
Taming Non-blocking Caches to Improve
Isolation in Multicore Real-Time Systems

Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi
University of Kansas

1

High-Performance Multicores
for Real-Time Systems

• Why?
– Intelligence à more performance
– Space, weight, power (SWaP), cost

2

Time Predictability Challenge

3

Core1 Core2 Core3 Core4

Memory Controller (MC)

Shared Cache

• Shared hardware resource contention can cause
significant interference delays

• Shared cache is a major shared resource

DRAM

Task 1 Task 2 Task 3 Task 4

Cache Partitioning

• Can be done in either software or hardware
– Software: page coloring
– Hardware: way partitioning

• Eliminate unwanted cache-line evictions

• Common assumption
– cache partitioning à performance isolation

• If working-set fits in the cache partition

• Not necessarily true on out-of-order cores using
non-blocking caches

4

Outline

• Evaluate the isolation effect of cache partitioning
– On four real COTS multicore architectures
– Observed up to 21X slowdown of a task running on a

dedicated core accessing a dedicated cache partition

• Understand the source of contention
– Using a cycle-accurate full system simulator

• Propose an OS/architecture collaborative solution
– For better cache performance isolation

5

Memory-Level Parallelism (MLP)

• Broadly defined as the number of concurrent
memory requests that a given architecture
can handle at a time

6

Non-blocking Cache(*)

• Can serve cache hits under multiple cache misses
– Essential for an out-of-order core and any multicore

• Miss-Status-Holding Registers (MSHRs)
– On a miss, allocate a MSHR entry to track the req.
– On receiving the data, clear the MSHR entry

7

cpu cpu

miss hit miss

Miss penalty

Miss penalty

stall only when
result is needed

Multiple outstanding misses

(*) D. Kroft. “Lockup-free instruction fetch/prefetch cache organization,” ISCA’81

Non-blocking Cache

• #of cache MSHRs à memory-level parallelism
(MLP) of the cache

• What happens if all MSHRs are occupied?
– The cache is locked up
– Subsequent accesses---including cache hits---to

the cache stall
– We will see the impact of this in later experiments

8

COTS Multicore Platforms
Cortex-A7 Cortex-A9 Cortex-A15 Nehalem

Core 4core @
1.4GHz
In-order

4core @
1.7GHz
Out-of-order

4core @
2.0GHz
Out-of-order

4core @
2.8GHz
Out-of-order

LLC (shared) 512KB 1MB 2MB 8MB

9

• COTS multicore platforms
– Odroid-XU4: 4x Cortex-A7 and 4x Cortex-A15
– Odroid-U3: 4x Cortex-A9
– Dell desktop: Intel Xeon quad-core (Nehalem)

Identified MLP

• Local MLP
– MLP of a core-private cache

• Global MLP
– MLP of the shared cache (and DRAM)

10

(See paper for our experimental identification method)

Cortex-A7 Cortex-A9 Cortex-A15 Nehalem
Local MLP 1 4 6 10

Global MLP 4 4 11 16

Cache Interference Experiments

• Measure the performance of the ‘subject’
– (1) alone, (2) with co-runners
– LLC is partitioned (equal partition) using PALLOC (*)

• Q: Does cache partitioning provide isolation?

11

DRAM

LLC

Core1 Core2 Core3 Core4

subject co-runner(s)

(*) Heechul Yun, Renato Mancuso, Zheng-Pei Wu, Rodolfo Pellizzoni. “PALLOC: DRAM Bank-Aware Mem

ory Allocator for Performance Isolation on Multicore Platforms.” RTAS’14

IsolBench: Synthetic Workloads

• Latency
– A linked-list traversal, data dependency, one outstanding miss

• Bandwidth
– An array reads or writes, no data dependency, multiple misses

• Subject benchmarks: LLC partition fitting

12

Working-set size: (LLC) < ¼ LLC à cache-hits, (DRAM) > 2X LLC à cache misses

Latency(LLC) vs. BwRead(DRAM)

• No interference on Cortex-A7 and Nehalem
• On Cortex-A15, Latency(LLC) suffers 3.8X slowdown
– despite partitioned LLC

13

BwRead(LLC) vs. BwRead(DRAM)

• Up to 10.6X slowdown on Cortex-A15
• Cache partitioning != performance isolation
– On all tested out-of-order cores (A9, A15, Nehalem)

14

BwRead(LLC) vs. BwWrite(DRAM)

• Up to 21X slowdown on Cortex-A15
• Writes generally cause more slowdowns
– Due to write-backs

15

EEMBC and SD-VBS

• X-axis: EEMBC, SD-VBS (cache partition fitting)
– Co-runners: BwWrite(DRAM)

• Cache partitioning != performance isolation

16

Cortex-A7 (in-order) Cortex-A15 (out-of-order)

MSHR Contention

• Shortage of cache MSHRs à lock up the cache
• LLC MSHRs are shared resources
– 4cores x L1 cache MSHRs > LLC MSHRs

17

Cortex-A7 Cortex-A9 Cortex-A15 Nehalem
Local MLP 1 4 6 10

Global MLP 4 4 11 16
(See paper for our experimental identification method)

Outline

• Evaluate the isolation effect of cache
partitioning

• Understand the source of contention
– Effect of LLC MSHRs
– Effect of L1 MSHRs

• Propose an OS/architecture collaborative
solution

18

Simulation Setup

• Gem5 full-system simulator
– 4 out-of-order cores (modeling Cortex-A15)

• L1: 32K I&D, LLC (L2): 2048K
– Vary #of L1 and LLC MSHRs

• Linux 3.14
– Use PALLOC to partition LLC

• Workload
– IsolBench, EEMBC, SD-VBS, SPEC2006

19

DRAM

LLC

Core1 Core2 Core3 Core4

subject co-runner(s)

Effect of LLC (Shared) MSHRs

• Increasing LLC MSHRs eliminates the MSHR contention
• Issue: scalable?
– MSHRs are highly associative (must be accessed in parallel)

20

L1:6/LLC:12 MSHRs L1:6/LLC:24 MSHRs

Effect of L1 (Private) MSHRs

• Reducing L1 MSHRs can eliminate contention
• Issue: single thread performance. How much?
– It depends. L1 MSHRs are often underutilized
– EEMBC: low, SD-VBS: medium, SPEC2006: high

21

EEMBC, SD-VBS IsolBench,SPEC2006

Outline

• Evaluate the isolation effect of cache
partitioning

• Understand the source of contention

• Propose an OS/architecture collaborative
solution

22

OS Controlled MSHR Partitioning

23

• Add two registers in each core’s L1 cache
– TargetCount: max. MSHRs (set by OS)
– ValidCount: used MSHRs (set by HW)

• OS can control each core’s MLP
– By adjusting the core’s TargetCount register

Block Addr.Valid Issue Target Info.

Block Addr.Valid Issue Target Info.

Block Addr.Valid Issue Target Info.

MSHR 1

MSHR 2

MSHR n

TargetCount ValidCount

Last Level Cache (LLC)

Core
1

Core
2

Core
3

Core
4

MSHRs

MSHRs MSHRs MSHRs MSHRs

OS Scheduler Design
• Partition LLC MSHRs by enforcing

• When RT tasks are scheduled
– RT tasks: reserve MSHRs
– Non-RT tasks: share remaining MSHRs

• Implemented in Linux kernel
– prepare_task_switch() at kernel/sched/core.c

24

Case Study
• 4 RT tasks (EEMBC)

– One RT per core
– Reserve 2 MSHRs
– P: 20,30,40,60ms
– C: ~8ms

• 4 NRT tasks
– One NRT per core
– Run on slack

• Up to 20% WCET reduction
– Compared to cache partition only

25

Conclusion
• Evaluated the effect of cache partitioning on four real COTS

multicore architectures and a full system simulator

• Found cache partitioning does not ensure cache (hit)
performance isolation due to MSHR contention

• Proposed low-cost architecture extension and OS scheduler
support to eliminate MSHR contention

• Availability
– https://github.com/CSL-KU/IsolBench
– Synthetic benchmarks (IsolBench),test scripts, kernel patches

26

https://github.com/CSL-KU/IsolBench

Exp3: BwRead(LLC) vs. BwRead(LLC)

• Cache bandwidth contention is not the main source
– Higher cache-bandwidth co-runners cause less slowdowns

27

L2 Prefetcher

• Insignificant impact

28

6.9

2.9

4.9

0.0

2.0

4.0

6.0

8.0

disparity mser svm

Tegra K1, L2 prefetcher on

solo "+1 co-run" "+2 co-run" "+3 co-run"

7.1

2.8

5.6

0.0

2.0

4.0

6.0

8.0

disparity mser svm

Tegra K1, L2 prefetcher off

solo "+1 co-run" "+2 co-run" "+3 co-run"

Real Benchmarks as Co-runners

• 3x 470.lbm as co-runners
• MSHR contention is still a problem to some

29

Effect of LLC (Shared) MSHRs

30

PALLOC [Yun’14]

• Linux buddy allocator replacement
– Support physical address-aware page allocation
• Can partition the cache (and DRAM banks)
• Support XOR addressing in Intel platforms

31

12141921

banks banks

cache-sets
31 06

Intel Xeon 3530 physical address map
[Yun’14] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, Rodolfo Pellizzoni. “PALLOC: DRAM Bank-Awar

e Memory Allocator for Performance Isolation on Multicore Platforms.” RTAS’14

PALLOC Interface

• Example cache partitioning

32

echo 0x00003000 > /sys/kernel/debug/palloc/palloc_mask
à bits: 14, 15

cd /sys/fs/cgroup
mkdir core0 core1 core2 core3
è create 4 cgroup partitions

echo 0 > core0/palloc.bins
è allocate pages whose addr. bit 14 and bit 15 are both 0 (00)

echo 1 > core1/palloc.bins
echo 2 > core2/palloc.bins
echo 3 > core3/palloc.bins

https://github.com/heechul/palloc

COTS Multicore Architecture
Out-of-order core:
Multiple memory requests

Non-blocking caches:
Multiple cache-misses

MC and DRAM:
Multiple banks

Last Level Cache (LLC)

DRAM DIMM

Memory Controller (MC)

Core1 Core2 Core3 Core4

Request buffers
Read Write

Scheduler

MSHRs

CMD/ADDR DATA

Bank
4

Bank
3

Bank
2

Bank
1

MSHRs MSHRs MSHRs MSHRs

33

Effect of Writes

• Write-intensive co-runners cause more slowdowns
– BwRead(DRAM): up to 10.6X, BwWrite(DRAM): up to 21.4X

• Because writes stay longer in the MSHRs
– Due to additional write-backs

34

Exp2: BwRead(LLC) vs. BwRead(DRAM) Exp5: BwRead(LLC) vs. BwWrite(DRAM)

Last Level Cache (LLC)

DRAM DIMM

Memory Controller (MC)

B
a
n
k
1

Core1 Core2 Core3 Core4

Request buffers
Read Write

Scheduler

MSHRs

CMD/ADDR DATA

B
a
n
k
2

B
a
n
k
3

B
a
n
k
4

B
a
n
k
5

B
a
n
k
6

B
a
n
k
7

B
a
n
k
8

COTS Multicore Architecture

Out-of-order core:
Multiple memory requests

Non-blocking caches:
Multiple cache-misses

MC and DRAM:
Bank-level parallelism

EEMBC, SD-VBS Workload

• Subject
– Subset of EEMBC, SD-VBS
– High L2 hit, Low L2 miss

• Co-runners
– BwWrite(DRAM): High L2 miss, write-intensive

36

