling of periodic and parallel
rigid real-time tasks. In International Conference on Real-Time Networks
and Systems (RTNS), pages 189–196, 2010.

[20] A. Hamann. Industrial challenges: Moving from classical to high perfor-
mance real-time systems. In International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS),
July 2018.

[21] Intel. Improving real-time performance by utilizing cache
allocation technology. https://software.intel.com/en-us/articles/
introduction-to-cache-allocation-technology.

[22] S. Kato and Y. Ishikawa. Gang EDF scheduling of parallel task systems.
In Real-Time Systems Symposium (RTSS), pages 459–468. IEEE, 2009.

[23] H. Kim, A. Kandhalu, and R. Rajkumar. A coordinated approach for
practical os-level cache management in multi-core real-time systems. In
Euromicro Conference on Real-Time Systems (ECRTS), pages 80–89,
2013.

[24] N. Kim, B. C. Ward, M. Chisholm, J. H. Anderson, and F. D. Smith.
Attacking the one-out-of-m multicore problem by combining hardware
management with mixed-criticality provisioning. Real-Time Systems,
53(5):709–759, 2017.

[25] K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel real-
time tasks on multi-core processors. In Real-Time Systems Symposium
(RTSS), pages 259–268. IEEE, 2010.

[26] C.-G. Lee, H. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, and C. S. Kim. Analysis of cache-related preemption delay in
fixed-priority preemptive scheduling. IEEE transactions on computers,
47(6):700–713, 1998.

[27] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: exact characterization and average case behavior. In Real-
Time Systems Symposium, pages 166–171, 1989.

[28] R. Leibinger. Software Architectures for Advanced Driver Assistance
Systems (ADAS). In International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications (OSPERT), 2015.

[29] J. Liedtke, H. Hartig, and M. Hohmuth. Os-controlled cache predictabil-
ity for real-time systems. In IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 213–224, 1997.

[30] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining
insights into multicore cache partitioning: Bridging the gap between
simulation and real systems. In IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 367–378, 2008.

[31] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A software
memory partition approach for eliminating bank-level interference in
multicore systems. In International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 367–375, 2012.

[32] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pelliz-
zoni. Real-time cache management framework for multi-core architec-
tures. In IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 45–54, 2013.

[33] I. Molnar. Cfs scheduler. https://www.kernel.org/doc/Documentation/
scheduler/sched-design-CFS.txt.

[34] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. Techniques
optimizing the number of processors to schedule multi-threaded tasks. In
Euromicro Conference on Real-Time Systems (ECRTS), pages 321–330.
IEEE, 2012.

[35] NVIDIA. NVIDIA BB8 Self-Driving Car. https://blogs.nvidia.com/blog/
2017/01/04/bb8-ces/, 2017.

[36] S. A. Panchamukhi and F. Mueller. Providing task isolation via tlb col-
oring. In IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 3–13, 2015.

[37] R. Pellizzoni and H. Yun. Memory servers for multicore systems. In
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), pages 1–12, 2016.

[38] S. Rostedt. Kernelshark. http://rostedt.homelinux.com/kernelshark/.
[39] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill. Parallel

real-time scheduling of DAGs. Parallel and Distributed Systems, IEEE
Transactions on, 25(12):3242–3252, 2014.

[40] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill. Multi-core real-time
scheduling for generalized parallel task models. Real-Time Systems,
49(4):404–435, 2013.

[41] L. Sha, T. Abdelzaher, K.-E. AArzen, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real time
scheduling theory: A historical perspective. Real-Time Systems, 28(2-
3):101–155, 2004.

[42] S. Skalistis, F. Angiolini, G. De Micheli, and A. Simalatsar. Safe and
efficient deployment of data-parallelizable applications on many-core
platforms: Theory and practice. IEEE Design & Test, 35(4):7–15, 2018.

[43] L. Soares, D. Tam, and M. Stumm. Reducing the harmful effects of
last-level cache polluters with an os-level, software-only pollute buffer.
In IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 258–269, 2008.

[44] R. Sprabery, K. Evchenko, A. Raj, R. B. Bobba, S. Mohan, and
R. Campbell. Scheduling, isolation, and cache allocation: A side-channel
defense. In Cloud Engineering (IC2E), International Conference on,
pages 34–40. IEEE, 2018.

12

https://github.com/CSL-KU/IsolBench
https://github.com/CSL-KU/RT-Gang
https://lwn.net/Articles/472797/
https://lwn.net/Articles/472797/
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://blogs.nvidia.com/blog/2017/01/04/bb8-ces/
https://blogs.nvidia.com/blog/2017/01/04/bb8-ces/
http://rostedt.homelinux.com/kernelshark/

[45] B. Sprunt. Aperiodic Task Scheduling for Real-time Systems. PhD thesis,
1990. AAI9107570.

[46] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W. mei W. Hwu. Parboil: A revised
benchmark suite for scientific and commercial throughput computing.
Technical report, University of Illinois at Urbana-Champaign, 2012.

[47] G. E. Suh, S. Devadas, and L. Rudolph. A new memory monitoring
scheme for memory-aware scheduling and partitioning. In International
Symposium on High Performance Computer Architecture, pages 117–
128, 2002.

[48] N. Suzuki, H. Kim, D. d. Niz, B. Andersson, L. Wrage, M. Klein,
and R. Rajkumar. Coordinated bank and cache coloring for temporal
protection of memory accesses. In IEEE International Conference on
Computational Science and Engineering (CSE), pages 685–692, 2013.

[49] P. K. Valsan, H. Yun, and F. Farshchi. Taming non-blocking caches
to improve isolation in multicore real-time systems. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2016.

[50] P. K. Valsan, H. Yun, and F. Farshchi. Addressing isolation challenges of
non-blocking caches for multicore real-time systems. Real-Time Systems,
53(5):673–708, 2017.

[51] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson. Making
shared caches more predictable on multicore platforms. In Euromicro

Conference on Real-Time Systems (ECRTS), pages 157–167, 2013.
[52] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: A dynamic cache

partitioning system using page coloring. In International Conference on
Parallel Architecture and Compilation Techniques (PACT), pages 381–
392, 2014.

[53] H. Yun, W. Ali, S. Gondi, and S. Biswas. BWLOCK: A Dynamic
Memory Access Control Framework for Soft Real-Time Applications on
Multicore Platforms. IEEE Transactions on Computers (TC), PP(99):1–
1, 2016.

[54] H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms. In IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), pages 155–166, 2014.

[55] H. Yun and P. K. Valsan. Evaluating the isolation effect of cache
partitioning on cots multicore platforms. In Workshop on Operating
Systems Platforms for Embedded Real-Time Applications (OSPERT),
2015.

[56] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page coloring-
based multicore cache management. In Proceedings of the 4th ACM
European Conference on Computer Systems, EuroSys ’09, pages 89–
102, 2009.

13

	Introduction
	Motivation
	RT-Gang
	Assumptions and Objectives
	Design Overview
	Virtual Gang
	Safe Best-Effort Task Co-Scheduling
	Illustrative Example

	Implementation
	Gang Lock Acquisition
	Gang Lock Release
	Gang Preemption
	Main Gang Scheduling Algorithm
	Creation of Virtual Gangs
	Memory Bandwidth Throttling of Best-Effort Tasks

	Evaluation
	Setup
	Synthetic Workload
	DNN Workload
	Overhead

	Discussion
	Related Work
	Conclusion
	References

