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High-Performance Multicores
for Real-Time Systems
e Why?

— Intelligence = more performance

— Space, weight, power (SWaP), cost




Time Predictability Challenge

Task 1 Task 2 Task 3

> o > o

Task 4

Cored

Shared Cache

Memory Controller (MC)

DRAM

 Shared hardware resource contention can cause

significant interference delays

e Shared cache is a major shared resource

— KU
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Cache Partitioning

 Can be done in either software or hardware
— Software: page coloring
— Hardware: way partitioning

e Eliminate unwanted cache-line evictions

 Common assumption

— cache partitioning = performance isolation
* If working-set fits in the cache partition

* Not necessarily true on out-of-order cores using
non-blocking caches

— KU
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Outline

* Evaluate the isolation effect of cache partitioning

— On four real COTS multicore architectures

— Observed up to 21X slowdown of a task running on a
dedicated core accessing a dedicated cache partition

* Understand the source of contention
— Using a cycle-accurate full system simulator

* Propose an OS/architecture collaborative solution

— For better cache performance isolation
— KU
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Memory-Level Parallelism (MLP)

* Broadly defined as the number of concurrent
memory requests that a given architecture
can handle at a time
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Non-blocking Cache!")

stall only when
result is needed

Ti Tl

| Miss penalty |

cpu Multiple outstanding misses

| Miss penalty |

* Can serve cache hits under multiple cache misses
— Essential for an out-of-order core and any multicore

* Miss-Status-Holding Registers (MSHRs)
— On a miss, allocate a MSHR entry to track the req.

— On receiving the data, clear the MSHR entry
— KU
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Non-blocking Cache

» #fof cache MSHRs > memory-level parallelism
(MLP) of the cache

* What happens if all MSHRs are occupied?

— The cache is locked up

— Subsequent accesses---including cache hits---to
the cache stall

— We will see the impact of this in later experiments
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COTS Multicore Platforms
T ContocA7 | cortexAs_ | CortecAls | Nehalem

Core 4core @ 4core @ 4core @ 4core @
1.4GHz 1.7GHz 2.0GHz 2.8GHz
In-order Out-of-order Out-of-order Out-of-order
LLC (shared) 512KB 1MB 2MB 3MB

e COTS multicore platforms

— Odroid-XU4: 4x Cortex-A7 and 4x Cortex-A15
— Odroid-U3: 4x Cortex-A9

— Dell desktop: Intel Xeon quad-core (Nehalem)
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ldentified MLP

Local MLP
Global MLP 4 4 11 16

(See paper for our experimental identification method)

Local MLP

— MLP of a core-private cache

* Global MLP
— MLP of the shared cache (and DRAM)

— KU
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Cache Interference Experiments

subject  co-runner(s)

DRAM

 Measure the performance of the ‘subject’
— (1) alone, (2) with co-runners
— LLC is partitioned (equal partition) using PALLOC (*)

* Q: Does cache partitioning provide isolation?
KU

KANSAS (%) Heechul Yun, Renato Mancuso, Zheng—-Pei Wu, Rodolfo Pellizzoni. “PALLOC: DRAM Bank-Aware Mem

ory Allocator for Performance Isolation on Multicore Platforms.” RTAS 14 1



IsolBench: Synthetic Workloads

Experiment Subject Co-runner(s)
Exp. 1 Latency(LLC) BwRead(DRAM)
Exp. 2 | BwRead(LLC) BwRead(DRAM)
Exp. 3 | BwRead(LLC) BwRead(LLC)
Exp. 4 Latency(LLC) | BwWrite(DRAM)
Exp. 5 | BwRead(LLC) | BwWrite(DRAM)
Exp. 6 | BwRead(LLC) | BwWrite(LLC)
N 4
Working-set size: (LLC) < % LLC = cache-hits, (DRAM) > 2X LLC > cache misses
* Latency
— A linked-list traversal, data dependency, one outstanding miss
* Bandwidth

— An array reads or writes, no data dependency, multiple misses

e Subject benchmarks: LLC partition fitting
— KU
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Latency(LLC) vs. BwRead(DRAM)
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* No interference on Cortex-A7 and Nehalem

* On Cortex-A15, Latency(LLC) suffers 3.8X slowdown
— despite partitioned LLC

KU
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BwRead(LLC) vs. BwRead(DRAM)
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 Up to 10.6X slowdown on Cortex-A15

e Cache partitioning != performance isolation
— On all tested out-of-order cores (A9, A15, Nehalem)

— KU

KANSAS



BwRead(LLC) vs. BwWrite(DRAM)
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 Upto 21X slowdown on Cortex-A15

* Writes generally cause more slowdowns

— Due to write-backs
—— KU
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EEMBC and SD-VBS
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Cortex-A7 (in-order) Cortex-A15 (out-of-order)

X-axis: EEMBC, SD-VBS (cache partition fitting)
— Co-runners: BwWrite(DRAM)

e Cache partitioning != performance isolation
— KU
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MSHR Contention

Local MLP
Global MLP 4 4 11 16

(See paper for our experimental identification method)

* Shortage of cache MSHRs = lock up the cache

e LLC MSHRs are shared resources
— 4cores x L1 cache MSHRs > LLC MSHRs
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Outline

 Understand the source of contention
— Effect of LLC MSHRs
— Effect of L1 MSHRs

* Propose an OS/architecture collaborative
solution

— KU
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Simulation Setup

e Gemb5 full-system simulator

— 4 out-of-order cores (modeling Cortex-A15)
e L1:32K I&D, LLC (L2): 2048K

— Vary #of L1 and LLC MSHRs

* Linux3.14 subject
— Use PALLOC to partition LLC

 Workload
— IsolBench, EEMBC, SD-VBS, SPEC2006

co-runner(s)

LLC

DRAM
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Effect of LLC (Shared) MSHRs
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* Increasing LLC MSHRs eliminates the MSHR contention

* |ssue: scalable?
— MSHRs are highly associative (must be accessed in parallel)

S ()
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Effect of L1 (Private) MSHRs
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EEMBC, SD-VBS IsolBench,SPEC2006

 Reducing L1 MSHRs can eliminate contention

* |ssue: single thread performance. How much?
— It depends. L1 MSHRs are often underutilized
— EEMBC: low, SD-VBS: medium, SPEC2006: high

— KU
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Outline

* Propose an OS/architecture collaborative
solution
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OS Controlled MSHR Partitioning
Core Core Core Core

1 2 3 4
- MSHRs - MSHRS - - MSHRS.- “MSHRs - MSHR 1| Valid Block Addr. Issue | Target Info.
| | |
\ MSHR 2| Valid Block Addr. Issue | Target Info.

Last Level Cache (LLC)

MSHRs

MSHR | Valid Block Addr. Issue | Target Info.

* Add two registers in each core’s L1 cache
— TargetCount: max. MSHRs (set by OS)
— ValidCount: used MSHRs (set by HW)

* OS can control each core’s MLP
— By adjusting the core’s TargetCount register

— KU
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OS Scheduler Design

e Partition LLC MSHRs by enforcing

m

Z TargetCount; < NE2LC

mshr?
1=1

1 < TargetCount; < N-

* When RT tasks are scheduled
— RT tasks: reserve MSHRs
— Non-RT tasks: share remaining MSHRs

™ ahi

* Implemented in Linux kernel
— prepare_task switch() at kernel/sched/core.c

— KU
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e 4 RT tasks (EEMBC)

e 4 NRT tasks

Case Study

M cache part/lcache+mshr part

— One RT per core
— Reserve 2 MSHRs
— P:20,30,40,60ms
— C:~8ms

RN
()
L

1.0

Normalized Execution Time
o
P

— One NRT per core
— Run on slack

e Upto 20% WCET reduction

THE UNIVERSITY OF

— Compared to cache partition only

cacheb01 aifftr01 aiiffto1 rgbhpg01
@core0 @core1 @core2 @core3




Conclusion

* Evaluated the effect of cache partitioning on four real COTS
multicore architectures and a full system simulator

* Found cache partitioning does not ensure cache (hit)
performance isolation due to MSHR contention

* Proposed low-cost architecture extension and OS scheduler
support to eliminate MSHR contention

* Availability
— https://github.com/CSL-KU/IsolBench
— Synthetic benchmarks (/solBench),test scripts, kernel patches

— KU
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https://github.com/CSL-KU/IsolBench

Exp3: BwRead(LLC) vs. BwRead(LLC)
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e Cache bandwidth contention is not the main source
— Higher cache-bandwidth co-runners cause less slowdowns
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Real Benchmarks as Co-runners

£ BMSHR(6/8)BMSHR(6/12)IMSHR(6/24)
=

e 3x470.lbm as co-runners

MSHR contention is still a problem to some
U
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Effect of LLC (Shared) MSHRs
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PALLOC [Yur'14]

* Linux buddy allocator replacement

— Support physical address-aware page allocation
e Can partition the cache (and DRAM banks)
e Support XOR addressing in Intel platforms

31 21 19 14 12 6
E cache-sets 5
banks banks
—> >

- Intel Xeon 3530 physical address map

KANSAS [Yun'14] Heechul Yun, Renato Mancuso, Zheng—Pei Wu, Rodolfo Pellizzoni. “PALLOC: DRAM Bank—Awar
e Memory Allocator for Performance Isolation on Multicore Platforms.” RTAS 14



PALLOC Interface

 Example cache partitioning

# echo 0x00003000 > /sys/kernel/debug/palloc/palloc_mask
- bits: 14, 15
# cd /sys/fs/cgroup
# mkdir coreO corel core2 core3
=» create 4 cgroup partitions
# echo 0 > core0/palloc.bins
=» allocate pages whose addr. bit 14 and bit 15 are both 0 (00)
# echo 1 > corel/palloc.bins
# echo 2 > core2/palloc.bins
# echo 3 > core3/palloc.bins

KU https://github.com/heechul/palloc
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COTS Multicore Architecture

Core2 Core3 Cored

MSHRs MSHRs MSHRs MSHRs

Last Level Cache (LLC)

MSHRs

Memory Controller (MC)

Request buffers

_ Scheduler
Read Write

DRAM DIMM

Out-of-order core:
Multiple memory requests

Non-blocking caches:
Multiple cache-misses

MC and DRAM:
Multiple banks

33



Effect of Writes
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 \Write-intensive co-runners cause more slowdowns
— BwRead(DRAM): up to 10.6X, BWWrite(DRAM): up to 21.4X

* Because writes stay longer in the MSHRs
— Due to additional write-backs
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COTS Multicore Architecture

Corel Core2 Core3 Core4

Out-of-order core:
Multiple memory requests

Last Level Cache (LLC)

Non-blocking caches:

VISFIRS Multiple cache-misses
Memory Controller (MC)
Request|buffers Scheduler
Read Write
CMD/ADDR |, 1 baTa MC and DRAM:
DRAM DIMM Bank-level parallelism
B B B B B B B
a a a a a a a a
n n n n n n n n
k k k k k k k k
1 2 3 4 5 6 7 8
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EEMBC, SD-VBS Workload

Benchmark | LI-MPKI | L2-MPKI | Description
EEMBC Automotive, Consumer [1]
aifftr1 3.64 0.00 FFT (automotive)
aiifft01 3.09 0.00 Inverse FFT (automotive)
cacheb01 2.14 0.00 Cache buster (automotive)
rgbhpgll 1.59 0.00 [mage filter (consumer)
rebyigll 3.81 0.01 Image filter {consumer)
SD-VBS: San Diego Vision Benchmark Suite [33]. (mput: sqcif)
disparity 56.92 (.13 Disparity map
mser 16.12 0.57 Maximally stable regions
sVm 1.81 0.01 Support vector machines

e Subject
— Subset of EEMBC, SD-VBS
— High L2 hit, Low L2 miss
* Co-runners

— BwWrite(DRAM): High L2 miss, write-intensive
— KU
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