Taming Non-blocking Caches to Improve
Isolation in Multicore Real-Time Systems

Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi

University of Kansas

THE UNIVERSITY OF
KANSAS

High-Performance Multicores
for Real-Time Systems
e Why?

— Intelligence = more performance

— Space, weight, power (SWaP), cost

Time Predictability Challenge

Task 1 Task 2 Task 3

> o > o

Task 4

Cored

Shared Cache

Memory Controller (MC)

DRAM

 Shared hardware resource contention can cause

significant interference delays

e Shared cache is a major shared resource

— KU

KANSAS

Cache Partitioning

 Can be done in either software or hardware
— Software: page coloring
— Hardware: way partitioning

e Eliminate unwanted cache-line evictions

 Common assumption

— cache partitioning = performance isolation
* If working-set fits in the cache partition

* Not necessarily true on out-of-order cores using
non-blocking caches

— KU

KANSAS

Outline

* Evaluate the isolation effect of cache partitioning

— On four real COTS multicore architectures

— Observed up to 21X slowdown of a task running on a
dedicated core accessing a dedicated cache partition

* Understand the source of contention
— Using a cycle-accurate full system simulator

* Propose an OS/architecture collaborative solution

— For better cache performance isolation
— KU

KANSAS

Memory-Level Parallelism (MLP)

* Broadly defined as the number of concurrent
memory requests that a given architecture
can handle at a time

KANSAS

Non-blocking Cache!")

stall only when
result is needed

Ti Tl

| Miss penalty |

cpu Multiple outstanding misses

| Miss penalty |

* Can serve cache hits under multiple cache misses
— Essential for an out-of-order core and any multicore

* Miss-Status-Holding Registers (MSHRs)
— On a miss, allocate a MSHR entry to track the req.

— On receiving the data, clear the MSHR entry
— KU

KANSAS (*) D. Kroft. “Lockup-free instruction fetch/prefetch cache organization,” ISCA’81

Non-blocking Cache

» #fof cache MSHRs > memory-level parallelism
(MLP) of the cache

* What happens if all MSHRs are occupied?

— The cache is locked up

— Subsequent accesses---including cache hits---to
the cache stall

— We will see the impact of this in later experiments

KANSAS

COTS Multicore Platforms
T ContocA7 | cortexAs_ | CortecAls | Nehalem

Core 4core @ 4core @ 4core @ 4core @
1.4GHz 1.7GHz 2.0GHz 2.8GHz
In-order Out-of-order Out-of-order Out-of-order
LLC (shared) 512KB 1MB 2MB 3MB

e COTS multicore platforms

— Odroid-XU4: 4x Cortex-A7 and 4x Cortex-A15
— Odroid-U3: 4x Cortex-A9

— Dell desktop: Intel Xeon quad-core (Nehalem)

THE UNIVERSITY OF

ldentified MLP

Local MLP
Global MLP 4 4 11 16

(See paper for our experimental identification method)

Local MLP

— MLP of a core-private cache

* Global MLP
— MLP of the shared cache (and DRAM)

— KU

THE UNIVERSITY OF
KANSAS

Cache Interference Experiments

subject co-runner(s)

DRAM

 Measure the performance of the ‘subject’
— (1) alone, (2) with co-runners
— LLC is partitioned (equal partition) using PALLOC (*)

* Q: Does cache partitioning provide isolation?
KU

KANSAS (%) Heechul Yun, Renato Mancuso, Zheng—-Pei Wu, Rodolfo Pellizzoni. “PALLOC: DRAM Bank-Aware Mem

ory Allocator for Performance Isolation on Multicore Platforms.” RTAS 14 1

IsolBench: Synthetic Workloads

Experiment Subject Co-runner(s)
Exp. 1 Latency(LLC) BwRead(DRAM)
Exp. 2 | BwRead(LLC) BwRead(DRAM)
Exp. 3 | BwRead(LLC) BwRead(LLC)
Exp. 4 Latency(LLC) | BwWrite(DRAM)
Exp. 5 | BwRead(LLC) | BwWrite(DRAM)
Exp. 6 | BwRead(LLC) | BwWrite(LLC)
N 4
Working-set size: (LLC) < % LLC = cache-hits, (DRAM) > 2X LLC > cache misses
* Latency
— A linked-list traversal, data dependency, one outstanding miss
* Bandwidth

— An array reads or writes, no data dependency, multiple misses

e Subject benchmarks: LLC partition fitting
— KU

THE UNIVERSITY OF
KANSAS

Latency(LLC) vs. BwRead(DRAM)

solo =X +2 co-runners 1l
+1 co-runner E +3 co-runners X
o 10
S
|_
c 8
.0
5
O 6
O
x
- 4
o)
N N
c
: A
s, HFNN B HsE N
Z 0

Cortex-A7 Cortex-A9 Cortex-Al5 Nehalem

* No interference on Cortex-A7 and Nehalem

* On Cortex-A15, Latency(LLC) suffers 3.8X slowdown
— despite partitioned LLC

KU

THE UNIVERSITY OF
KANSAS

BwRead(LLC) vs. BwRead(DRAM)

solo X1 +2 co-runners IR
+1 co-runner EX +3 co-runners &I
o 10
.g 10.6
c 8 -
.0
5
O 6
)
9
L
- 4
]
N
®© 2 B
£ 2 N
S . % B

Cortex-A7 Cortex-A9 Cortex-A15 Nehalem

 Up to 10.6X slowdown on Cortex-A15

e Cache partitioning != performance isolation
— On all tested out-of-order cores (A9, A15, Nehalem)

— KU

KANSAS

BwRead(LLC) vs. BwWrite(DRAM)

solo X1 +2 co-runners IR

+1 co-runner EX +3 co-runners &I
o 10 vt senes
S 15.6 21.4
|_
[8 """"""""""" [~y
.0
5
I R Sttty Lttt s Nty N ety
o}
9
L
T i URRVRINSHNINN USRI WRRSIRSMI. ¥ | WO, N S——
o}
N
© 2 < : | E—
£ =\ I
S | % B

Cortex-A7 Cortex-A9 Cortex-Al5 Nehalem

 Upto 21X slowdown on Cortex-A15

* Writes generally cause more slowdowns

— Due to write-backs
—— KU

KANSAS

EEMBC and SD-VBS

solo &0 +2 co-runners 1) Smﬂ_ & "'% co-runners W

W +1 co-runner BA +3 co-runners < ”E" +1 co-runner =2 +3 co-runners Al

ig 4 —. = A — g _

c 35 _. S 3.5 —

o - i — 3 — .

E . :l —_—;. PR : oo

5 2. 5 . ; | ; I i ; ; H 2. :] — i , .,. i i

g ; v] .

L. S b - . . L o

=05 — N . =05 — L LF

] bl [+ [+ [+ o] oA]

g 0 Iz i I+ 142 d E 0 K

2 V%, @f’i"g{@ Che, *’r@f‘ %, WS@ 725 Vi = U”‘Er@ Uﬁ"‘f?“ SChe ﬁj{”’ﬁg 98y, TS0, Ser "
2 ""60,R00,"%0; 7, 60,00, 907 7%, °

Cortex-A7 (in-order) Cortex-A15 (out-of-order)

X-axis: EEMBC, SD-VBS (cache partition fitting)
— Co-runners: BwWrite(DRAM)

e Cache partitioning != performance isolation
— KU

KANSAS
16

MSHR Contention

Local MLP
Global MLP 4 4 11 16

(See paper for our experimental identification method)

* Shortage of cache MSHRs = lock up the cache

e LLC MSHRs are shared resources
— 4cores x L1 cache MSHRs > LLC MSHRs

KANSAS

Outline

 Understand the source of contention
— Effect of LLC MSHRs
— Effect of L1 MSHRs

* Propose an OS/architecture collaborative
solution

— KU

KANSAS

Simulation Setup

e Gemb5 full-system simulator

— 4 out-of-order cores (modeling Cortex-A15)
e L1:32K I&D, LLC (L2): 2048K

— Vary #of L1 and LLC MSHRs

* Linux3.14 subject
— Use PALLOC to partition LLC

 Workload
— IsolBench, EEMBC, SD-VBS, SPEC2006

co-runner(s)

LLC

DRAM

THE UNIVERSITY OF
KANSAS

19

Effect of LLC (Shared) MSHRs

0] 0]

_§4 soloM+1co-runner®+2co-runner+3co-runner §4 solof+1co-runnerf+2co-runnerf+3co-runner
4 4

- 4.17-> g

33 33

0} 0}

(i (0

'027 '02>

g J ‘ g

%1_ .. 7_61 ... i
ol il ol i i'meeewEE
S A K Moo Syp, O Qs b, Qien Mo Sy,
2 o, oy Sty Bigg, o, an, %o 2 Vg, gy Wy Rt By Sy B

L1:6/LLC:12 MSHRs L1:6/LLC:24 MSHRs

* Increasing LLC MSHRs eliminates the MSHR contention

* |ssue: scalable?
— MSHRs are highly associative (must be accessed in parallel)

S ()

KANSAS
20

Effect of L1 (Private) MSHRs

1MSHR « 2MSHR = 3SMSHR 6MSHR 1MSHR *2MSHR * 3MSHR 6MSHR
o 80 o 80
£ 60 £ 60
0. o
© 40 O 4o
‘ 8 /) Iy m 0
3/}71‘/- a///ym’ 030/7@ b 9()/7,09 by/qo S'OC? /778 Sl//h "l/[/l/r/ ,{e %3/7,«% Crf /77/7@ 1,‘0 b

EEMBC, SD-VBS IsolBench,SPEC2006

 Reducing L1 MSHRs can eliminate contention

* |ssue: single thread performance. How much?
— It depends. L1 MSHRs are often underutilized
— EEMBC: low, SD-VBS: medium, SPEC2006: high

— KU

THE UNIVERSITY OF

Outline

* Propose an OS/architecture collaborative
solution

KANSAS

OS Controlled MSHR Partitioning
Core Core Core Core

1 2 3 4
- MSHRs - MSHRS - - MSHRS.- “MSHRs - MSHR 1| Valid Block Addr. Issue | Target Info.
| | |
\ MSHR 2| Valid Block Addr. Issue | Target Info.

Last Level Cache (LLC)

MSHRs

MSHR | Valid Block Addr. Issue | Target Info.

* Add two registers in each core’s L1 cache
— TargetCount: max. MSHRs (set by OS)
— ValidCount: used MSHRs (set by HW)

* OS can control each core’s MLP
— By adjusting the core’s TargetCount register

— KU

KANSAS
23

OS Scheduler Design

e Partition LLC MSHRs by enforcing

m

Z TargetCount; < NE2LC

mshr?
1=1

1 < TargetCount; < N-

* When RT tasks are scheduled
— RT tasks: reserve MSHRs
— Non-RT tasks: share remaining MSHRs

™ ahi

* Implemented in Linux kernel
— prepare_task switch() at kernel/sched/core.c

— KU

KANSAS

e 4 RT tasks (EEMBC)

e 4 NRT tasks

Case Study

M cache part/lcache+mshr part

— One RT per core
— Reserve 2 MSHRs
— P:20,30,40,60ms
— C:~8ms

RN
()
L

1.0

Normalized Execution Time
o
P

— One NRT per core
— Run on slack

e Upto 20% WCET reduction

THE UNIVERSITY OF

— Compared to cache partition only

cacheb01 aifftr01 aiiffto1 rgbhpg01
@core0 @core1 @core2 @core3

Conclusion

* Evaluated the effect of cache partitioning on four real COTS
multicore architectures and a full system simulator

* Found cache partitioning does not ensure cache (hit)
performance isolation due to MSHR contention

* Proposed low-cost architecture extension and OS scheduler
support to eliminate MSHR contention

* Availability
— https://github.com/CSL-KU/IsolBench
— Synthetic benchmarks (/solBench),test scripts, kernel patches

— KU

KANSAS

https://github.com/CSL-KU/IsolBench

Exp3: BwRead(LLC) vs. BwRead(LLC)

solo &A1 +2 co-runners Wl
+1 co-runner +3 co-runners 2
wld -
E
=
c 8 - T
k=
el
o 6 - ;
a
=
Ll
o 4 - +
a
L é é é
= : :
[- - -
Q S IS
Z 0 m:

Cortex-A7 Cortex-A9 Cortex-A15 Nehalem

e Cache bandwidth contention is not the main source
— Higher cache-bandwidth co-runners cause less slowdowns

KANSAS
27

8.0

6.0

4.0

2.0

0.0

— KU

L2 Prefetcher

Tegra K1, L2 prefetcher on

6.9

disparity mser

Osolo @"+1co-run" [@O"+2co-run" @"+3 co-run"

* |nsignificant impact

Tegra K1, L2 prefetcher off

7.1

I_II_IH l_ll_lﬂﬁ

disparity

gsolo @"+1 co-run"

mser

1"+2 co-run"

i

O "+3 co-run"

THE UNIVERSITY OF
KANSAS

28

Real Benchmarks as Co-runners

£ BMSHR(6/8)BMSHR(6/12)IMSHR(6/24)
=

e 3x470.lbm as co-runners

MSHR contention is still a problem to some
U

KANSAS

Effect of LLC (Shared) MSHRs

=

Wsolol+1co-runnerf@+2co-runneriz+3co-runner

14.37-3]

0O = R L S RO =] DD

o

Expd Exp2 Exp3 Expd Exp5 Exph

Normalized Execution Time

(a) MSHRI(6/8)

Bsolol+1co-runneri@+2co-runneriA+3co-runner
4
4 30>

Normalized Execution Time

e

Normalized Execution Time

Bsolof+1co-runneri@+2co-runnerid+3co-runner

10 —
0 323

3.

?',

B_

5-

_fI. —

3 _

2~

1Jﬂ_.ﬂ_ —
Ep1 Bp2 EBp3 Epd Bp5 EBxpb

(b) MSHR(6/12)

Bsololl+1co-runnerfd+2co-runneri+3co-runner

E =N

Mormalized Execution T

bl

Ly

—
1

4.17->

Wsolol+1co-runnerd+2co-runneriA+3co-runner

—

SompaneNeeS

Exp1 Exp2 Exp3 Expd Exp5 Exp6

Normalized Execution Time

(c) MSHR(6/24)

ime:

Bsolol+1co-runnerid+2co-runnerA+3co-runner
4

[¥%]
i

ity "y St P B Sy

_.
!

Nunnalizedgxecution T

THE UNIVERSITY OF

30

PALLOC [Yur'14]

* Linux buddy allocator replacement

— Support physical address-aware page allocation
e Can partition the cache (and DRAM banks)
e Support XOR addressing in Intel platforms

31 21 19 14 12 6
E cache-sets 5
banks banks
—> >

- Intel Xeon 3530 physical address map

KANSAS [Yun'14] Heechul Yun, Renato Mancuso, Zheng—Pei Wu, Rodolfo Pellizzoni. “PALLOC: DRAM Bank—Awar
e Memory Allocator for Performance Isolation on Multicore Platforms.” RTAS 14

PALLOC Interface

 Example cache partitioning

echo 0x00003000 > /sys/kernel/debug/palloc/palloc_mask
- bits: 14, 15
cd /sys/fs/cgroup
mkdir coreO corel core2 core3
=» create 4 cgroup partitions
echo 0 > core0/palloc.bins
=» allocate pages whose addr. bit 14 and bit 15 are both 0 (00)
echo 1 > corel/palloc.bins
echo 2 > core2/palloc.bins
echo 3 > core3/palloc.bins

KU https://github.com/heechul/palloc

KANSAS

KANSAS

COTS Multicore Architecture

Core2 Core3 Cored

MSHRs MSHRs MSHRs MSHRs

Last Level Cache (LLC)

MSHRs

Memory Controller (MC)

Request buffers

_ Scheduler
Read Write

DRAM DIMM

Out-of-order core:
Multiple memory requests

Non-blocking caches:
Multiple cache-misses

MC and DRAM:
Multiple banks

33

Effect of Writes

solo X +2 co-runners IR solo O3 P R
+1 co-runner B +3 co-runners I S ELIRTER Bl e Ty
GE)‘: eGSR s e a R s e A B s S R _? 0]_O P —— s S— S
= : : ’ ; € ; : :
= = 15.6; 21.4
_S B .5 8 —
é - g [SYER ORI SRS OSSN SN X (S
X x
T i
o 4 - < B e e ® | Te—
s 3
g — Tgu 7 JRSSS SR S o IS N I (N SO
= 20 , _
+ayv-A ax-A9 Cartey-ATl a a Cortex-A7 Cortex-A9 Cortex-A15 Nehalem
Exp2: BwRead(LLC) vs. BwRead(DRAM) Exp5: BwRead(LLC) vs. BwWrite(DRAM)

 \Write-intensive co-runners cause more slowdowns
— BwRead(DRAM): up to 10.6X, BWWrite(DRAM): up to 21.4X

* Because writes stay longer in the MSHRs
— Due to additional write-backs

mf{i?\;iAn (EI;

COTS Multicore Architecture

Corel Core2 Core3 Core4

Out-of-order core:
Multiple memory requests

Last Level Cache (LLC)

Non-blocking caches:

VISFIRS Multiple cache-misses
Memory Controller (MC)
Request|buffers Scheduler
Read Write
CMD/ADDR |, 1 baTa MC and DRAM:
DRAM DIMM Bank-level parallelism
B B B B B B B
a a a a a a a a
n n n n n n n n
k k k k k k k k
1 2 3 4 5 6 7 8

THE UNIVERSITY OF

EEMBC, SD-VBS Workload

Benchmark | LI-MPKI | L2-MPKI | Description
EEMBC Automotive, Consumer [1]
aifftr1 3.64 0.00 FFT (automotive)
aiifft01 3.09 0.00 Inverse FFT (automotive)
cacheb01 2.14 0.00 Cache buster (automotive)
rgbhpgll 1.59 0.00 [mage filter (consumer)
rebyigll 3.81 0.01 Image filter {consumer)
SD-VBS: San Diego Vision Benchmark Suite [33]. (mput: sqcif)
disparity 56.92 (.13 Disparity map
mser 16.12 0.57 Maximally stable regions
sVm 1.81 0.01 Support vector machines

e Subject
— Subset of EEMBC, SD-VBS
— High L2 hit, Low L2 miss
* Co-runners

— BwWrite(DRAM): High L2 miss, write-intensive
— KU

KANSAS

