A Simplex Architecture for Intelligent and Safe
Unmanned Aerial Vehicles

Prasanth Vivekanandan®, Gonzalo Garcia*, Heechul Yun!, Shawn Keshmiri*
T Electrical Engineering & Computer Science
* Aerospace Engineering
University of Kansas
{vivekanandan, gagarcia, heechul.yun, keshmiri } @ku.edu

Abstract—Unmanned Aerial Vehicles (UAVs) are increasingly
demanded in civil, military and research purposes. However,
they also possess serious threats to the society because faults
in UAVs can lead to physical damage or even loss of life. While
increasing their intelligence, for example, adding vision-based
sense-and-avoid capability, has a potential to reduce the safety
threats, increased software complexity and the need for higher
computing performance create additional challenges—software
bugs and transient hardware faults—that must be addressed to
realize intelligent and safe UAV systems.

In this paper, we present a fault tolerant system design for
UAVs. Our proposal is to use two heterogeneous hardware and
software platforms with distinct reliability and performance
characteristics: High-Assurance (HA) and High-Performance
(HP) platforms. The HA platform focuses on simplicity and
verifiability in software and uses a simple and transient fault
tolerant processor, while the HP platform focuses on intelligence
and functionality in software and uses a complex and high-
performance processor. During the normal operation, the HP
platform is responsible for controlling the UAV. However, if it
fails due to transient hardware faults or software bugs, the HA
platform will take over until the HP platform recovers.

We have implemented the proposed design on an actual
UAV using a low-cost Arduino and a high-performance Tegra
TK1 multicore platform. Our case-studies show that our design
can improve safety without compromising performance and
intelligence of the UAV.

I. INTRODUCTION

The use of Unmanned Aerial Vehicles (UAVs) is rapidly
increasing in recent years due to diverse recreational, com-
mercial, and military applications. However, UAVs also pose
serious threats to the society because they can cause physical
damage or even loss of life. Therefore, there is an increasing
demand for intelligent UAV systems that are cognizant of
the surrounding environment and perform sophisticated tasks
including collision avoidance.

An intelligent UAV system requires integration of advanced
sensor packages (e.g. vision) and high computational perfor-
mance to process the enormous amount of real-time sensor
data and to execute complex algorithms in a timely man-
ner. The rapidly increasing computing capacity of modern
embedded computing platforms—multiple CPU cores, GPU,
and other accelerators—makes it feasible to develop such a
UAV system while satisfying size, weight, and power (SWaP)
requirements of UAVs.

However, the push for higher intelligence in UAV systems
also creates serious side effects in terms of safety and reli-
ability. First, the complexity of software systems is rapidly
increasing, which makes it difficult to weed out software

Fig. 1: DG 808S with our custom built avionics

bugs. For example, an intelligent flight control system with
vision based collision avoidance capability, which in itself
can be complex and difficult to verify, may also depend on
complex middleware packages (e.g., Robot Operating System,
ROS [24]) and the OS (e.g., Linux), each of which may be
comprised of multi-million lines of code.

Second, to achieve high intelligence, the use of high-
performance computing platforms is necessary. However, high
performance computing platforms are increasingly prone to
transient hardware faults (soft errors) due to environmental ef-
fects such as single-event upsets (SEUs) [7]. SEUs are caused
by high energy particle strikes from cosmic rays [29] which
result in bit flips. The technology treads to develop efficient
and high-performance processors—shrinking dimensions and
operating voltage, and increased frequency and density—have
dramatically increased the possibilities of SEUs [7], which
could result in unexpected failures in the system [[15], [28].

There has been a large body of research in the control
systems community regarding the design of fault tolerant
control of UAV systems [26]. While these fault tolerant
controllers are designed to handle structural damage, actuator
and sensor failures, they typically do not handle system-level
failure such as on-board computing platform malfunction,
which prevents execution of the control algorithms in the
first place. System-level reliability can be generally improved
by redundancy. A well-known technique is triple modular
redundancy (TMR) [18] in which three identical systems
produce control outputs in order to survive from failures of
any one of the system. However, the size, weight, and power

considerations as well as the cost make the TMR solution
undesirable, especially in small UAVs.

To address the safety and reliability challenges of UAV
systems, we present a UAV system design and implementation
based on Simplex architecture [27]. The main idea of the
Simplex architecture is that a simple verifiable controller pro-
vides safety of the system, while a complex, high-performance
controller strives to achieve high system performance. The
choice between the two controllers is determined by a decision
module, which constantly assesses the safety status of the
system and makes the decision.

Our contribution is a novel application of the Simplex
architecture to develop both intelligent and reliable UAV
systems in a cost effective manner. Specifically, we realize
the Simplex architecture using two heterogeneous hardware
platforms with distinct reliability and performance character-
istics. The idea is that we use a reliable but less performant
hardware platform, which we call a High-Assurance (HA)
platform, to be responsible for safety while we use a more
performant, but potentially less reliable platform, which we
call a High-Performance (HP) platform, for performance and
intelligence of the UAV. Only the HA platform—both software
and hardware—forms the trusted computing base (TCB) of the
UAV. The HP platform, on the other hand, can be affected by
software bugs and SEUs, which could result in failures (e.g.,
crashes), but the whole system safety will still be insured by
the safety platform.

We applied the proposed design in implementing a custom
fixed-wing UAV system, shown in Figure [1} using a low-cost
Arduino as our HA platform and a Tegra TK1 as HP platform.
We demonstrate the ability to recover from crashes through
a set of fault-injection experiments in a hardware-in-the-loop
simulation setup. The results suggest that the proposed design
can substantially increase safety of intelligent UAVs.

The rest of the paper is organized as follows. Section
discusses various fault types in a UAV and related background.
Section presents the proposed UAV simplex architecture.
Section |[V|describes our implementation of a fixed-wing UAV
based on the proposed architecture. Section [V| presents our
evaluation results. We discuss related work in Section [VI| and
conclude in Section

II. BACKGROUND

In this section, we discuss various types of faults that can
occur in a UAV and provide some necessary background.

An UAV is a cyber-physical system, which includes cyber
part (computing hardware and software) and physical part
(sensors, actuators, UAV frame, and etc). Faults in physical
components of an UAV and their handling has been well
studied in the control and aerospace communities. For ex-
ample, structural damage or bias in sensor readings can be
tolerated by advanced adaptive control algorithms that take
such effects into account. A comprehensive review on the topic
can be found in [26]. However, advanced control algorithms
must be realized in software binaries running on computing
platforms—i.e., the cyber system.

Faults in the cyber system can arise from a number of
different reasons. The most common type of faults are logical
faults in software—i.e., software bugs. As the demand for

higher intelligence and functionality increase, the size and
complexity of flight control software keeps increasing [20].
While model-based design and verification methodologies
have made great progress [13], [12], [8], it is still difficult
to completely weed out all bugs.

Another type of faults are temporal faults, which occur
when the real-time requirements (i.e., deadlines) of various
tasks in the system are not met. Temporal correctness is diffi-
cult to guarantee especially in multicore architecture because
of uncontrolled sharing of many performance critical hardware
resources—such as cache and DRAM—among concurrently
executing tasks can cause highly variable timing [17]], [22].

Third, often overlooked but increasingly important type
of faults are transient hardware faults due to single event
upsets (SEUs). SEUs are caused by cosmic radiation and alpha
particles [29], [19] resulting bit flips. Because SEUs can occur
anywhere in SRAM, registers, and combinational logic, it can
cause, for example, an invalid instruction exception, a parity
error, a memory access violation, a wrong conditional branch,
and ultimately a system crash [28]]. As technology scaling
continues (i.e., more transistors in a chip), sensitivity to radi-
ation has dramatically increased [7]. Traditional circuit-level
solutions—special circuit design and manufacturing process—
are not only expensive but also often lag several generations
behind the state-of-the-art processors [10]. This is a serious
impediment to develop intelligent UAVs that require cutting
edge high performance computing capabilities.

In summary, as the demand for higher intelligence in UAVs
increases, the importance of reliable computing software and
hardware platform—the cyber system—increases. However,
the increased software complexity and the use of high-
performance multicore processors, while necessary, would in-
crease all three types of faults—logical, temporal, and transient
hardware faults—of the cyber system of an UAV.

III. UAV SIMPLEX ARCHITECTURE

In this section, we review the Simplex architecture [27]] and
describe our two heterogeneous platforms based approach.

The Simplex architecture is composed of three components:
a safety controller, a performance controller, and a decision
logic [27]. Normally, the performance controller drives the
plant (in our case, the UAV) as it offers higher control
performance. However, if the safety conditions of the plant
are to be violated, as determined by the decision logic, the
safety controller will assume the control of the plant until the
performance controller is recovered (for example, by restarting
it). In this way, faults in the performance controller does not
cause safety failure of the system.

In the original Simplex applications, however, all three
components share the same computing hardware (processor)
and software platform (OS, middleware) [27]. This means
that system-level faults in the shared hardware and soft-
ware platform—SEUs in the processor, bugs in the OS and
middleware—could still compromise the safety of the system.

To overcome the limitations, we propose to realize the
Simplex architecture by using two platforms with distinct
reliability and performance characteristics, as shown in Table[l]
The High-Assurance (HA) platform focuses on safety and
verifiability over performance and functionality. For hardware,

TABLE I: Platform characteristics

Platform | High-Assurance (HA) | High-Performance (HP)
Hardware SEU resistant SEU susceptible
Software Verifiable Unverifiable

High Assurance (HA) Platform

UAV
Plant

GPS,IMU Decision

Logic

Safety controller

Radar,
Camera

High Performance (HP) Platform HP Platform:

(Tegra TK1)

HA Platform
(Arduino)

Fig. 2: UAV simplex architecture

we assume that it uses chips that are more tolerant to SEUs.
While a number of techniques can be used to reduce the SEU
rate of a chip—ECC, manufacturing process, and etc.—using
simple, low-density chips running at low operating frequency
could also help reduce the overall SEU rate [7]]. For software,
we assume that the platform uses a small RTOS with proven
(verified) reliability. For example, the seL4 micro-kernel’s
functional correctness was formally verified [16]. Also, there
are many other commercial/open-source RTOSs that have been
used in critical applications.

On the other hand, the High-Performance (HP) platform
focuses on performance and functionality over safety. For
hardware, it may use a complex, high-performance (multicore)
processor, which runs at multi-gigahertz frequencies and is
composed of multi-billion transistors. Generally, such a pro-
cessor suffers more SEUs than a simpler, low-performance
one because higher density and operating frequency nega-
tively affect SEUs [7]]. For software, it may use a rich OS
(e.g., Linux) and middleware solutions (e.g., Robot Operating
System: ROS) to offer sophisticated capabilities needed to
implement high intelligence. However, each of the software
package may be comprised of many million lines of code,
which makes it very difficult, if not impossible, to verify its
correctness.

Among the three components in the Simplex architecture,
we assign the safety controller and the decision logic on the
HA platform, while assign the performance controller on the
HP platform as shown in Figure [2]

The performance controller may implement an advanced
control algorithm and intelligent sensing capabilities, such as
vision-based collision avoidance, that require high computing
performance and rich OS and middleware support. The HP
platform offers such computing power and functionality but it
does not guarantee safety and reliability.

On the other hand, the safety controller implements a simple
and proven control algorithm that is always ready to take
over the performance controller, if necessary, as determined by
the decision logic. In our design, as in the original Simplex
architecture, correct functioning of the safety controller and
the decision logic is required. In addition, the HA platform
provides a safe and reliable execution environment although

it may not provide high computing performance or rich
middleware support.

A. Fault Model

We assume that faults can occur only in the HP platform.
In other words, we trust the correct functioning of the HA
platform—the safety controller and decision logic. To ensure
this, hardware of the HA platform must be resistant to transient
hardware faults, and the complexity of its software must be
limited to a level that can be rigorously tested and possibly
verified.

On the other hand, we do not trust both hardware and
software of the HP platform—i.e., the OS can crash, the
performance controller may crash or produce invalid outputs
(e.g., NaN output) or simply miss the deadline due to resource
contention. Also, the HP platform can suffer transient hard-
ware faults (SEUs) which lead to system crash or application
failure.

Lastly, in this paper, we do not consider physical faults,
such as structural damage, bias in sensor readings, sensor and
actuator malfunction, and so on. We assume that these physical
issues are tolerated by adaptive control algorithms, which
have been extensively studied in the aerospace engineering
community [26].

IV. IMPLEMENTATION

In this section, we detail the hardware and software archi-
tecture of the flight system for a DG808S UAV (See Figure).

A. Hardware

1) Sensors: We categorize sensors into two groups: basic
and advanced sensors. Basic sensors include GPS/IMU, air-
speed, and pressure sensors and they are essential to flight.
For GPS/IMU, we use a VectorNav VN-200 [4] module.
For airspeed and pressure, we use an AMS 5812 pressure
sensor and a pitot tube. The basic sensors are shared by
both safety and performance controllers. On the other hand,
advanced sensors are only used by the performance controller
and considered not essential to flight although they may
increase performance of the system. The advanced sensors
include, for example, radars and cameras, which can be used
to implement advanced sense-and-avoid capabilities. We are
currently implementing a vision and radar based sense-and-
avoid system.

2) High-Performance (HP) Platform: The HP platform
is responsible for real-time processing of advanced sensors
(e.g., vision and radar) and sophisticated control algorithms to
achieve high control performance and sense-and-avoid capa-
bilities. To satisfy the performance demand, we use Nvidia’s
Tegra K1 processor, which equips four ARM Cortex-A15
cores, running at 2.3 GHz, and 192 Kepler based GPU
cores [23].

3) High-Assurance (HA) Platform : The HA platform is
ultimately responsible for safety of the system and therefore
must be simple and highly resistant to transient hardware
faults. For this, we use an Arduino Due platform. The plat-
form equips a single-core Cortex-M3 processor with 80 MHz
maximum operating frequency. It is based on simple in-order
architecture and the number of transistors of the chip is much
smaller than that of the Tegra K1. These characteristics make

/MICROHARD_ground:

/MICROHARD_groundstation

/controller_DG808/data

/controller_DG808

Jarduino/pwm

Ivectornav/ins

Fig. 3: ROS based software architecture on the high-
performance platform (Tegra K1)

the HA platform less susceptible to SEUs. Also, the platform
supports numerous I/O options—GPIO, PWM, 12C, and etc—
that are needed to connect various basic sensors.

B. Software

1) Performance Controller: The performance controller is
implemented on the Tegra K1. We use Ubuntu 12.04 Linux as
the OS and the Robot Operating System (ROS) as the mid-
dleware framework. In ROS, the system, a robot, is composed
of a set of nodes, each of which is a separate Linux process
participating in the communication network for the robot. A
node can publish messages to a communication channel, called
a fopic, which can be subscribed by other nodes to receive the
published messages.

Figure (3| shows the nodes and topics of the performance
controller. In the figure, the controller_DG808 node is the main
control node. The node subscribes the /vectornav/ins
topic, to receive GPS and IMU sensor values, and the
/arduino/pwm, to receive commands from the remote
controller (RC) and pressure sensor values. (The RC is used
for manual control of the UAV). The controller node pub-
lishes control outputs to the servo_op topic, which is then
subscribed by the arduino node and is forwarded to the HA
platform via serial. The MICORHARD_groundstation node is
responsible for communicating with the remote ground station
on the laptop PC. We use the open-source Qgroundcontrol [2]]
as the ground station software. We use a microhard modem
for long range communication [1] between the UAV and the
ground station to send/receive statistics (UAV to groundsta-
tion) and waypoints (groundstation to UAV)

Currently, the performance controller only uses the basic
sensors, and it does not utilize radar and vision sensors; we
are actively developing radar and vision-based sense-and-avoid
capability in the performance controller.

2) Safety Controller: The safety controller runs on the
Arduino Due platform. The control algorithm is a simple
PID based one [14] and it is modeled and validated using
Matlab Simulink [3[]. Figure E] shows the simulink model. We
then generate C code of the controller using Matlab Simulink
Coder. In this way, we minimize the possibility of bugs in the
safety controller, although it does not guarantee the absence
of bugs in the model. In fact, our initial model contained a
divide zero bug, which was manifested only in a certain sensor
input value ranges. Nevertheless, model-based design is highly
desired for a safety controller as it can significantly reduce
the possibility of coding mistakes and other common software
bugs [12]], [8].

3) Decision Logic: The decision logic also runs on the
Arduino Due, along with the safety controller. In fact, the
generated C code of the safety controller is merged with the

1| void loop ()

2| ¢

3 // basic sensor input

4 sensor_data = read_sensors () ;

5 send_to_HPP(sensor_data);

6

7 // execute safety controller

8 out_hap = safety_controller(sensor_data);
9

10 // wait for the performance controller
11 out_hpp = receive_from_HPP (timeout);
12

13 // decision logic

14 if (decision_check (out_hpp));

15 run_servo (out_hpp);

16 else {

17 run_servo (out_hap);

18 // recover HPP

19 try_recover_hpp();

20

21

22 sleep_until_next_period ();

23 ||}

Fig. 5: Decision logic on Arduino.

TABLE II: Fault detection

Observed behaviors
No output

Delayed output
Unsafe output

Faults in the HP platform
OS/controller crash

Deadline miss

Bugs, SEUs, bad controller design, etc.

decision logic. The safety controller is directly called by the
decision logic while the output of the performance controller is
received asynchronously from the Tegra K1 via serial. Which
output is used to actuate the UAV is then determined by
the decision logic. Figure [5] shows the overall process of the
decision logic. Note that each loop is executed periodically
at a regular interval (20Hz in our current implementation).
The implementation assumes that the safety controller always
completes within the interval without errors—i.e., out_hap
is always valid and computed within the interval (deadline).
On the other hand, the output of the performance controller
can be deemed unsafe or invalid due to a number of reasons.

4) Fault Detection and Recovery: The decision logic
detects faults in the HP platform by observing its outputs (See
Line 14 in Figure [5). Once a fault is identified, the decision
logic switches its control to the safety controller and tries to
recover the HP platform by restarting the system.

Table [l shows the observations by the decision logic and
the corresponding faults at the HP platform. First, ‘No output’
means that the decision logic does not receive performance
controller’s control outputs. This can be caused by software
faults such as OS or controller crashes. In our current imple-
mentation, the decision logic waits one more control period
before it makes a switch to the safety controller. If the outputs
are received in the next period, the decision logic’s observation
is ‘Delayed output’ and the system continues to use the
performance controller. Also, we categorize the certain outputs
as ‘Unsafe’, if they are clearly out of the valid ranges or
significantly off-track the given waypoints.

)

ool Surtace Comn

P8 Velasty

Trectory

—— Statefoedback contaller stales

Cammand smopn vansflan Susysiem

Commaned Siaes

ph, teta, pal Guance

ook Angles.

D
Ditanca o Waypant

b ey

Waypain Index

Fig. 4: Autonomous controller block diagram

UDP COMMUNICATION

HP Platform-
TEGRA K1
i GROUND STATION

HA Platform-
ARDUINO DUE

SERIAL
fOMMUNICATION
L 1

||||||||||||

SIMULATION FOR
SENSORS AND SERVOS

Fig. 6: Experiment setup for UAV simplex

V. EVALUATION

A. Setup

Figure [6] shows the hardware-in-the-loop (HIL) experiment
setup that we used to evaluate our Simplex based UAV system.
The experiment setup consists of an Arduino Due, a Tegra
TK1, and a laptop. The Arduino Due executes the safety
controller and decision logic, while the Tegra TK1 platform
executes the performance controller. Together, they form the
cyber system of the UAV. On the other hand, the laptop runs
the ground station and a custom built flight simulator. The
flight simulator, which is implemented in Matlab, provides
simulated sensor values to both the controllers and in turn
receives the control command surface outputs from the con-
trollers and calculate the next inputs.

B. Case study: performance controller crash

In this case-study, we intentionally crash the performance
controller in the HP platform to evaluate the system’s ability
to detect and recover from the fault.

Fig. 7: The flight path

Figure [§] shows the outputs of the performance controller
(top), the safety controller (middle), and the decision logic
(bottom), collected over 200 seconds duration (Note that the
figure shows only one of the four control outputs.) For the
first 100 seconds, both safety and performance controllers are
working in parallel on HA and HP platforms, respectively.
In this normal operation mode, the decision logic chooses to
use the outputs of the performance controller. At 100 seconds,
however, we inject a fault by manually terminating the per-
formance controller in the HP platform. Because the decision
logic observes no outputs from the performance controller,
it switches to use the outputs from the safety controller. At
about 130 seconds, the performance controller is restarted and
produces control outputs. However, the decision logic does
not immediately switch back to the performance controller
because the outputs of the performance controller is not

Performance controller
g
&
b

Safety controller

Faultis injected :
~

T T T T

Controller
restarts

Complex controller tfutput is connected to the
p servos

Decision Logic

: Complex controller oinput is connected to the
i1 servos

Simple coritroller out[iut is connéctéd to the

S| servos

Faultis

detected —

P - Performance controller connected to servos
S - Secondary controller connected to servos

oo
Time fsecl

Do
: i Systemis recovered

Fig. 8: Outputs of safety controller, performance controller, and decision logic. A fault is injected at time 100 second.

stabilized yet. The stability factor depends on the convergence
of the filters and the guidance logic of the controller. Once
the outputs are stabilized, the decision logic switches back
to use performance controller’s outputs. Figure [/| shows the
ground station tracking of the UAV system during the test [ﬂ
The solid orange lines denote the waypoint trajectory uploaded
to the UAV system from the ground station and the red lines
show the trajectory followed by the flight and the white dots
represent the position update from the UAV system on the
ground station. Our UAV system is designed to update the
ground station at 10Hz.

VI. RELATED WORK

Software reliability have long been a major concern in
safety-critical cyber-physical systems. For example, software
in commercial airplanes must follow certain standards (e.g.,
DO-178C [25] and ARINC-653 [5]) and be certified by
certification authorities. At the application-level, model-based
designs and formal-methods [[12], [8]], [13] have made signif-
icant advance, it is still difficult to verify the correctness of
the software at the code-level [21]. Furthermore, the applica-
tions also rely on many other system software components,

The video of our experiment can be found in the following link https:
/lyoutu.be/p6BT3UNSqJE

including the OS and middleware, each of which may contain
bugs.

System-level reliability and fault-tolerance techniques, espe-
cially in the context of intelligent cyber-physical systems, have
been studied to mitigate possible software bugs. SAFER is a
middleware framework that uses software-level redundancy to
enhance system-level reliability. However, such a middleware
solution may not survive from an OS failure (e.g., BSOD).
The sel.4 is a micro-kernel where its functional correctness
was formally verified [16]. However, functional correctness
does not means its temporal correctness is guaranteed. Nor
it guarantees correct operations in the presence of transient
hardware faults (SEUs), which are becoming more prevalent as
technology scaling continues [10]]. C’Mon focuses on detecting
OS-level timing faults (e.g., deadline misses due to scheduling)
that are caused by SEUs [28]. To guard the OS code and data
against SEUs, dOSEK proposed to use a special encoding
in storing OS code and data, which enables detection and
recovery from the SEUs [15]. However, its software-based
approach comes at a significant performance penalty.

SEUs can be reduced at each hardware component-level by,
for example, adopting ECC and other so called “hardening”
techniques [7]. Also, hardware redundancy solutions, such as
Triple-modular redundancy (TMR) [18] or dual-redundancy,
can protect the system from transient hardware faults [7].

https://youtu.be/p6BT3UN8qJE
https://youtu.be/p6BT3UN8qJE

In today’s commercial airplanes and satellites, the physical
redundancy based techniques are used due to their high safety-
critical requirements [11]]. However, these hardware techniques
comes at substantial space and performance penalties and high
cost and development time—unsuitable for UAVs. Also, the
processors used in these applications often several generations
behind the stat-of-the-art COTS processors [17], [9]. This is
a serious problem for intelligent UAVs where high computing
performance is a key to achieve high intelligence.

The simplex architecture [27] is a special form of re-
dundancy in which safety and performance are decoupled
to safety and performance controllers, respectively. It was
originally implemented at the application software-level in a
single computing platform and used to upgrade/verify con-
trollers without stopping the system [27]. More recently, Bak
et al. implemented the safety-critical parts of the system—
safety controller and decision logic—in FPGA so that it can
tolerate system-level faults in the computer system running
the performance controller for an inverted pendulum and a
cardiac pacemaker [6]. Our work is inspired by their work,
but we use an Arduino platform instead of FPGA to enable
low-cost safety system design in the context of UAV systems.
We also consider the implications of our simplex design in
terms of hardware transient faults.

VII. CONCLUSION

We have presented a fault-tolerant UAV design based on the
Simplex [27] architecture. The proposed design uses two het-
erogeneous platforms with distinct reliability and performance
characteristics.

Our main idea is that we use a reliable but less performant
hardware platform, we call a High-Assurance (HA) platform,
to be responsible for safety while we use a more performant,
but potentially less reliable platform, which we call a High-
Performance (HP) platform, for performance and intelligence
of the UAV. During the normal operation, the HP platform is
responsible for controlling the UAV. However, if it fails due to
transient hardware faults or software bugs, the HA platform
will immediately take over until the HP platform recovers.
As such, our design provides a much needed fail-operational
property in the UAV.

We have implemented the proposed design on an actual
UAV using a low-cost Arduino and a high-performance Tegra
TKI1 platform. We have demonstrated the system’s ability to
detect and recover from failures through a set of experiments
in a hardware-in-the-loop simulation setting. In the future, we
plan to implement more sophisticated vision sense-and-avoid
capability and perform real flight tests in an outdoor setting.

ACKNOWLEDGEMENT

This work is supported by the National Aeronautics and
Space Administration's (NASA's) Leading Edge Aeronau-
tics Research for NASA (LEARN) fund under grant num-
ber NNX15AN94A and Paul G. Allen Family Foundation
(PGAFF) grant number KUAE#40956.

The authors would like to thank George Blake for his
support on hardware development and validation of the UAV.

REFERENCES

[1] Microhard. http://www.microhardcorp.com/n920.php.

[2] Qground station. http://qgroundcontrol.org/.

[3] Simulink. http://www.mathworks.com/products/simulink/.

[4] Vn-220 rugged gps/ins. http://www.vectornav.com/products/
vn200-rugged/.

[5] Aeronautical Radio Inc. Avionics Application Standard Software Inter-
face (ARINC) 653, 2013.

[6] S. Bak, D. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha.
The system-level simplex architecture for improved real-time embedded
system safety. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 99-107. IEEE, 2009.

[71 R. Baumann. Soft errors in advanced computer systems. Design & Test
of Computers, IEEE, 22(3):258-266, 2005.

[8] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL:
a tool suite for automatic verification of real-time systems. Springer,
1996.

[9]1 P. Bieber, F. Boniol, M. Boyer, E. Noulard, and C. Pagetti. New
Challenges for Future Avionic Architectures. AerospaceLab Journal,
(4), 2012.

[10] S. Borkar. Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation. Micro, IEEE,
25(6):10-16, 2005.

[11] D. Briere and P. Traverse. AIRBUS A320/A330/A340 electrical flight
controls-A family of fault-tolerant systems. In Fault-Tolerant Comput-
ing, pages 616-623. IEEE, 1993.

[12] J. B. Dabney and T. L. Harman. Mastering simulink. Pearson/Prentice
Hall, 2004.

[13] P. Fritzson. Principles of object-oriented modeling and simulation with
Modelica 2.1. John Wiley & Sons, 2010.

[14] G. A. Garcia, S. Keshmiri, and R. Colgren. Advanced h-infinity trainer
autopilot. AIAA Modeling and Simulation Technologies Conference,
August 2010.

[15] M. Hoffmann, F. Lukas, C. Dietrich, and D. Lohmann. dosek: the design
and implementation of a dependability-oriented static embedded kernel.
In Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2015 IEEE, pages 259-270. IEEE, 2015.

[16] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, et al. sel4:
Formal verification of an os kernel. In Symposium on Operating Systems
Principles (SOSP), pages 207-220. ACM, 2009.

[17] O. Kotaba, J. Nowotsch, M. Paulitsch, S. Petters, and H. Theilingx.
Multicore in real-time systems temporal isolation challenges due to
shared resources. In Industry-Driven Approaches for Cost-effective
Certification of Safety-Critical, Mixed-Criticality Systems, 2013.

[18] R. E. Lyons and W. Vanderkulk. The use of triple-modular redundancy
to improve computer reliability. IBM Journal of Research and Devel-
opment, 6(2):200-209, 1962.

[19] T. C. May and M. H. Woods. Alpha-particle-induced soft errors in
dynamic memories. IEEE Transactions on Electron Devices, 26(1):2-9,
Jan 1979.

[20] D. Montalk and J. Potocki. Computer software in civil aircraft. In
Digital Avionics Systems Conference, 1991. Proceedings., IEEE/AIAA
10th, pages 324-330. IEEE, 1991.

[21] Y. Moy, E. Ledinot, H. Delseny, V. Wiels, and B. Monate. Testing
or formal verification: Do-178c¢ alternatives and industrial experience.
Software, IEEE, 30(3):50-57, 2013.

[22] J. Nowotsch and M. Paulitsch. Leveraging multi-core computing archi-
tectures in avionics. In Dependable Computing Conference (EDCC),
pages 132-143. IEEE, 2012.

[23] NVIDIA. NVIDIA Tegra K1 Mobile Processor, Technical Reference
Manual Rev-0lp, 2014.

[24] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. Ros: an open-source robot operating system.
In ICRA workshop on open source software, volume 3, page 5, 2009.

[25] RTCA. DO-178C Software Considerations in Airborne Systems and
Equipment Certification, 2011.

[26] I. Sadeghzadeh and Y. Zhang. A review on fault-tolerant control for
unmanned aerial vehicles (uavs). Infotech@ Aerospace, 2011.

[27] L. Sha. Using simplicity to control complexity. IEEE Software,
18(4):20-28, 2001.

[28] J. Song and G. Parmer. C’'mon: a predictable monitoring infrastructure
for system-level latent fault detection and recovery. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2015 IEEE,
pages 247-258. IEEE, 2015.

[29] J. F. Ziegler. Terrestrial cosmic rays.
development, 40(1):19-39, 1996.

IBM journal of research and

http://www.microhardcorp.com/n920.php
http://qgroundcontrol.org/
http://www.mathworks.com/products/simulink/
http://www.vectornav.com/products/vn200-rugged/
http://www.vectornav.com/products/vn200-rugged/

