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Abstract—In this paper, we show that cache partitioning does
not necessarily ensure predictable cache performance in modern
COTS multicore platforms that use non-blocking caches to exploit
memory-level-parallelism (MLP).

Through carefully designed experiments using three real COTS
multicore platforms (four distinct CPU architectures) and a cycle-
accurate full system simulator, we show that special hardware
registers in non-blocking caches, known as Miss Status Holding
Registers (MSHRs), which track the status of outstanding cache-
misses, can be a significant source of contention; we observe up
to 21X WCET increase in a real COTS multicore platform due
to MSHR contention.

We propose a hardware and system software (OS) collabo-
rative approach to efficiently eliminate MSHR contention for
multicore real-time systems. Our approach includes a low-cost
hardware extension that enables dynamic control of per-core
MLP by the OS. Using the hardware extension, the OS scheduler
then globally controls each core’s MLP in such a way that
eliminates MSHR contention and maximizes overall throughput
of the system.

We implement the hardware extension in a cycle-accurate full-
system simulator and the scheduler modification in Linux 3.14
kernel. We evaluate the effectiveness of our approach using a set
of synthetic and macro benchmarks. In a case study, we achieve
up to 19% WCET reduction (average: 13%) for a set of EEMBC
benchmarks compared to a baseline cache partitioning setup.

I. INTRODUCTION

Multicore processors are increasingly used in intelligent em-
bedded real-time systems—such as unmanned aerial vehicles
(UAVs) and autonomous cars—that require high performance
and efficiency to execute compute intensive tasks (e.g., vision
based sense-and-avoid) in real-time.

Consolidating multiple tasks, potentially with different crit-
icality (a.k.a. mixed-criticality systems [36], [7]), on a sin-
gle multicore processor is, however, extremely challenging
because interference in the shared hardware resources can
significantly alter the tasks’ timing characteristics. One of
the major sources of interference is shared last-level cache
(LLC). Tasks sharing a LLC, if uncontrolled, can evict each
other’s valuable cache-lines, thereby affect their execution
times. Such co-runner dependent execution time variations are
highly undesirable for real-time systems.

Cache-partitioning, which partitions the cache space among
the cores and tasks, is a well-known solution which has been
studied extensively in the real-time systems community [27],
[37], [24], [32], [8]. Once a cache space is partitioned (spatial
isolation), most literature assumes that access timing to a
dedicated cache partition would not be affected by concurrent

accesses to different cache partitions (temporal isolation).
Unfortunately, this is not necessarily the case in non-blocking
caches [25], which are commonly used in modern multicore
processors to exploit memory-level parallelism (MLP).

In this paper, we first experimentally show that cache
partitioning does not guarantee cache access timing isolation
on COTS multicore platforms. We use a set of carefully
chosen synthetic and macro benchmarks (EEMBC [1], SD-
VBS [35]) and evaluate their worst-case execution times
(WCETs) on cache-partitioned COTS multicore systems (four
CPU architectures). We observe significant WCET increases—
up to 21X—even though the evaluated tasks run on a dedicated
core, accessing a dedicated cache partition, and almost all
of the memory accesses are cache hits. We attribute this
to contention in special hardware registers in non-blocking
caches, known as Miss Status Holding Registers (MSHRs),
which support parallel outstanding cache-misses.

We validate the problem of MSHR contention using a
cycle accurate full system simulator and investigate isolation
and throughput impacts of different MSHR configurations in
private and shared caches. We find that an insufficient number
of MSHRs in the shared LLC can be detrimental to isolation
due to the MSHR contention problem. On the other hand, we
also find that a large number of MSHRs in private L1 caches
are often under-utilized.

Based on the findings, we propose a hardware and system
software (OS) collaborative approach to efficiently eliminate
MSHR contention for multicore real-time systems. Our ap-
proach includes a low-cost hardware extension that enables
dynamic control of per-core MLP by the OS. Using the
hardware extension, the OS scheduler then globally controls
each core’s MLP in a way that eliminates MSHR contention
and maximizes overall throughput of the system.

We have implemented the hardware extension in a cycle-
accurate full-system simulator, which models a quad-core
ARM Cortex-A15 processor, and modified the scheduler of
Linux 3.14 kernel, which runs on top of the simulator. We
evaluate the effectiveness of our approach using a set of syn-
thetic and macro benchmarks. In a case study, we achieve up
to 19% WCET reduction (average: 13%) for a set of EEMBC
benchmarks compared to the baseline cache partitioning setup.

Contributions: Our contributions are as follows.
• We show that cache partitioning does not guarantee

cache access timing isolation in non-blocking caches
and identify MSHR contention as the root cause of the



phenomenon.
• We provide extensive empirical evaluation results, col-

lected on four COTS multicore architectures, showing the
MSHR contention problem. We also provide the source
code of the used synthetic benchmarks, necessary kernel
patches, and testing scripts for replication study 1.

• We propose a hardware and system software (OS) col-
laborative approach that efficiently addresses the MSHR
contention problem at a low hardware cost. To the best
of our knowledge, this is the first paper that proposes
a MSHR partitioning method to improve cache access
timing isolation.

• We implement the proposed hardware and OS mecha-
nisms in a cycle-accurate full system simulator and Linux
kernel and present empirical evaluation results with a set
of synthetic and macro benchmarks.

The rest of the paper is organized as follows. Section II
describes necessary background. Section III demonstrates the
problem of MSHR contention using real COTS multicore
platforms. Section IV further validates the MSHR contention
problem and investigates isolation and throughput impacts of
MSHRs in private and shared non-blocking caches. Section V
presents our hardware and OS collaborative technique to
eliminate MSHR contention. Section VI presents evaluation
results of the proposed technique. We discuss related work in
Section VII and conclude in Section VIII.

II. BACKGROUND

In this section, we provide necessary background on non-
blocking caches and the page-coloring technique.

A. Non-blocking caches and MSHRs

A typical modern COTS multicore architecture is composed
of multiple independent processing cores, multiple layers of
private and shared caches, and a shared memory controller(s)
and DRAM memories. To support high performance, recent
embedded processors are adopting out-of-order designs in
which each core can generate multiple outstanding memory
requests [28], [11]. Even in in-order processors where each
core can only generate one outstanding memory request at
a time, the cores collectively can generate multiple requests
to the shared memory subsystems—shared LLC and memory.
Therefore, each shared-memory subsystem must be able to
handle multiple parallel memory requests. The degree of
parallelism supported by the shared memory subsystem is
called Memory-Level Parallelism (MLP) [12].

At the cache-level, non-blocking caches are used to support
MLP. When a cache-miss occurs on a non-blocking cache, the
cache controller records the miss on a special register, called
Miss Status Holding Register (MSHR) [25], which tracks the
status of the ongoing request. The MSHR is cleared when the
corresponding memory request is serviced from the lower-level
memory hierarchy. In the meantime, the cache can continue
to serve cache (hit) access requests. Multiple MSHRs are

1https://github.com/CSL-KU/IsolBench
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Fig. 1. Physical address and cache mapping of Cortex-A15.

used to support multiple outstanding cache-misses and the
number of MSHRs determines the MLP of the cache. It is
important to note that MSHRs in the shared LLC are also
shared resources with respect to the CPU cores [16]. Moreover,
if there are no remaining MSHRs, further accesses to the
cache—both hits and misses—are blocked until free MSHRs
become available [2], because whether a cache access is hit
or miss is not known at the time of the access [33]. In other
words, cache hit requests can be delayed if all MSHRs are
used up. This situation can happen even if the cache space is
partitioned among cores, as we will show in Section III.

B. Page Coloring

In this paper, we use a page-coloring based technique [39]
to partition shared caches. In page coloring, the OS controls
the physical addresses of memory pages such that the pages
are placed in specific cache locations (sets). By allocating
memory pages over non-overlapping sets of the cache, the OS
can effectively partition the cache. In order to apply page-
coloring, the OS must understand how the cache sets are
mapped onto the physical address space. Figure 1 shows the
address mapping of a Cortex-A15 platform, which we use in
Section III. The address mapping of a cache is determined by
the size of the cache, cache-line size, and the number of ways
of the cache. Once the cache set-index bits are identified, the
OS controls the subset of the index bits, called page colors, in
allocating pages. When multiple layers of caches are used as
in the case of Cortex-A15, care must be taken to partition only
the shared LLC but not the private L1 caches. For example, in
Figure 1, only bit 14, 15, and 16 should be used to partition
only the shared L2 cache.

III. EVALUATING ISOLATION EFFECT OF CACHE
PARTITIONING ON COTS MULTICORE PLATFORMS

In this section, we present our experimental investigation
on the effectiveness of cache partitioning in providing cache
access performance isolation on COTS multicore platforms. 2

2Section III is based on our preliminary workshop paper [41] but extends
it by using new hardware platforms (Exynos 5422 for Cortex-A7 and A15;
Exynos 4412 for Cortex-A9) and by studying macro benchmarks from
EEMBC [1] and SD-VBS [35] benchmark suites.
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TABLE I
EVALUATED COTS MULTICORE PLATFORMS.

Cortex-A7 Cortex-A9 Cortex-A15 Nehalem
4 cores 4 cores 4 cores 4 cores

Core 1.4GHz 1.7GHz 2.0GHz 2.8GHz
in-order out-of-order out-of-order out-of-order

LLC 512KB,8way 1MB,8way 2MB,16way 8MB,16way
DRAM 2GB,16bank 2GB,16bank 2GB,16bank 4GB,16bank

TABLE II
LOCAL AND GLOBAL MLP

Cortex-A7 Cortex-A9 Cortex-A15 Nehalem
local MLP 1 4 6 10

global MLP 4 4 11 16

A. COTS Multicore Platforms

We use three COTS multicore platforms: Intel Xeon
W3553 (Nehalem) based desktop machine and Odroid-
XU4/U3 single-board computers (SBC). The Odroid-XU4
board equips a Samsung Exynos 5422 processor which in-
cludes both four Cortex-A15 and four Cortex-A7 cores in a
big-LITTLE [13] configuration. Thus, we use the Odroid-XU4
platform for both Cortex-A15 and Cortex-A7 experiments.
The Odroid-U3 equips a Samsung Exynos 4412 processor
which includes four Cortex-A9 cores. Table I shows the basic
characteristics the four CPU architectures we used in our
experiments. We run Linux 3.6.0 on the Intel Xeon platform,
Linux 3.10.82 on the Odroid-XU4 platform, and Linux 3.8.13
on the Odroid-U3 platform; all kernels are patched with
PALLOC [39] to partition the shared LLC at runtime.

B. Memory-level Parallelism

We first identify memory-level parallelism (MLP) of the
four multicore architectures using an experimental method de-
scribed in [10]. More detailed explanation of the methodology
and the experimental results obtained in our tested platforms
can be found in Appendix A.

Table II shows the identified MLP of each platform. In the
table, how many outstanding misses one core can generate
at a time is referred as local MLP, while the parallelism
of the entire shared memory hierarchy (i.e., shared LLC
and DRAM) is referred as global MLP. First, note that all
architectures, including in-order based Cortex-A7, support
significant parallelism in the shared memory hierarchy (global
MLP)3. The results show that non-blocking caches are used in
COTS multicore processors. In case of the Cortex-A7, its local
MLP is one because it is in-order architecture based and only
one outstanding request can be made at a time. On the other
hand, the other three architectures are out-of-order based and
therefore can generate multiple outstanding requests. Note that
the aggregated parallelism of the cores (the sum of local MLP)
exceeds the parallelism supported by the shared LLC and
DRAM (global MLP) in the out-of-order architectures. As we
will demonstrate in the next subsection, this can cause serious

3The global MLP of our Nehalem platform is determined by DRAM, while
it is determined by LLC in the other platforms. See Appendix A for details.

TABLE III
WORKLOADS FOR CACHE-INTERFERENCE EXPERIMENTS.

Experiment Subject Co-runner(s)
Exp. 1 Latency(LLC) BwRead(DRAM)
Exp. 2 BwRead(LLC) BwRead(DRAM)
Exp. 3 BwRead(LLC) BwRead(LLC)
Exp. 4 Latency(LLC) BwWrite(DRAM)
Exp. 5 BwRead(LLC) BwWrite(DRAM)
Exp. 6 BwRead(LLC) BwWrite(LLC)

additional interference that is not handled by the existing cache
partitioning techniques.

C. Understanding Interference in Non-blocking Caches

While most previous research on shared cache has focused
on unwanted cache-line evictions that can be solved by cache
partitioning, little attention has been paid to the problem of
shared MSHRs in non-blocking caches. As we will see later
in this section, cache partitioning does not necessarily provide
cache access timing isolation even when the application’s
working-set fits entirely in a dedicated cache partition, due
to contention in the shared MSHRs.

1) Methodology and Synthetic Workloads: To find out
worst-case interference, we use various combinations of two
micro-benchmarks, Latency and Bandwidth, which we call
the IsolBench suite. Latency is a pointer chasing synthetic
benchmark, which accesses a randomly shuffled single linked
list. Due to data dependency, Latency can only generate one
outstanding request at a time. Bandwidth is another synthetic
benchmark, which sequentially reads or writes a big array;
we henceforth refer BwRead as Bandwidth with read accesses
and BwWrite as the one with write accesses. Unlike Latency,
Bandwidth can generate multiple parallel memory requests on
an out-of-order core as it has no data dependency.

Table III shows the workload combinations we used.
Note that the texts with parentheses—(LLC) and (DRAM)—
indicate working-set sizes of the respective benchmark. In case
of (LLC), the working size is configured to be smaller than
1/4 of the shared LLC size, but bigger than the size of the last
core-private cache. 4 As such, in case of (LLC), all memory
accesses are LLC hits. In case of (DRAM), the working-set
size is the twice the size of the LLC so that all memory
accesses result in LLC misses.

In all experiments, we first run the subject task on Core0
and collect its solo execution time. We then co-schedule an
increasing number of co-runners on the other cores (Core1-3)
and measure the response times of the subject task. Note that in
all cases, we evenly partition the shared LLC among the four
cores (i.e., each core gets 1/4 of the LLC space) and each task
is assigned to a dedicated core and a dedicated cache partition.
Note also that the working-set of each subject benchmark is
accessed multiple times to warm-up the cache.

2) Exp. 1: Latency(LLC) vs. BwRead(DRAM): In the first
experiment, we use the Latency benchmark as a subject and

4The last core-private cache is L1 for ARM Cortex-A7, A9, and A15 while
it is L2 for Intel Nehalem.

3



 0

 2

 4

 6

 8

 10

Cortex-A7 Cortex-A9 Cortex-A15 Nehalem

N
o
rm

a
liz

e
d

 E
xe

cu
ti

o
n

 T
im

e
solo

+1 co-runner
+2 co-runners
+3 co-runners

(a) Exp.1: Latency(LLC) vs. BwRead(DRAM)
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(b) Exp.2: BwRead(LLC) vs. BwRead(DRAM)
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(c) Exp.3: BwRead(LLC) vs. BwRead(LLC)
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(d) Exp.4: Latency(LLC) vs. BwWrite(DRAM)
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(e) Exp.5: BwRead(LLC) vs. BwWrite(DRAM)
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Fig. 2. Normalized execution times of the subject tasks, co-scheduled with co-runners on cache partitioned quad-core systems. Each task (both subject and
co-runners) runs on a dedicated core and a dedicated cache partition.
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Fig. 3. MSHR contention effects on WCETs of EEMBC and SD-VBS benchmarks.

the BwRead benchmark as co-runners. Recall that BwRead has
no data dependency and therefore can generate multiple out-
standing memory requests on an out-of-order processing core
(i.e., ARM Cortex-A9, A15 and Intel Nehalem). Figure 2(a)
shows the results. For Cortex-A7 and Intel Nehalem, Cache-
partitioning is shown to be effective in providing timing iso-
lation. For Cortex-A15 and A9, however, the response time is
still increased by up to 3.7X and 2.0X, respectively. This is an
unexpectedly high degree of interference considering the fact
that the cache-lines of the subject benchmark, Latency, are not
evicted by the co-runners as a result of cache partitioning; in
other words, the cache-hit accesses of the Latency benchmark
are being delayed by co-runners.

3) Exp. 2: BwRead(LLC) vs. BwRead(DRAM): To further
investigate this phenomenon, the next experiment uses the
BwRead benchmark for both the subject task and the co-
runners. Therefore, both the subject and co-runners now
generate multiple outstanding memory requests to the shared
memory subsystem in out-of-order architectures. Figure 2(b)
shows the results. While cache partitioning is still effective
for Cortex-A7, the same is not true for the other platforms:

Cortex-A9, A15, and Nehalem now suffer up to 2.1X, 10.6X,
and 7.9X slowdowns, respectively. The results suggest that
cache-partitioning does not necessarily provide expected per-
formance isolation benefits in out-of-order architectures. We
initially suspected the cause of this phenomenon is likely
the bandwidth contention at the shared cache, similar to
the DRAM bandwidth contention [39]. The next experiment,
however, shows it is not the case.

4) Exp. 3: BwRead(LLC) vs. BwRead(LLC): In this ex-
periment, we again use the BwRead benchmark for both the
subject and the co-runners but we reduce the working-set size
of the co-runners to (LLC) so that they all can fit in the
LLC. If the LLC bandwidth contention is the problem, this
experiment would cause even more slowdowns to the subject
benchmark as the co-runners now need more LLC bandwidth.
Figure 2(c), however, does not support this hypothesis. On the
contrary, the observed slowdowns in all out-of-order cores are
much less, compared to the previous experiment in which co-
runners’ memory accesses are cache misses and therefore use
less cache bandwidth.
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TABLE IV
BENCHMARK CHARACTERISTICS

Benchmark L1-MPKI L2-MPKI Description
EEMBC Automotive, Consumer [1]

aifftr01 3.64 0.00 FFT (automotive)
aiifft01 3.99 0.00 Inverse FFT (automotive)

cacheb01 2.14 0.00 Cache buster (automotive)
rgbhpg01 1.59 0.00 Image filter (consumer)
rgbyiq01 3.81 0.01 Image filter (consumer)
SD-VBS: San Diego Vision Benchmark Suite [35]. (input: sqcif)
disparity 56.92 0.13 Disparity map

mser 16.12 0.57 Maximally stable regions
svm 7.81 0.01 Support vector machines

5) Exp. 4,5,6: Impact of write accesses: In the next three
experiments, we repeat the previous three experiments except
that now we use BwWrite benchmark as co-runners. Note
that BwWrite updates a large array and therefore generates
a line-fill (read) and a write-back (write) for each memory
access. Figure 2(d), 2(e), and 2(f) show the results. Compared
to BwRead, using BwWrite generally results in even worse
interference to the subject tasks.

MSHR contention: To understand this phenomenon, we
first need to understand how non-blocking caches processes
cache accesses from the cores. As described in Section II,
MSHRs are used to allow multiple outstanding cache-misses.
If all MSHRs are in use, however, the cores can no longer
access the cache until a free MSHR becomes available. Be-
cause servicing memory requests from DRAM takes much
longer than doing it from the LLC, cache-miss requests occupy
MSHR entries longer. This causes a shortage of MSHRs,
which will in turn block additional memory requests even
when they are cache hits. The subject tasks generally suffer
even more slowdowns when running write heavy co-runners
(e.g., BwWrite) because the additional write-back traffics
delay the processing of line-fills, which in turn exacerbate the
shortage of MSHRs.

D. Impact to Real-Time Applications

So far, we have shown the impact of MSHR contention
using a set of synthetic benchmarks. The next question is
how significant the MSHR contention problem is to worst-case
execution times (WCETs) of real-world real-time applications.

To find out, we use a set of benchmarks from EEMBC [1]
and SD-VBS [35] benchmark suites as real-time workloads.
To focus on contention at the shared cache-level, we carefully
chose the benchmarks with the following two characteristics:
1) high L1 miss rates and 2) low LLC miss rates. The first is
to filter out those benchmarks which can fit entirely in private
L1 cache and the second is to filter out those that heavily
depend on DRAM performance. Table IV shows the Miss-Per-
Kilo-Instructions (MPKI) characteristics of the benchmarks
on a Cortex-A15 setting (32KB L1-I/D, 512KB L2 cache
partition 5).

5We used the gem5 cycle-accurate simulator, described in Section IV, to
analyze the MPKI characteristics of the benchmarks

TABLE V
BASELINE SIMULATOR CONFIGURATION

Core Quad-core, out-of-order, 1.6GHz
ROB: 40, IQ: 32, LSQ: 16/16 entries

L1-I/D caches private 32/32 KiB (2-way)
L2 cache shared 2 MiB (16-way), no h/w prefetcher

DRAM controller 64/64 read/write buffers,
FR-FCFS [15], open-adaptive page policy

DRAM module LPDDR2@533MHz, 1 rank, 8banks

We measured their execution times first alone in isolation
and then with multiple instances of the BwWrite(DRAM),
which has shown to cause highest delays in the previous
synthetic experiments. In all experiments, the LLC is evenly
partitioned on a per-core basis and the benchmarks are sched-
uled using the SCHED_FIFO real-time scheduler in Linux to
minimize OS interference.

Figure 3 shows the results.6 As expected, Cortex-A7 shows
good isolation while Cortex-A9 and A15 show significant
execution time increases in many of the benchmarks, even
though they all access their own private cache partitions,
due to MSHR contention. In Cortex-A9, we observe up to
2.08X (108%) WCET increase for the disparity benchmark;
in Cortex-A15, we observe up to 5.0X WCET increase for the
same benchmark. While the overall trend is similar for both
EEMBC and SD-VBS benchmarks, the latter tend to suffer
substantially higher delays than the former benchmarks. This
is because the SD-VBS benchmarks access the shared LLC
much more frequently (i.e., higher L1 MPKI rates) than the
EEMBC benchmarks and, therefore, suffer more from LLC
lock-ups due to MSHR contention.

In summary, while cache space competition is certainly an
important source of interference, eliminating it, via cache-
partitioning, does not necessarily provide expected isolation in
modern COTS multicore platforms due to MSHR contention.

IV. UNDERSTANDING ISOLATION AND THROUGHPUT
IMPACTS OF CACHE MSHRS

In this section, we study isolation and throughput impacts of
MSHRs in non-blocking caches, by exploring different MSHR
configurations using a cycle accurate full system simulator.

A. Isolation Impact of MSHRs in Shared LLC

In this experiment, we study how the number of MSHRs
at the shared LLC affects to the MSHR contention problem
of a multicore system. For the study, we use the Gem5
simulator [5] and configure the simulator to approximately
model a Cortex-A15 quad-core system, which has been shown
to suffer the highest degree of MSHR contention in our real
platform experiments. The baseline simulation parameters are

6We exclude Nehalem because it has additional private L2 cache (256KB)
that absorbs most of L1 cache misses; as a result, its shared LLC (L3) is
rarely accessed when running the benchmarks and therefore we observe no
significant WCET increases in Nehalem.
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Fig. 4. Effects of MSHR configurations on WCETs of IsolBench
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Fig. 5. Effects of MSHR configurations on WCETs of EEMBC and SD-VBS benchmarks
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Fig. 6. Performance impact of MSHRs in private L1 cache.

shown in Table V 7. On the simulator, we run a full Linux
3.14 kernel, patched with PALLOC [39] to partition the LLC,
as we have done in the real platform experiments.

Using the simulator, we evaluate three different MSHR
configurations: MSHR(6/8), MSHR(6/12), and MSHR(6/24).
The numbers in a parenthesis represents L1 (data) and L2
MSHRs, respectively. At MSHR(6/8), for example, each core’s
private L1 cache has 6 MSHRs (i.e., up to 6 outstanding
misses per core) and the shared L2 cache has 8 MSHRs

7The CPU parameters are largely based on gem5’s default ARM configu-
ration, which is, according to [14], similar to Cortex-A15. However, because
not all details of Cortex-A15 are publicly available by ARM, some of the
parameters could be different from a real one. For example, the reorder buffer
(ROB) size of Cortex-A15 is referred as 128 in [30], 60 in [6], and 40 in the
default arm configuration of gem5. We do not know which is the correct ROB
value. However, we would like to stress that our main focus is not in accurate
modeling of a Cortex-A15 platform but in understanding relative impacts of
MSHRs in out-of-order cores.

(up to 8 outstanding misses of all cores). For each MSHR
configuration, we repeat the cache interference experiments
described in Section III. Again, as in the previous real platform
experiments, the LLC is evenly partitioned among the four
cores and all tasks (both the subject and co-runners) are given
their own private cache partitions. In other words, observed
delays, if any, are not caused by cache space evictions.

Figure 4 shows the results of the six IsolBench workloads
(Table III). As expected, when the number of L2 MSHRs
is not big enough to support parallelism of the cores, the
subject tasks suffer significant delays due to cache (shared
L2) lock-ups caused by MSHR contention. At MSHR(6/8),
we observe up to 14.4X slowdown, which is driven by a
sharp increase in the number of blocked cycles of the L2
cache. As we increase the L2 MSHRs, however, the delays
decrease. At MSHR(6/24), in all but Exp.3 and Exp.6, the
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subject tasks achieve near perfect isolation as increased L2
MSHRs eliminates MSHR contention. In cases of the Exp.3
and Exp.6, eliminating MSHR contention does not result in
ideal isolation because the main source of the delays is limited
cache bandwidth, not MSHR contention. Note that in the two
experiments, almost all memory accesses of both subject and
co-runners are L2 cache hits, which do not allocate MSHRs.

Figure 5 shows the results of EEMBC and SD-VBS bench-
marks. The results are in tandem with the IsolBench results.
At MSHR(6/8), the subject task suffers contention—up to
1.43X slowdown for EEMBC cacheb01 and 4.3X slowdown
for SD-VBS disparity. At MSHR(6/24), interference is almost
completely eliminated for most benchmarks. Notable excep-
tions are disparity and mser from the SD-VBS benchmark
suite. For the two benchmarks, while isolation performance
is significantly improved, they still suffer considerable delays.
This can be explained as a result of their relatively high DRAM
access rates (see L2 MPKI values at Table IV). Because the
co-runners—BwWrite(DRAM) instances—are highly memory
(DRAM) intensive, they cause severe contention at the DRAM
controller queues, which in turn delays memory requests from
the subject benchmarks; we observe a large increase in the
average queue length and the average memory access latency
in the memory controller statistics of the simulator. (COTS
DRAM controller-level contention is an important orthogonal
problem, which has been actively studied in recent years [23],
[40], [21], [22].)

The results validate that MSHRs in a shared LLC can
be a significant source of contention, which causes frequent
cache lockups even when the cache is spatially partitioned.
The results also show that eliminating MSHR contention,
by increasing the number of MSHRs in the shared LLC,
significantly improves isolation performance.

B. Throughput Impact of MSHRs in Private L1 Cache

Increasing the number of MSHRs in the shared LLC is,
however, not always desirable because supporting many highly
associative MSHRs can be challenging due to increased area
and logic complexity [33]. Furthermore, it becomes even more
difficult as the number of cores increases and each core
supports more memory-level parallelism (higher local MLP).

Another simple solution to eliminate MSHR contention is
reducing the number of MSHRs in the private L1 caches
(reduction of local MLP), instead of increasing the number of
LLC MSHRs. However, an obvious downside of this approach
is that it could affect the core’s single-thread performance. The
question is, then, how important is the core-level memory-level
parallelism (local MLP) to application performance?

In the following experiments, we evaluate the single-thread
performance impact of the number of L1 MSHRs using a
set of benchmarks from EEMBC, SD-VBS, and SPEC2006
benchmark suites. The benchmarks from EEMBC and SD-
VBS are the same as the ones used in previous experiments:
cache intensive (high L1 MPKI) but not DRAM intensive
(low L2 MPKI). On the other hand, we also choose highly
memory (DRAM) intensive SPEC2006 benchmarks for better

comparison. On the simulator, we vary the number of L1
MSHRs from 1 to 6, while fixing the number of L2 MSHRs
at 12. Note that one L1 MSHR means that the cache will
block on each miss and therefore is equivalent of a blocking
cache. For each L1 MSHR configuration, we measure each
benchmark’s Cycles-Per-Instructions (CPI).

Figure 6(a) shows the results of EEMBC and SD-VBS
benchmarks, normalized to one L1 MSHR configuration. For
EEMBC benchmarks, performance does not improve much as
the number of L1 MSHRs increases. For example, we observe
only 4% improvement for cacheb01 with 2 MSHRs and
additional MSHRs do not make any difference in performance.
For SD-VBS vision benchmarks, performance improvement
is more significant. In particular, disparity shows up to 26%
improvement with 6 MSHRs, although the difference between
6MSHRs and 2MSHRs is relatively small. These results can
be explained as follows: The working sets of the EEMBC
and SD-VBS benchmarks fit in the L2 cache and therefore
most L1 misses result in L2 cache hits. Because L2 cache is
relatively fast, compared to DRAM, the L1 MSHRs quickly
become available as soon as the L2 cache returns the data. As
a result, only a small number of MSHRs can deliver most of
the performance benefits of out-of-order cores.

On the other hand, Figure 6(b) and 6(c) show the results of
SPEC2006 and BwWrite benchmarks. The two figures differ
in that in Figure 6(c), we significantly increased the sizes of
Instruction Queue (IQ), Reorder buffer (ROB), and Load/Store
Queue (LSQ) to simulate more aggressive out-of-order cores.
In general, memory intensive benchmarks greatly benefit from
the increase of L1 MSHRs as it reduces memory related stalls.
And the performance improvements are even greater on more
aggressive out-of-order cores. For example, with 6 MSHRs,
BwWrite, lbm, libquantum, and omnetpp, achieve more than
50% performance improvements on the aggressive out-of-
order core setting.

These results show that throughput impact of the number
of MSHRs at core-private L1 caches is highly application
dependent. This observation motivates us to propose a solution
to eliminate MSHR contention problem without increasing
MSHRs as we will describe in the next section.

V. OS CONTROLLED MSHR PARTITIONING

In this section, we propose a hardware and system software
(OS) collaborative approach to efficiently eliminate MSHR
contention for real-time systems.

A. Assumptions

We consider a multicore system with m identical cores. The
cores are out-of-order architecture based and each core equips
a non-blocking private L1 data cache with NL1

mshr MSHRs
(i.e., local MLP of NL1

mshr). Also, there is a non-blocking
shared LLC (L2) with NLLC

mshr MSHRs (i.e., global MLP of
NLLC

mshr). We assume the sum of the local MLP is bigger than
the MLP of the shared cache—m×NL1

mshr > NLLC
mshr—as we

experimentally observed in the real COTS multicore platforms
shown in Section III-B. This means that the shared LLC can
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Fig. 7. Proposed MSHR Architecture

suffer from MSHR contention when its MSHRs are exhausted.
We assume the task system is composed of a mix of critical
real-time tasks and best-effort tasks. We assume that the tasks
are partitioned on a per-core basis and each core uses a two-
level hierarchical scheduling framework that first schedules
the real-time tasks with a fixed priority scheduler and then
schedule the best-effort tasks with a fairness focused general
purpose scheduler (e.g., CFS in Linux). Note that any core
may execute both real-time tasks and best-effort tasks. In other
words, there are no designated “real-time cores.”

B. MSHR Partitioning Hardware Mechanism

In order to eliminate MSHR contention, we propose to
dynamically control the number of usable MSHRs in the
private L1 caches. We achieve this via a low cost extension
to the L1 caches. Figure 7 shows the proposed extension. We
add two hardware counters TargetCount and V alidCount
for each L1 cache controller. The V alidCount tracks the
number of total valid MSHR entries (i.e., entries with out-
standing memory requests) of the cache and is updated by the
hardware. The TargetCount defines the maximum number
of MSHRs that can be used by the core and is set by the
system software (OS). If V alidCounti >= TargetCounti,
the cache immediately locks up. System software can update
TargetCount registers by executing privileged instructions
(e.g., wrmsr instructions in Intel [17]). By controlling the
value of TargetCount, the OS can effectively control the
core’s local MLP. The added area and logic complexity is
minimal as we only need two additional counter registers and
one comparator logic.

To eliminate MSHR contention, the OS employs a parti-
tioning scheme that limits the sum of TargetCount values of
all L1 caches be equal or less than the number of MSHRs of
the (shared) LLC, while also respecting the maximum number
of MSHRs of each private L1 cache. In other words, the OS
would satisfy the following inequalities.

m∑
i=1

TargetCounti ≤ NLLC
mshr, (1)

1 ≤ TargetCounti ≤ NL1
mshr (2)

For example, in a quad-core system in which the LLC has
12 MSHRs and each core’s L1 cache has 6 MSHRs, the OS
may set TargetCount value of all L1 caches as 3 (half of the
physically allowed number 6) to eliminate MSHR contention.

1 void p r e p a r e t a s k s w i t c h ( prev , n e x t )
2 {
3 / / myid = l o c a l cpu i n d e x
4 myid = s m p p r o c e s s o r i d ( ) ;
5 i f ( nex t−>m s h r r e s e r v e > 0) {
6 / / e n a b l e / up da t e MSHR p a r t i t i o n i n g
7 R = next−>m s h r r e s e r v e ;
8 m s h r p a r t [ myid ] = R ;
9 TargetCountmyid = R ;

10
11 m rt = 0 ;
12 mshr remain = NLLC

mshr ;
13 f o r ( i = 0 . . . m− 1 ) {
14 i f ( m s h r p a r t [ i ] > 0) {
15 m rt ++;
16 mshr remain −= m s h r p a r t [ i ] ;
17 }
18 }
19 Rnrt = mshr remain / (m − m rt ) ;
20 f o r ( i = 0 . . . m− 1 ) {
21 i f ( m s h r p a r t [ i ] == 0) {
22 TargetCounti = Rnrt ;
23 }
24 }
25 } e l s e i f ( prev−>m s h r r e s e r v e > 0) {
26 m s h r p a r t [ myid ] = 0 ;
27 f o r ( i = 0 . . . m− 1 ) {
28 i f ( m s h r p a r t [ i ] > 0)
29 re turn ;
30 }
31 / / d i s a b l e MSHR p a r t i t i o n i n g
32 f o r ( i = 0 . . . m− 1 ) {
33 TargetCounti = NL1

mshr ;
34 }
35 }
36 }

Fig. 8. MSHR reservation algorithm in the CPU scheduler.

However, care must be taken to minimize potential through-
put reduction because some workloads may be greatly affected
by the reduction of parallelism offered by the L1 cache.
For example, according to our experiments in Section IV-B,
assigning TargetCount = 1 to a core that executes the lbm
SPEC2006 benchmark would cause more than 40% perfor-
mance reduction.

C. OS Scheduler Design

We enhance the OS scheduler to efficiently utilize MSHRs
while eliminating the MSHR contention. First, the OS provides
a system call that allows users to reserve a certain number of
MSHRs of the shared LLC on a per-task basis. We assume
that all critical real-time tasks reserve MSHRs while best-effort
tasks do not. The MSHR reservation information of each (real-
time) task is kept in the OS (e.g., task_struct in Linux)
and used by the scheduler when the task is being scheduled.
We limit the maximum number of reservable MSHRs to
NLLC

mshr/m to guarantee reservation. This is needed because,
in our model, all m cores may execute m real-time tasks, all
of which request MSHR reservation, at the same time. MSHR
reservation of each real-time task is enforced globally by the
OS scheduler by updating the TargetCount registers of all
cores to satisfy the Eqs. 1 and 2, which effectively partition
LLC MSHRs among the cores.
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To minimize unnecessary throughput impact to best-effort
tasks, we apply MSHR partitioning only when at least one
core is executing a real-time task with MSHR reservation.
We instrument the OS scheduler to start and stop MSHR
reservation, if needed, at the time of a task switching.

Figure 8 shows the algorithm. The algorithm works on each
context switching—from prev task to next task—on any core
in the system. On a context switch, if the next scheduled
task requires MSHR reservation of (Line 5-25), it configures
the TargetCount register of the corresponding core (Line
9). Note that R denotes the number of reserved MSHRs. It
then determines the number of available MSHRs (excluding
reserved MSHRs), which is then evenly distributed to the cores
that execute best-effort tasks (Line 20-25). On the other hand,
if no currently running tasks wish to reserve MSHRs, the
scheduler resets the TargetCount registers of all cores to
the maximum (Line 33-35).

VI. EVALUATION

In this section, we evaluate isolation and throughput impacts
of the proposed approach though a case study.

A. Setup

We use the same experiment setup as explained in
section IV—a Quad-core Cortex-A15 platform model on
the Gem5 simulator having 6 per-core L1 MSHRs and
12 L2 MSHRs—as the baseline hardware platform. On
the simulator, we implement the proposed hardware exten-
sion by modifying its cache subsystem. We modify the
Linux kernel’s scheduler (prepare_task_switch() at
kernel/sched/core.c) to communicate with the simu-
lator to adjust the number of MSHRs.

In the following, we compare two system configurations:
(1) ’cache part’ and (2) ’cache+mshr part’. In cache part,
we apply only cache partitioning. In cache+mshr part, on
the other hand, we use the proposed OS controlled MSHR
partitioning approach in addition to the cache partitioning. In
this configuration, when a real-time task is released, the OS
reserves 2 MSHRs for the task and the rest of the non-reserved
MSHRs are equally shared by the best-effort tasks.

B. Case Study: A Mixed Criticality System

In this experiment, we model a mixed-criticality task system
using four instances of EEMBC benchmarks—aifftr01, ai-
ifft01, cacheb01 and, rgbhpg01 8—as real-time tasks and four
instances BwWrite(DRAM) as best-effort tasks, such that both
real-time and best-effort tasks are co-scheduled on a single
multicore system. We modified the EEMBC benchmarks to
run periodically.

The experiment procedure is as follows. We start four
BwWrite benchmark instances on Core0, Core1, Core2 and
Core3, respectively. While these Bandwidth instances are run-
ning in the background, we start the four EEMBC benchmarks,
one per core, so that each core runs one real-time task and

8We choose the benchmarks with (near) zero L2-MPKI values to avoid
DRAM controller level contention.
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Fig. 9. WCETs of real-time tasks (EEMBC), co-scheduled with best-effort
tasks.

one best-effort task. As the LLC cache is partitioned on a per-
core basis, the two tasks (one real-time and one best-effort)
on each core use a same cache partition in this experiment.
Our focus in this experiment is inter-core interference, not
intra-core interference. Note that the EEMBC benchmarks
are scheduled using the SCHED_FIFO real-time scheduler
in Linux, and therefore they are always prioritized over the
BwWrite instances. The EEMBC benchmarks have different
periods—20ms, 30ms, 40ms, and 60ms for Core0, 1, 2, and
3 respectively—but their computation times are configured to
be approximately 8 milliseconds. Each EEMBC benchmark
runs to completion and then sleeps until the next period starts.
During this time the core is yielded to the best-effort task
(i.e., BwWrite). The experiment is performed for the duration
of 120ms (two hyper-periods of the real-time tasks).

Figure 9 shows observed WCETs of the real-time tasks,
normalized to their run-alone execution times on the baseline
system configuration. In cache part., the real-time tasks suffer
significant WCET increases—up to 20% for cacheb01—even
though they always execute on their own dedicated cores,
accessing dedicated cache partitions, due to MSHR contention.
In cache+mshr part., on the other hand, the real-time tasks
suffer almost no WCET increases because MSHR contention
is eliminated by the proposed MSHR partitioning scheme. In
terms of throughput of the best-effort tasks (BwWrite), we
observe 3% throughput reduction in cache+mshr part as they
are given fewer MSHRs. We believe it is an acceptable trade-
off for real-time systems.

VII. RELATED WORK

Cache space sharing is a well-known source of timing
unpredictability in multicore platforms [4]. Various hardware
and software cache partitioning methods have been studied to
improve cache access timing predictability. Way-based cache
partitioning [31] is the most well-known hardware based
approach, which partitions the cache space at the granularity of
cache ways. Some embedded processors and a few recent Intel
Xeon processors support way-based cache partitioning [11],
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[18]. However, not all COTS multicore processors support
such hardware mechanisms.

Page-coloring is a software-based cache partitioning tech-
nique that does not require any special hardware support other
than the standard memory management unit (MMU). There-
fore, it is more readily applicable to most COTS multicore
platforms and has been studied extensively in the real-time
systems community [24], [27], [37], [38]. As discussed in
II-B, in page coloring, the OS carefully controls the physical
addresses of memory pages so that they can be allocated in
specific sets of the cache. By allocating memory pages over
non-overlapping sets of the cache, the OS can effectively
partition the cache. In recent years, page-coloring has also
been applied to partition DRAM banks [26], [32], [39] and
TLB [29]. In this paper, we also use a page-coloring based
technique to partition the shared cache.

Cache locking is another technique to improve cache access
timing predictability, which has been explored in [27] in
combination with page coloring. In MC2 project [8], both
hardware-based way-partitioning and page-coloring are used
to gain more flexibility in partitioning the cache.

While all the aforementioned techniques are effective in
eliminating cache space contention problem, they however do
not address the problem of MSHR contention.

In the context of general purpose computing systems,
hardware based adaptive management of MSHRs has been
studied in [9], [19], [20] to improve throughput and fairness.
They use sophisticated hardware mechanisms to periodically
estimate the slowdown ratios of the cores and adaptively
control the number of MSHRs to reduce memory pressure
of the cores that cause high interference. While they are
similar to our work in the sense they also control the number
of MSHRs, they do so dynamically via complex hardware
implementations (no OS involement) and do not guarantee the
absence of MSHR contention. In contrast, we provide a simple
hardware mechanism that enables software (OS) based control
of MSHRs to guarantee the absence of MSHR contention.

VIII. CONCLUSION

We have shown that cache partitioning does not guarantee
predictable cache access timing in COTS multicore plat-
forms that use non-blocking caches to exploit memory-level-
parallelism (MLP). Through extensive experimentation on real
and simulated multicore platforms, we have identified that
special hardware registers in non-blocking caches, known as
Miss Status Holding Registers (MSHRs), can be a significant
source of contention. We have proposed a hardware and system
software (OS) collaborative approach to efficiently eliminate
MSHR contention for multicore real-time systems. Our eval-
uation results show that the proposed approach significantly
improves the cache access timing isolation without noticeable
throughput impact.

As future work, we plan to integrate the proposed OS
controlled MSHR management technique with a DRAM man-
agement technique [34] to further improve isolation of high-
performance multicore real-time systems.
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APPENDIX

A. Memory-level Parallelism (MLP) Identification

We use a pointer-chasing micro-benchmark shown in Fig-
ure 10 to identify memory-level parallelism. The benchmark
traverses a number of linked-lists. Each linked-list is randomly
shuffled over a memory chunk of twice the size of the LLC.
Hence, accessing each entry is likely to cause a cache-miss.
Due to data-dependency, only one cache-miss can be generated
for each linked list. In an out-of-order core, multiple lists
can be accessed at a time, as it can tolerate up to a certain
number of outstanding cache-misses. Therefore, by controlling
the number of lists and measuring the performance of the

1 s t a t i c i n t ∗ l i s t [MAX MLP] ;
2 s t a t i c i n t n e x t [MAX MLP] ;
3
4 long run ( long i t e r , i n t mlp )
5 {
6 long c n t = 0 ;
7 f o r ( long i = 0 ; i < i t e r ; i ++) {
8 sw i t ch ( mlp ) {
9 case MAX MLP:

10 .
11 .
12 case 2 :
13 n e x t [ 1 ] = l i s t [ 1 ] [ n e x t [ 1 ] ] ;
14 /∗ f a l l−t h r o u g h ∗ /
15 case 1 :
16 n e x t [ 0 ] = l i s t [ 0 ] [ n e x t [ 0 ] ] ;
17 }
18 c n t += mlp ;
19 }
20 re turn c n t ;
21 }

Fig. 10. MLP micro-benchmark. Adopted from [10].

benchmark, we can determine how many outstanding misses
one core can generate at a time, which we call local MLP.
We also vary the number of benchmark instances from one to
four and measure the aggregate bandwidth to investigate the
parallelism of the entire shared memory hierarchy, which we
call global MLP.

Figure 11 shows the results. Let us first focus on a single
instance results. For Cortex-A7, increasing the number of lists
(X-axis) does not have any performance improvement. This
is because Cortex-A7 is in-order architecture in which only
one outstanding request can be made at a time. For Cortex-
A9, Cortex-A15, and Nehalem, all out-of-order architecture
based, performance improves as the number of lists increases
until 4, 6, and 10 lists, respectively, suggesting their local
MLP. As we increase the number of benchmark instances, the
point of saturation becomes shorter in the out-of-order cores.
When four instances are used in Cortex-A15, the aggregate
bandwidth saturates at three lists. This suggests that the global
MLP of Cortex-A15 is close to 12; according to [3], the LLC
can support up to 11 outstanding cache-misses (global MLP
of 11). Note that the global MLP can be limited by either of
the two factors: the size of MSHRs in the shared LLC or the
number of DRAM banks 9. In the case of Cortex-A15, the limit
is likely determined by the number of MSHRs of the LLC (11),
because the number of banks is bigger than that (16 banks). In
case of Nehalem, on the other hand, the performance saturates
when the global MLP is about 16, which is likely determined
by the number of banks, rather than the number of LLC
MSHRs; according to [16], the Nehalem architecture supports
up to 32 outstanding cache-misses. In other words, the MLP
of its shared LLC is 32, while the MLP of the DRAM is
16. Lastly, in case of Cortex-A9, both local and global MLP
appear to be 4. Cortex-A9 was released much earlier (2007)

9The number of DRAM banks determines DRAM-level parallelism, as
banks can be accessed in parallel.
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Fig. 11. Aggregate memory bandwidth as a function of MLP (the number of lists) per benchmark.

than Cortex-A7 (2011) and its cache-line size is also smaller
(32B/line) than the others (64B/line). We suspect these are the
reasons of its relatively low memory performance.

In summary, caches are non-blocking in modern multicore
processors. In in-order processors, while each individual core
may block at each cache-miss at its private L1 cache, the
shared LLC still allows non-blocking accesses to improve
performance. In out-of-order processors, both private and
shared caches support significant amount of parallelism to
minimize blocking of the cores.
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