
SpectreGuard: An Efficient Data-centric Defense Mechanism
against Spectre Attacks

Jacob Fustos
University of Kansas
jacobfustos@ku.edu

Farzad Farshchi
University of Kansas
farshchi@ku.edu

Heechul Yun
University of Kansas
heechul.yun@ku.edu

ABSTRACT
Speculative execution is an essential performance enhancing

technique in modern processors, but it has been shown to be in-
secure. In this paper, we propose SpectreGuard, a novel defense
mechanism against Spectre attacks. In our approach, sensitive mem-
ory blocks (e.g., secret keys) are marked using simple OS/library
API, which are then selectively protected by hardware from Spec-
tre attacks via low-cost micro-architecture extension. This tech-
nique allows microprocessors to maintain high performance, while
restoring the control to software developers to make security and
performance trade-offs.

KEYWORDS
Spectre, Micro-architecture, Side-channel Attack

1 INTRODUCTION
Speculative execution is an essential performance enhancing

technique in modern high-performance microprocessors. However,
the recent disclosure of Spectre [16], Meltdown [18], and a growing
number of related attacks [11, 15, 17, 20, 26] has shown that specu-
lative execution can be a powerful security liability. Fundamentally,
hardware speculation reduces CPU pipeline stalls—therefore im-
proves performance—by predicting and speculatively executing
a future instruction stream. If the prediction is wrong, the spec-
ulatively executed instructions (a.k.a., transient instructions [16])
are squashed, thus maintaining logical (architecturally visible pro-
gram state) correctness. However, speculation can leave a footprint
in micro-architectural states (e.g., loaded cache-lines in a cache),
which can leak secret data to an adversary as demonstrated in the
aforementioned attacks.

In this paper, we focus on the bounds check bypass variant of
Spectre (Variant 1 [16]) as it affects all modern speculative out-of-
order microprocessors and existing mitigation methods [7, 12, 15,
21, 27] are generally incur high overhead.

if (x < array1_size)
y = array2[array1[x] * 4096];

Figure 1: A Spectre gadget. Adopted from [16]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06.

Figure 1 shows an example of vulnerable code (called a Spectre
gadget). Here, an out-of-order processor can speculatively execute
the second line before the array bounds check in the first line is
completed. Speculatively executed instructions in the second line
will eventually be discarded, if the x is out-of-bound, but the cache
state changes will persist, which can leak secret.

Since the disclosure of Spectre, several software- and hardware-
based mitigation strategies have been proposed. Software-based
mitigation strategies prevent speculation bymanually inserting a se-
rializing instruction [12], or introducing additional data dependen-
cies [7, 21] between the conditional jumps and later memory load
instructions. However, manually identifying vulnerable branches
of a program is difficult, while protecting all branches through
compiler automation incurs too much performance overhead [21].
Hardware-based approaches generally focus on hiding attacker
observable micro-architecture state changes by introducing addi-
tional hardware structures to buffer speculative outcomes [13, 27].
While they do not require manual code changes, they incur invasive
hardware changes and high performance overhead [13, 27].

In this paper, we propose SpectreGuard, a novel cross-layer de-
fense against Spectre attacks. Our approach is data-centric in the
sense that we focus on a program’s data rather than code. We ob-
serve that, for a software developer, identifying a program’s secret
data (e.g., secret keys) can be easier than identifying vulnerable code
blocks (i.e., Spectre gadgets), which can appear in any branches of
the program even if they are not related with processing the secret
data. Thus, our approach begins by identifying sensitive memory
blocks, which hold secret data, and marking them as non-speculative
memory regions. The identified memory regions are informed to the
OS, via simple OS/library API, and then utilized by the hardware to
selectively and efficiently prevent speculative attacks via low-cost
micro-architecture extensions.

Our micro-architecture extensions are small and based on a
fundamental observation that a successful Spectre variant 1 attack
requires the following three distinctive steps to occur speculatively:
(Step 1) secret data is loaded from the memory hierarchy; (Step 2) it
is then forwarded to dependent instructions; (Step 3) the dependent
instructions are executed, leaking the secret via micro-architectural
covert-channels (e.g., cache). It is important to note that the secret
is leaked through the second and third steps, during which attacker
observable, secret dependent, micro-architectural footprints are left.
In other words, even if secret data is loaded on the CPU pipeline,
unless it is forwarded to the secret dependent instructions, the
secret cannot be leaked to the attacker.

Based on this observation, our approach allows the first step
to occur but delays the second step until after all prior branches
are resolved. Note that this delay is needed only when the virtual
address in the first step is within a non-speculative memory region.
All other “normal” addresses can be immediately forwarded to any
waiting dependent instructions. Thus, secrets that are accessed
infrequently, will have negligible overhead on overall performance.



DAC ’19, June 2–6, 2019, Las Vegas, NV, USA Jacob Fustos, Farzad Farshchi, and Heechul Yun

Furthermore, even when we delay the second step (the forwarding
step) the processor pipeline can still speculatively execute any
independent instructions, if exist, thereby further reducing potential
performance impact.

We implement SpectreGuard on Gem5 simulator and Linux. Our
experimental results show that SpectreGuard can efficiently mit-
igate Spectre variant 1 attacks—we observe negligible overhead
when the amount of secret data is small, while we observe modest
20% average overhead for SPEC2006 benchmarks when their entire
address spaces are marked as non-speculative.

In summary, this paper makes the following contributions:
• We propose a novel data-centric defense approach, which we
call SpectreGuard, to efficiently defend against Spectre vari-
ant 1 attacks. SpectreGuard drastically reduces the program-
ming complexity and performance overhead by focusing on
secret data, rather than code.

• We present a detailed micro-architecture and OS support
mechanisms of SpectreGuard.

• We implement SpectreGuard on gem5 full system simulator
and Linux kernel, and provide extensive evaluation results
showing the effectiveness of SpectreGuard.

2 BACKGROUND
In this section, we provide necessary background on out-of-order

architecture and known variants of speculative execution attacks.

2.1 Out-of-order Processors
Modern high-performance processors can execute multiple in-

structions in parallel. To maximize the instruction level parallelism,
and thus to improve performance, they employ sophisticated hard-
ware structures to execute as many instructions as quickly as pos-
sible, potentially out-of-order, while respecting data dependencies
among the instructions.

A reorder buffer (ROB) is a key hardware structure that enables
out-of-order execution. In an out-of-order processor, instructions
are placed in the ROB in program order, executed in out-of-order,
and retired in program order. An instruction in the ROB can be-
gin execution as soon as its operands are available, and once it is
executed, the result is maintained until the instruction is retired.

To maximize performance, branch predictors are used to specu-
latively issue and execute potential future instructions (those in the
predicted execution paths) in parallel. If a prediction turns out to be
incorrect, all subsequent speculative instructions after the branch
are squashed. These speculative instructions are called transient
instructions and a modern processor can hold a large number of
transient instructions in its ROB.

2.2 Speculative Execution Attacks

Speculative execution attacks exploit the side-effects of execut-
ing transient instructions and generally involve the following three
phases: access, transmit, and receive [27]. In the access phase, secret
data is loaded from memory via speculative execution of memory
access instructions. In the transmit phase that follows, secret de-
pendent instructions are speculatively executed before the access
instructions are squashed, which leave externally observable micro-
architectural footprints. Lastly, in the receive phase, the attacker
learns the secret from the micro-architectural footprints that re-
main, which form covert-channels that encode the secret value.

While caches are the most commonly used micro-architectural
covert-channels, other micro-architectural resources, as diverse as
AVX (Advanced Vector eXtionsions) unit execution timing [23], can
also be used as covert-channels.

Attack Description
Variant 1 (Spectre) [16] Bounds Check Bypass
Variant 1.1 [15] Bounds Check Bypass Store
Variant 1.2 [15] Read-only Protection Bypass
Variant 2 (Spectre) [16] Branch Target Injection
Variant 3 (Meltdown) [18] Supervisor Protection Bypass
Variant 3a [12] System Register Bypass
Lazy FP [24] FPU Register Bypass
Variant 4 [9] Speculative Store Bypass
ret2spec [20] Return Stack Buffer
L1 Terminal Fault [11, 26] Virtual Translation Bypass

Table 1: Known speculative execution attacks.

Table 1 summarizes the known speculative execution attacks,
which can be categorized as exception- and prediction-based at-
tacks. In exception-based attacks (Variants 1.2, 3, 3a, Lazy FP, and
L1TF), a transient access instruction triggers an exception, but the
subsequent transient transmit instructions are executed before the
exception is fully handled. In prediction-based attacks (Variant 1, 1.1,
2, 4, and ret2spec), hardware prediction components (e.g., branch
predictors) are mis-trained to execute transient access and transmit
instructions before the misprediction is realized and resolved.

Note that while exception based speculative execution attacks
such as Meltdown are important, an effective software-based mit-
igation method exists [8], which is already adopted on all major
operating systems. Furthermore, Intel already introduced their next-
generation architectures that implement hardware-based defense
mechanisms against these attacks [2]. Meanwhile, most processors
from AMD and ARM are already immune to Meltdown and many
other exception based attacks [6]. Therefore, the problem appears
to be largely solved or will be solved in the near future.

However, the same cannot be said for the prediction-based spec-
ulative attacks because existing solutions generally involve high
performance and/or programming overhead [7, 21]. In particular,
for Spectre Variant 1 attacks, which we focus on in this paper, exist-
ing software-based mitigationmethods rely on either programmer’s
manual identification of potentially vulnerable code, which is not
only time consuming but also likely to miss many true vulnerabili-
ties, or compiler solutions which can falsely identify code that does
not need to be modified [16, 21]. Furthermore, there are no easy
hardware-based fixes because branch speculation that Spectre Vari-
ant 1 attacks target is so fundamental to all modern out-of-order
processors and disabling it would incur unacceptably high perfor-
mance overhead [16]. Because of this reason, processor vendors do
not have an immediate plan for hardware fixes and recommend the
software-based mitigation solutions [12].

In this work, we focus on efficient mitigation of Spectre Variant
1 attacks via a software/hardware collaborative approach.

3 THREAT MODEL
We assume the attacker can control a subset of victim’s input.

We assume the victim program and the OS are logically correct and
do not have exploitable software bugs (e.g., buffer overflow). We



SpectreGuard: An Efficient Data-centric Defense Mechanism against Spectre Attacks DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

assume that the attacker knows the (virtual) memory addresses of
the secret data (e.g., private keys, pass phrases) but he does not
have direct access to them. Thus, the attacker’s goal is to learn the
content of the secret data using speculative execution attacks.

As discussed in Section 2, speculative execution attacks involve
speculative execution of access and transmit gadgets. In particular,
the speculative execution of transmit instructions encodes the secret
data via micro-architectural covert channels, such as cache, through
which the attacker recovers the secret. We do not assume specific
covert channels—i.e., any micro-architectural covert-channels can
be used by the transmit gadgets.

Note that covert channels created by executing logically valid
instructions (i.e., non-transient instructions) are out-of-scope. For
example, traditional cache timing attacks against cryptographic
algorithms exploiting secret dependent (valid) memory accesses and
execution time variations (e.g., [3, 19]) are important but orthogonal
problems that should be protected using existing solutions (e.g.,
constant-time crypto implementations [4]).

Lastly, we do notmake any assumption about receiver’s locations.
The receiver can be in the victim’s address space, or in different
address space in different SMT, different core, or remote node [23].

In this setting, our goal is to prevent leaking victim’s secret
data, with the assumption that the memory addresses of the secret
data are known to the victim, just like we assume they are known
to the attacker. In the following section, we will describe how
we can leverage this knowledge of secret data locations to devise
an efficient and effective defense mechanism against speculative
execution attacks.

4 SPECTREGUARD
In this section, we describe the high-level design and implemen-

tation details of SpectreGuard.

4.1 Design
The design goal of SpectreGuard is to effectively defend against

Spectre attacks while maximizing application performance and
reducing required software/hardware complexities.

Marking Secret Data. Our first insight is that identifying a
program’s secret data (e.g., private keys, passwords) can be much
easier than identifying vulnerable code parts (i.e., Spectre gadgets)
because the former only requires understanding of the program
itself but the latter may also require understanding of the underly-
ing hardware. For instance, many security sensitive programs (e.g.,
browsers) already identify and manage security sensitive memory
blocks differently by judiciously checking memory access bounds,
and/or employing in-processmemory isolationmechanisms [22, 25].
In contrast, identifying Spectre gadgets in a program is challenging
because they can exist in anywhere in the program—even in places
that do not directly access secret—and it may require in-depth
micro-architectural understanding.

Based on this insight, our approach begins by identifying sen-
sitive memory blocks, which hold secret data, and marking them
as Non-Speculative (NS) memory regions to defend them against
Spectre attacks. In this work, we propose to leverage page-based
hardware memory management unit (MMU). Specifically, we in-
troduce an additional NS bit in each page table entry to indicate
the page is a non-speculative memory page. The non-speculative
memory regions can be declared via OS system calls (e.g., mmap,

mprotect), libraries, or compiler/linker support, all of which inter-
nally update the NS bit in the program’s page table entries. The
NS bit information of a page table entry is then passed to the TLB,
along with address translation and other auxiliary information.
This information is then used by the CPU’s out-of-order instruction
scheduler as described in the following.

Preventing Secret Dependent Speculative Execution. Our
second insight is that Spectre attacks can leak secret only when
secret dependent instructions are speculatively executed. A Spectre
gadget (e.g, Figure 1) executes two types of transient instructions:
(1) an access instruction that loads (secret) data from the mem-
ory hierarchy and (2) a transmit instruction that changes micro-
architectural states depending on the content of the secret data.
Note that the secret is leaked through executing the transmit in-
struction, which creates micro-architectural covert-channels, not
the access instruction. In other words, even if the secret data is
loaded into the CPU’s internal buffers—by completing the first
step—unless it is forwarded to the secret dependent instructions,
the secret cannot be leaked to the attacker.

Based on this insight, our idea is to delay the result forwarding
of a speculative memory access instruction until after the execution
is deemed safe. This can be achieved by slightly modifying the
CPU’s result forwarding mechanism. In an out-of-order processor,
an issued instruction is kept in a reorder buffer (ROB) until the
instruction is retired. Normally, when an instruction is executed,
the result is immediately forwarded to any dependent instructions.
In our approach, however, when a memory instruction’s address is
marked as NS , obtained from the TLB, the result is not immediately
forwarded but kept in the reorder buffer instead.

The important question is then, when do we forward the result
of the memory instruction? Forwarding the result of the memory
instruction is the most safe when the instruction is at the head of
the ROB at which point all preceding instructions have already
been retired. However, this approach can cause frequent pipeline
stalls when there are not many independent instructions in the
ROB. We instead improve performance by forwarding the result
of a memory instruction before it reaches the head of the ROB,
but only after all prior branch instructions are completed (verified
predicted correctly), at which point, barring exceptions, thememory
instruction and subsequent dependent instructions are no-longer
speculative and will eventually be retired.

Security Analysis. SpectreGuard mitigates Spectre Variant 1
attacks targeting secret data in the victim’s address space as long
as the secret data is located in non-speculative memory regions.
Efficient mitigation of other Spectre Variants are, while important,
out-of-scope of this work.

4.2 Implementation
We implement SpectreGuard on a Gem5 full system simulator [5]

and Linux kernel.
Gem5 Extensions.We have modified the O3CPU out-of-order

CPU model of the gem5 simulator in order to implement Spectre-
Guard. Figure 2 shows the path of a load instruction through the
IEW (issue/execution/writeback) and commit units of the O3CPU
model, showing how that path is modified for addresses marked as
non-speculative regions in the page tables (via the NS bit in each
page table entry).

First, instructions are placed in instruction queue (IQ), load/store
queue (LSQ)—for memory instructions—and reorder buffer (ROB) in



DAC ’19, June 2–6, 2019, Las Vegas, NV, USA Jacob Fustos, Farzad Farshchi, and Heechul Yun

Figure 2: Micro-architectural changes needed to implement SpectreGuard.

program order. They then are dispatched (issued) to functional units
in out-of-order as soon as their data dependencies are resolved.

Once an instruction’s dependencies have been marked as com-
pleted, the ScoreBoard will issue the instruction. If it is a memory
instruction (load/store), its memory address is calculated with the
help of a data translation lookaside buffer (dTLB). A dTLB entry
includes a virtual-to-physical page address mapping and other aux-
iliary information, including the non-speculative (NS) bit, in our
modified implementation. If the address of a memory instruction is
marked as NS, then the instruction is marked as non-speculative-
write-back (NSWB) in the ROB.

After the memory request is completed, the returned value is
written back to the temporary register file (called rename register)
and the instruction is marked as completed in the ROB. Normally,
a completed instruction in the ROB is immediately notified to the
ScoreBoard, so that it can issues any dependent instructions as
soon as possible. In our modification, however, if the instruction is
marked as NSWB, notification to the ScoreBoard is delayed until
all prior branch instructions in the ROB are completed.

Linux Extensions. We have modified Linux kernel 4.18.12 to
allow users to map pages as non-speculative to be protected from
Spectre v1 attacks. Within the Linux kernel, a task’s virtual address
space is represented with a set of virtual memory areas (VMAs).
Each VMA shares common properties through a per-VMA data
structure. When a new page is allocated (at a page fault), a page
table entry is created based on the VMA defined memory flags.
We add a new flag VM_WBNS to indicate the page is part of non-
speculative memory. At the user-level, we extend Linux’s program
(ELF) loader and the mmap system call implementation to be able to
set the VM_WBNS flags in creating VMA descriptors.

Note that the above code changes are minimal. In total, we only
have added/modified less than 50 lines of C in the Linux kernel
source tree. Furthermore, because most changes are in page table
descriptors and their initialization, no observable run-time overhead
is incurred by the code changes.

5 EVALUATION
In this section, we present the evaluation results of SpectreGuard.

5.1 Setup
We modify and configure the Gem5 simulator to support the

following processor configurations:Native, SG, InvisiSpec, and Fence.
Native is the baseline configuration vulnerable to Spectre attacks.
SG represents our SpectreGuard approach. For SG, we additionally
use parenthesis to denote data or memory regions marked as non-
speculative. For example, SG(Heap) denotes that the entire heap
area of the program is marked as non-speculative. InvisiSpec is a
recently published fully hardware-based speculative attack defense
mechanism [27]. Lastly, Fence represents a software-based protec-
tion method that inserts a lfence instruction in every branch of
the program [10]. Table 2 shows the basic simulation parameters
we used in all processor configurations.

Core Single-core (x86 ISA), 8 issue, out-of-order, 2 GHz
IQ: 64, ROB: 192, LSQ: 32/32

Cache Private L1-I/D: 16/64 KiB (4/8-way), 1 cycle latency
Shared L2: 256 KiB (16-way), 8 cycle latency

DRAM Read/write buffers: 32/64, open-adaptive policy
DDR3@800MHz, 1 rank, 8 banks

Table 2: Gem5 simulation parameters

5.2 Performance of Synthetic Workloads
In this experiment, we show the effects of SpectreGuard us-

ing a synthetic benchmark. Figure 3 shows the pseudo code of
our synthetic benchmark, which loosely mimics a sand-boxed ap-
plication runtime scenario (e.g., JavaScript engine in a browser).
The first part of the benchmark represents a client workload (e.g.,
attacker’s JavaScript code), which contain Spectre gadgets. Specifi-
cally, do_work() function includes a Spectre v1 gadget similar to



SpectreGuard: An Efficient Data-centric Defense Mechanism against Spectre Attacks DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

char *secret_key; // secret data

void benchmark(int S, int C)
{

// (S)pectre gadget, unrelated to the secret
for (i = 0; i < S; i++)

do_work();

// En(C)ryption task accessing the secret
for (i = 0; i < C; i++)

encrypt();
}

Figure 3: Pseudo code of our synthetic benchmark composed
of (S)pectre gadget and en(C)ryption workloads (the input
parameters control respective workload sizes.)

Figure 1. The second part represents background communication
activities that use a secret key (secret_key) for data encryption
(e.g., encrypted HTTPS communication). For data encryption, we
use the AES encryption function in OpenSSL v1.1. The amounts of
work of the two code sections, denoted as ‘S’ and ‘C’, are adjusted
to simulate various execution scenarios. For example, “25S/75C”
indicates that it spends 25% time on executing the Spectre gadgets
workload, while spending 75% of time on executing the encryption
workload, which accesses the secret, on the native processor.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

25S/75C 50S/50C 75S/25C 90S/10C

N
o
rm

a
liz

e
d
 E

xe
cu

ti
o
n
 T

im
e Native

SG(Key)
SG(All)

InvisiSpec
Fence

Figure 4: Execution times of synthetic workloads.

Figure 4 shows the results. First, note that SG(Key), in which only
the secret key is marked as non-speculative, achieves near native
performance in all workload configurations. This is because of the
following two reasons: (1) Most instructions that do not depend
on the secret key are executed natively without any performance
penalty; (2) Even among the dependent instructions that access
the secret key, in the OpenSSL library, the majority of them are
executed natively without delay because there were no prior unre-
solved branch instructions in the ROB that delay their execution
under SpectreGuard. However, the execution times increase consid-
erably in SG(All), where the entire address space of the benchmark is
marked as non-speculative. This is expected as it effectively turn all
memory accesses (heap, data, stack) as sensitive and thus any mem-
ory dependent instructions may be delayed until all prior branch

instructions are resolved (especially bad for Spectre gadget section
part of the code, which contains many branch instructions.) Never-
theless, SG(All) achieves comparable performance with InvisiSpec,
which is a fully hardware based state-of-the-art defense mecha-
nism. Note that InvisiSpec requires significantly more complex
hardware modifications than SpectreGuard. Lastly, Fence, today’s
software-only Spectre mitigation mechanism, suffers significantly
worse execution time increases in all workload configurations.

5.3 Performance of SPEC2006 Workloads
We repeat the experiment in 5.2 using a set of SPEC CPU2006

benchmarks. Note that SG(Heap) and SG(All) are different Spectre-
Guard configurations where the former marks only the heap area of
a benchmark as non-speculative, while the latter marks the entire
address space of a benchmark non-speculative.

Figure 5 show the results. On average, SG(Heap) shows 8% over-
head while both SG(All) and InvisiSpec show similar 20% overhead.
However, the overhead of Fence is significantly higher at 74%. Note
that the performance improvement of SG(Heap) comes from the
fact that it only protects heap, while SG(All) protects the entire
address space. The results shows that there exists performance
security trade-offs when using SpectreGuard. Nevertheless, the fact
that even the most conservative SG(All) achieve comparable perfor-
mance to InvisiSpec, which requires significantly more hardware
resources than our approach, shows effectiveness of our approach.
For an actual security sensitive program, we expect that the pro-
grammer can identify smaller subset of memory regions as security
sensitive and mark them as non-speculative memory under Spec-
treGuard, further lowering overhead.

6 RELATEDWORK
The most closely related work is InvisiSpec [27], which is a re-

cently proposed fully hardware-based speculative attack mitigation
technique (not requiring any software changes). InvisiSpec intro-
duces an additional hardware structure, called speculative buffer,
that buffers speculative memory accesses to hide speculation from
cache hierarchy. While the approach is effective in eliminating
cache-based side-channels, it is vulnerable to attacks that use other
types of side/covert-channels such as the AVX unit based timing
channel [23]. In contrast, our approach is not vulnerable to non-
cache based covert-channels because we prevent secret dependent
transient instructions, which create covert channels, as long as
secret data are marked as non-speculative. Moreover, our approach
requires much more modest hardware changes compared to Invi-
siSpec. SafeSpec [13] is similar to InvisiSpec as it also introduces
additional hardware structures to hide speculation and thus suffer
similar drawbacks as InvisiSpec. DAWG [14] prevents cache-based
side/covert channels among different security domains by parti-
tioning the cache. However, it does not protect attacks originated
from the same domain as the victim.

As briefly discussed in Section 2.2, for Spectre variant 1 attacks,
adding a fence instruction to each vulnerable branch, either manu-
ally or automatically with compiler support, is a practically viable
mitigation method on existing processors as recommended by the
chip vendors, but it suffers high performance overhead. To reduce
performance impact, several software based techniques have been
proposed. Data dependent masking [15] reduce the scope of out-of-
bound memory access, thereby reducing the attack possibility. Spec-
ulative Load Hardening (SLH) [7] uses an additional data-dependent



DAC ’19, June 2–6, 2019, Las Vegas, NV, USA Jacob Fustos, Farzad Farshchi, and Heechul Yun

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

bzip2
m

cf
gobm

k

hm
m

er

sjeng
libquantum

h264ref

om
netpp

astar
bwaves

gam
ess

m
ilc

zeusm
p

grom
acs

cactusADM

leslie3d

nam
d

soplex

calculix

Gem
sFDTD

tonto
lbm

sphinx3

average

N
o
rm

a
liz

e
d

 E
xe

cu
ti

o
n

 T
im

e

Native
SG(Heap)

SG(All)
InvisiSpec

Fence

Figure 5: SPEC2006 benchmark results.

conditional instruction, which creates a data-dependency, which
achieves similar effect as to the standard fence-based mitigation.
Unlike the fence-based approach, however, because independent
instructions can still be speculatively executed, it generally achieves
higher performance, although the overall performance loss is still
undesirably high for high performance applications [21]. Oleksenko
et al. also proposed different ways of introducing data dependencies
(comparison arguments, conditional flag, etc.), all of which prevent
unsafe speculation. However, these software-based approaches suf-
fer from high performance overhead and error-prone manual code
modifications. In contrast, our approach requires minimal software
and hardware modifications while offering effective defense against
Spectre attacks with low performance overhead.

7 CONCLUSION AND FUTUREWORK
In this paper, we proposed SpectreGuard, a novel defense mech-

anism against Spectre attacks which allows microprocessors to
maintain high performance, while restoring the control to software
developers to make security and performance trade-offs. In our
approach, sensitive memory blocks (e.g., secret keys) are marked
as non-speculative memory regions by the programmer. The OS
updates the corresponding page table entries to encode the infor-
mation, which is then passed to the hardware via MMU/TLB. When
the out-of-order CPU speculatively executes a memory instruction,
execution of dependent instructions are delayed if the memory
address is tagged as non-speculative, until they can be executed
safely. We implement our approach in Gem5 and Linux. Our eval-
uation showed that in many application scenarios where secure
memory is accessed infrequently, our approach can achieve near
native performance. Furthermore, our approach incurs significantly
lower hardware complexity compared to the state-of-the-art hard-
ware mitigation techniques. As future work, we plan to implement
and evaluate the effectiveness of our approach on a RISC-V based
out-of-order core [1] on FPGA.

ACKNOWLEDGMENTS
This research is supported in part by NSF grant CNS 1718880 and

NSA Science of Security initiative contract no. #H98230-18-D-0009.

REFERENCES
[1] The berkeley out-of-order RISC-V processor code repository. https://github.com/

ucb-bar/riscv-boom.
[2] Spectre and Meltdown in Hardware: Intel Clarifies Whiskey Lake and Amber

Lake. https://www.anandtech.com/show/13301, 2018.

[3] D. J. Bernstein. Cache-timing attacks on aes. 2005.
[4] D. J. Bernstein, T. Lange, and P. Schwabe. The security impact of a new cryp-

tographic library. In International Conference on Cryptology and Information
Security in Latin America, pages 159–176. Springer, 2012.

[5] N. Binkert et al. The gem5 simulator. SIGARCH Comput. Archit. News, 39(2):1–7,
Aug. 2011.

[6] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner, F. Piessens,
D. Evtyushkin, and D. Gruss. A Systematic Evaluation of Transient Execution
Attacks and Defenses. Technical report, 2018.

[7] C. Carruth. Speculative Load Hardening: A Spectre Variant #1 Mitiation Tech-
nique. 2018.

[8] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Mangard. KASLR is
Dead: Long Live KASLR. In ESSoS, pages 161–176. Springer, 2017.

[9] J. Horn. speculative execution, variant 4: speculative store bypass. https://bugs.
chromium.org/p/project-zero/issues/detail?id=1528, 2018.

[10] Intel. Analyzing potential bounds check bypass vulnerabilities (Rev. 002). Tech-
nical report, July 2018.

[11] Intel. Deep Dive: Intel Analysis of L1 Terminal Fault. Technical report, 2018.
[12] Intel. Intel Analysis of Speculative Execution Side Channels (Rev. 4.0). Technical

report, July 2018.
[13] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Ponomarev, and

N. Abu-Ghazaleh. SafeSpec: Banishing the Spectre of a Meltdown with Leakage-
Free Speculation. 2018.

[14] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, J. Emer, M. I. T. Csail, and
N. M. I. T. Csail. DAWG : A Defense Against Cache Timing Attacks in Speculative
Execution Processors. In MICRO, 2018.

[15] V. Kiriansky and C. Waldspurger. Speculative buffer overflows: Attacks and
defenses. arXiv preprint arXiv:1807.03757, 2018.

[16] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting
speculative execution. In IEEE Symposium on Security and Privacy (S&P), 2019.

[17] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh. Spectre returns!
speculation attacks using the return stack buffer. In WOOT, 2018.

[18] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown: Reading kernel
memory from user space. In USENIX Security), 2018.

[19] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache side-channel
attacks are practical. In Security and Privacy (SP), pages 605–622. IEEE, 2015.

[20] G. Maisuradze and C. Rossow. ret2spec: Speculative execution using return stack
buffers. In ACM(CCS), pages 2109–2122. ACM, 2018.

[21] O. Oleksenko, B. Trach, T. Reiher, M. Silberstein, and C. Fetzer. You shall not
bypass: Employing data dependencies to prevent bounds check bypass. arXiv
preprint arXiv:1805.08506, 2018.

[22] S. Park, S. Lee, W. Xu, H. Moon, and T. Kim. libmpk: Software Abstraction for
Intel Memory Protection Keys. arXiv preprint arXiv:1811.07276, 2018.

[23] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss. NetSpectre: Read Arbitrary
Memory over Network. In ACM(CCS), 2018.

[24] J. Stecklina and T. Prescher. Lazyfp: Leaking fpu register state using microarchi-
tectural side-channels. arXiv preprint arXiv:1806.07480, 2018.

[25] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, D. Garg, and P. Druschel.
ERIM: Secure and Efficient In-process Isolation with Memory Protection Keys.
arXiv preprint arXiv:1801.06822, 2018.

[26] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silber-
stein, T. F. Wenisch, Y. Yarom, R. Strackx, and K. Leuven. Foreshadow: Extracting
the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution. In
USENIX Security Symposium (Security), pages 991–1008, 2018.

[27] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and J. Torrellas. In-
visiSpec: Making Speculative Execution Invisible in the Cache Hierarchy. In
International Symposium on Microarchitecture (MICRO), 2018.

https://github.com/ucb-bar/riscv-boom
https://github.com/ucb-bar/riscv-boom
https://www.anandtech.com/show/13301
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528

