
SpectreGuard: An Efficient Data-centric
Defense Mechanism against Spectre Attacks

Jacob Fustos, Farzad Farshchi, Heechul Yun

University of Kansas

1

Speculative Execution Attacks

• Attacks exploiting microarchitectural side-effects of executing
speculative (transient) instructions

• Many variants

2

No hardware support
planned in near future

Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Assume x is under the attacker’s control

• Attacker trains the branch predictor to predict the branch is in-bound

3

Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Speculative execution of the first line accesses the secret (array1[x])

1. [ACCESS]

4

Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Speculative execution of the second, secret dependent load transmits
the secret to a microarchitectural state (e.g., cache)

2. [TRANSMIT]

5

Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Attacker receives the secret by timing access latency differences
(cache hit vs. miss) among the elements in the probe array
• Flush+reload, prime+probe, …

3. [RECEIVE]

6

Existing Software Mitigation

• Manually stop speculation
• By inserting ‘lfence’ instructions [Intel, 2018]

• Or by introducing additional data dependencies [Carruth, 2018]

• Error prone, high programming complexity, performance overhead

if(x < array1_length){

_mm_lfence();

val = array1[x];

tmp = array2[val*512];

}

7

Existing Hardware Mitigation

• Hide speculative execution
• By buffering speculative results into additional “shadow” hardware structures

• High complexity, high overhead (performance, space)

InvisiSpec [Yan et al., MICRO’18] SafeSpec [Khasawneh et al., DAC’19]

8

SpectreGuard

• Data-centric software/hardware collaborative approach
• Software tells hardware what data (not code) needs protection

• Hardware selectively protects the identified data from Spectre attacks

• Key observations
• Not all data is secret

• Not all speculative loads in a vulnerable code leak secret

9

Obs. 1: Not All Data Is Secret

• Non-sensitive data
• Most program code, data

• Optimize for performance

• Sensitive (secret) data
• Cryptographic keys, passwords, …

• Optimize for security

Memory

Attacker’s controlled data

AES encryption table

Other public information

RSA private key

Bank account information

Other secret data

10

Obs. 2: Not All Speculative Loads Leak Secret

• The first load does NOT leak secret

• The second, secret dependent load leaks the secret

• Delay the secret dependent load until after the branch is resolved

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

1. [ACCESS]
2. [TRANSMIT]

11

Approach

• Step 1: Software tells OS
what data is secret

• Step 2: OS updates the page
table entries

• Step 3: Load of the secret
data is identified by MMU

• Step 4: Non-speculative
data forwarding is delayed
until safe

Hardware

MMU

Memory
System

Optimized
Forwarding

Instructions

Load

Dependent

Operating System

Binary Loader Virtual
Memory
System

Dependent

Software
Interface

Binary File

System Call

Spectre Secure
Forwarding

12

Linux Kernel Support

• Non-Speculative (NS) memory regions
• Memory regions that may contain secret

• Declared by software through a system call (mmap) or ELF header

• Updated by OS in the page table (a single bit NS flag per page)

13

User Space

ELF File

System Call
mmap()

Linux Kernel

Elf File Loader Virtual
Memory
Areas
(VMAs)

Page
Tables

Hardware

MMU

Page Fault

Non-speculative (NS) flag propagation

Gem5 Implementation

14

Evaluation Setup

• Full system simulation using Gem5 (O3CPU model) and Linux kernel (4.18)

• Comparison
• Native: unmodified baseline system
• InvisiSpec: a fully hardware solution [Yan et al., Micro’18]
• Fence: a fully software solution (insert lfence after all branches)
• SG: SpectreGuard

15

Synthetic Workloads

• (S)pectre: contains Spectre gadget; does not access the secret key

• En(C)ryption: background communication, access the secret key

16

Secret data

Results of Synthetic Workloads

• Varies percent time spent in S and C
• SG(Key) achieves native performance

• Only secret key is marked non-speculative

• SG(All) achieves comparable performance with InvisiSpec
• All memory (code, data, heap, stack) is marked non-speculative (NS)

17

Results of SPEC2006 Benchmarks

• SG(All) achieves comparable performance with InvisiSpec

• SG(Heap) achieves better performance than InvisiSpec
• Only heap is marked as non-speculative (NS) pages

• SpectreGuard enables targeted security and performance trade-offs
18

Conclusion

• Speculative execution attacks
• Affect all high-performance out-of-order processors

• Existing software mitigation suffers high programming complexity/overhead

• Hardware only mitigation is costly

• SpectreGuard
• A data-centric software/hardware collaborative defense mechanism

• Low programming effort (identifying secret data, not vulnerable code)

• Low hardware cost (no additional "shadow" structure)

• Effective, targeted defense against Spectre attacks

https://github.com/CSL-KU/SpectreGuard

19

Future Work

• FPGA implementation extending an open-source RISC-V SoC

• Additional compiler/library support to aid programmers

• Apply our data-centric approach to address other speculative
execution attacks

20

Thank You!
Disclaimer:

This research is supported by NSF CNS 1718880 and NSA Science of
Security initiative contract #H98230-18-D-0009.

21

