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Abstract In multicore real-time systems, cache partitioning is commonly used to
achieve isolation among different cores. We show, however, that space isolation achieved
by cache partitioning does not necessarily guarantee predictable cache access timing
in modern COTS multicore platforms, which use non-blocking caches. We find that
special hardware registers in non-blocking caches, known as Miss Status Holding
Registers (MSHRs), which track the status of outstanding cache-misses, can be a sig-
nificant source of contention that is not addressed by conventional cache partitioning.

We propose a hardware and system software (OS) collaborative approach to effi-
ciently eliminate MSHR contention for multicore real-time systems. Our approach
includes a low-cost hardware extension that enables dynamic control of per-core
memory-level parallelism (MLP) by the OS. Using the hardware extension, the OS
scheduler then globally controls each core’s MLP in such a way that eliminates
MSHR contention and maximizes overall throughput of the system. We implement
the hardware extension in a cycle-accurate full-system simulator and the scheduler
modification in Linux 3.14 kernel. Extensive experimental results demonstrate the
significance of the MSHR contention problem and the effectiveness of the proposed
solution.

1 Introduction

As embedded real-time systems become more intelligent and complex, high-performance
multicore processors are increasingly demanded to meet their performance and com-
puting capacity demands while saving cost and reducing size, weight, and power
(SWaP) requirements. However, consolidating multiple tasks, potentially with differ-
ent criticality (a.k.a. mixed-criticality systems [41,7]), on a commercial-off-the-shelf
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(COTS) multicore processor is challenging because interference in the shared hard-
ware resources can significantly alter the tasks’ timing characteristics.

Shared last-level cache (LLC) is one of the major sources of interference in mul-
ticore. Tasks sharing an LLC, if uncontrolled, can evict each other’s valuable cache-
lines, thereby affect each other’s execution times. Such co-runner dependent execu-
tion time variations are highly undesirable for real-time systems. This is especially
problematic for critical systems such as those in aviation that require certification [8].

To address the problem of unwanted cache-line evictions, cache partitioning is a
well known solution in the real-time systems community [30,42,26,36,9]. The basic
idea of cache partitioning is to assign dedicated space to each task (or core). It can be
done in software, with a OS-level technique known as page coloring [23,43,28], or in
hardware, with a technique known as way partitioning on some supported hardware
platforms [33,35]. In either case, the effect of cache partitioning is the elimination of
unwanted cache-line evictions (spatial isolation). Most literature assumes that cache
partitioning guarantees that access timing to a dedicated cache partition would not
be affected by concurrent accesses to different cache partitions (temporal isolation).
Unfortunately, this is not necessarily the case in non-blocking caches [27], which
are commonly used in modern COTS multicore processors to exploit memory-level
parallelism (MLP).

In this article, we experimentally show that cache partitioning does not guar-
antee cache access timing isolation on COTS multicore platforms. We use a set of
carefully designed synthetic benchmarks, which we call IsolBench, as well as macro
benchmarks from EEMBC [1] and SD-VBS [40] benchmark suites; and evaluate the
temporal isolation effect of cache partitioning on five COTS multicore platforms (six
different architecture configurations). From the results, we observe significant Worst-
Case Execution Time (WCET) increases—up to 21X—even though each evaluated
task runs on a dedicated core, accessing a dedicated cache partition, and almost all of
the memory accesses are cache hits. The WCET increases are observed in all but one
COTS architecture we tested.

We attribute the source of the problem to contention in special hardware registers
in non-blocking caches, known as Miss Status Holding Registers (MSHRs) [27]. In
a non-blocking cache, the cache can continue to serve memory requests even under
multiple cache-misses (hit-under-multiple-misses) and MSHRs are used to track the
outstanding cache-misses. The number of MSHRs effectively determines the cache’s
MLP. When the MSHRs are exhausted, however, the cache will block any further
accesses until some of the outstanding misses are serviced—hence freeing the corre-
sponding MSHR entries [2]. Because retrieving data from DRAM can take long time
(i.e., 100 CPU cycles), the blocking caused by exhausting MSHRs of a non blocking
cache, especially the shared LLC, can stall cores a long duration of time. We call this
phenomenon as the MSHR contention problem.

To further validate the problem, we use a cycle accurate full system simulator
and investigate isolation and throughput impacts of different MSHR configurations
in private and shared non-blocking caches. We find that an insufficient number of
MSHRs in the shared LLC can be highly detrimental to temporal isolation of the
multicore system due to the MSHR contention problem. On the other hand, we also
find that a large number of MSHRs in private L1 caches are often under-utilized.

2



Motivated by the findings, we propose a hardware and system software (OS) col-
laborative approach to efficiently eliminate MSHR contention for multicore real-time
systems. Our approach includes a low-cost hardware extension in each core’s private
L1 cache that enables the OS to dynamically control the number of valid MSHRs
of the cache. Using the hardware extension, the OS scheduler then globally controls
each core’s MLP in a way that eliminates MSHR contention and maximizes overall
throughput of the system.

We have implemented the hardware extension in a cycle-accurate full-system
simulator, which models a quad-core ARM Cortex-A15 processor, and modified the
scheduler of Linux 3.14 kernel, which runs on top of the simulator. We evaluate the
effectiveness of our approach using a set of synthetic and macro benchmarks on a
number of different configurations. Compared to baseline cache partitioning, our ap-
proach has shown to significantly improve the cache access timing isolation with
minimal throughput impact.

This article is an extended version of [39]. The additional contributions com-
pared with the original work are:

– We evaluate an additional COTS multicore platform, NVIDIA Tegra TK1. This
allowed us to compare two ARM Cortex-A15 based platforms with different ar-
chitectural features (en/disable L2 prefetcher). Also, we enhance our evaluation
of the proposed MSHR partitioning technique with an additional experiment with
eight EEMBC and SD-VBS benchmarks.

– In [39], we only used a synthetic memory intensive benchmark as co-runners to
cause maximal MSHR contention. In this article, we also use real-world memory
intensive benchmarks from SPEC2006 benchmark suite as co-runners, to investi-
gate how that affects to the MSHR contention problem.

– We evaluate the effect of the various hardware architectural characteristics—i.e.,
core aggressiveness, clock-speed, and hardware prefetchers—to the MSHR con-
tention problem.

– The MSHR partitioning algorithm in [39] could waste MSHRs in some corner
cases. In this article, we improve the MSHR partitioning algorithm to remove
MSHR waste in the corner cases.

The rest of the paper is organized as follows. Section 2 describes additional
background on non-blocking caches and cache partitioning techniques. Section 3
demonstrates the problem of MSHR contention using real COTS multicore platforms.
Section 4 further validates the MSHR contention problem and investigates isolation
and throughput impacts of MSHRs in private and shared non-blocking caches. Sec-
tion 5 presents our hardware and OS collaborative technique to eliminate MSHR
contention. Section 6 presents evaluation results of the proposed technique. Section 7
investigates other factors that could influence the MSHR contention problem. We
discuss related work in Section 8 and conclude in Section 9.

2 Background

In this section, we provide necessary background on non-blocking caches and com-
mon cache partitioning techniques.
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2.1 Non-blocking Caches and MSHRs

A non-blocking cache is a type of cache that can service multiple memory requests
at the same time. In contrast, a blocking cache can only serve one request a time.
Figure 1 shows the differences between the two cache types. Because a non-blocking
cache can continue to service under multiple cache misses (miss-under-miss), it can
hide cache-miss penalties and therefore improves performance.

Non-blocking Cache

• Can serve cache hits under multiple cache misses
• Essential for an out-of-order core and any multicore 

• Miss-Status-Holding Registers (MSHRs)
• On a miss, allocate a MSHR entry to track the req.
• On receiving the data, clear the MSHR entry

2

cpu cpu

miss hit miss

Miss penalty

Miss penalty

stall on use

(*) D. Kroft. “Lockup-free instruction fetch/prefetch cache organization,” ISCA’81

cpu cpu

miss

Miss penalty

hit

(a) Blocking cache (b) Non-blocking cache

Fig. 1 Blocking vs. Non-blocking cache

Non-blocking caches are widely used in modern COTS multicore processors. In
out-of-order processors, which are increasingly common in high-performance em-
bedded processors [31,12], each core can generate multiple outstanding memory
requests. Therefore, non-blocking caches are crucial in all layers of cache hierar-
chies (both private and shared caches) to feed data to the processors. Even in in-order
processors where each core can only generate one outstanding memory request at
a time, the cores collectively can generate multiple requests to the shared memory
subsystems—shared cache and memory. Therefore, memory subsystems must be able
to handle multiple parallel memory requests. The degree of parallelism supported by
a memory subsystem is called Memory-Level Parallelism (MLP) [13]. Non-blocking
caches are essential to provide high MLP in multicore processors.

When a cache-miss occurs on a non-blocking cache, the cache controller records
the miss on a special register, called Miss Status Holding Register (MSHR) [27],
which tracks the status of the ongoing request. The request is managed at a cache-line
granularity. Multiple misses to the same cache-line are merged and notified together
by a single MSHR entry. The MSHR entry is cleared when the corresponding mem-
ory request is serviced from the lower-level memory hierarchy. In the meantime, the
cache can continue to serve cache (hit) access requests. Multiple MSHRs are used
to support multiple outstanding cache-misses and the number of MSHRs determines
the MLP of the cache. It is important to note that MSHRs in the shared LLC are
also shared resources with respect to the CPU cores [17]. Moreover, if there are no
remaining MSHRs, further accesses to the cache—both hits and misses—are blocked
until free MSHRs become available [2], because whether a cache access is hit or miss
is not immediately known at the time of the access [37]. In other words, cache hit re-
quests can be delayed if all MSHRs are used up. This situation can happen even if
the cache space is partitioned among cores, as we will show in Section 3.
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Fig. 2 Physical address and cache mapping of Cortex-A15.

2.2 Cache Partitioning Techniques

Cache partitioning is a well-known solution to achieve cache space isolation—that is
preventing unwanted cache-line evictions due to cache space sharing. A typical set-
associative cache is organized in sets and and ways. Part of memory address bits are
used as index bits to determine the set address of the cache. For each set, there are
multiple ways and data can be located in any one of them. To partition a cache, two
commonly used techniques are way-based partitioning and set-based partitioning.

In way-based cache partitioning [35], the cache space is partitioned at the granu-
larity of cache ways, which requires hardware-level support. Some embedded proces-
sors and a few recent Intel Xeon processors support way-based cache partitioning [12,
19], but most processors do not support it. For example, none of the hardware plat-
forms used in this study support hardware way partitioning.

On the other hand, in set-based partitioning, the cache space is partitioned with
respect to cache-sets, which can be implemented in software (OS) with a technique
known as page coloring [23,28]. Page-coloring can be implemented in any hardware
that equips memory-management unit (MMU). Therefore, in this paper, we use a
page-coloring based technique [45] to partition the shared caches of all hardware plat-
forms we tested. In page coloring, the OS controls the physical addresses of memory
pages such that the pages are placed in specific cache locations (sets). By allocating
memory pages over non-overlapping sets of the cache, the OS can effectively par-
tition the cache. In order to apply page-coloring, the OS must understand how the
cache sets are mapped onto the physical address space. Figure 2 shows the address
mapping of a Cortex-A15 platform, which we use in Section 3. The address mapping
of a cache is determined by the size of the cache, cache-line size, and the number of
ways of the cache. Once the cache set-index bits are identified, the OS controls the
subset of the index bits, called page colors, in allocating pages. When multiple layers
of caches are used as in the case of Cortex-A15, care must be taken to partition only
the shared LLC but not the private L1 caches. For example, in Figure 2, only bit 14,
15, and 16 should be used to partition only the shared L2 cache.
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3 Evaluating Isolation Effect of Cache Partitioning on COTS Multicore
Platforms

In this section, we present our experimental investigation on the effectiveness of
cache partitioning in providing cache access performance isolation on COTS mul-
ticore platforms.

Table 1 Evaluated COTS multicore platforms.

Cortex-A7 Cortex-A9 Cortex-A15O Cortex-A15T Nehalem
4 cores 4 cores 4 cores 4 cores 4 cores

CPU 1.4GHz 1.7GHz 2.0GHz 2.3Ghz 2.8GHz
in-order out-of-order out-of-order out-of-order out-of-order

LLC 512KB 1MB 2MB 2MB 8MB
LLC prefetcher No No Yes No No

DRAM 2GB 2GB 2GB 2GB 4GB
Platform Odroid-XU4 Odroid-U3 Odroid-XU4 Tegra TK1 Dell T3500

3.1 COTS Multicore Platforms

We use four COTS multicore platforms (five architectures): Odroid-XU4, Odroid-
U3, Tegra TK1 single-board computers (SBC) and a Dell T3500 desktop computer.
The Odroid-XU4 board equips a Samsung Exynos 5422 processor which includes
both four Cortex-A15 and four Cortex-A7 cores in a big-LITTLE [14] configuration.
Thus, we use the Odroid-XU4 platform for both Cortex-A7 and Cortex-A15 experi-
ments. The Odroid-U3 equips a Samsung Exynos 4412 processor which includes four
Cortex-A9 cores. The Tegra TK1 platforms equips a NVIDIA’s Tegra K1 processor
which also has four Cortex-A15 cores. We disabled L2 cache prefetcher on the Tegra
TK1, while it is enabled in the Odroid-XU4 platform. Lastly, the Dell T3500 platform
equips an Intel Xeon W3553 (Nehalem) processor; we disabled hyperthreading and
all hardware prefetchers. In all platforms, we disabled power saving features such as
dynamic CPU and memory frequency scaling. Table 1 shows the basic characteristics
of the five CPU architectures we used in our experiments. Note that Odroid-XU4’s
Cortex-A15 is denoted as Cortex-A15O while TK1 is denoted as Cortex-A15T Note
that in each architecture, LLC and DRAM are shared by all four cores. For OS, we
run Linux 3.10.82 on the Odroid-XU4 platform, Linux 3.8.13 on the Odroid-U3 plat-
form, Linux 3.10.40 on the Tegra TK1 platform, and Linux 3.6.0 on the Intel Xeon
platform, all kernels are patched with PALLOC [45] to partition the shared LLC at
run-time.

3.2 Memory-Level Parallelism

We first identify memory-level parallelism (MLP) of the multicore architectures using
an experimental method described in [11]. The method uses a pointer-chasing micro-
benchmark shown in Figure 3 to identify memory-level parallelism. The benchmark
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1 s t a t i c i n t ∗ l i s t [MAX MLP ] ;
2 s t a t i c i n t n e x t [MAX MLP ] ;
3
4 long run ( long i t e r , i n t mlp )
5 {
6 long c n t = 0 ;
7 f o r ( l ong i = 0 ; i < i t e r ; i ++) {
8 s w i t c h ( mlp ) {
9 c a s e MAX MLP:

10 .
11 .
12 c a s e 2 :
13 n e x t [ 1 ] = l i s t [ 1 ] [ n e x t [ 1 ] ] ;
14 /∗ f a l l−t h r o u g h ∗ /
15 c a s e 1 :
16 n e x t [ 0 ] = l i s t [ 0 ] [ n e x t [ 0 ] ] ;
17 }
18 c n t += mlp ;
19 }
20 r e t u r n c n t ;
21 }

Fig. 3 MLP micro-benchmark. Adopted from [11].

traverses a number of linked-lists. Each linked-list is randomly shuffled over a mem-
ory chunk of twice the size of the LLC. Hence, accessing each entry is likely to
cause a cache-miss. Due to data-dependency, only one cache-miss can be generated
for each linked list. In an out-of-order core, multiple lists can be accessed at a time,
as it can tolerate up to a certain number of outstanding cache-misses. Therefore, by
controlling the number of lists and measuring the performance of the benchmark, we
can determine how many outstanding misses one core can generate at a time, which
we call local MLP. We also vary the number of benchmark instances from one to
four and measure the aggregate bandwidth to investigate the parallelism of the entire
shared memory hierarchy, which we call global MLP.

Figure 4 shows the results. Let us first focus on a single instance results. For
Cortex-A7, increasing the number of lists (X-axis) does not have any performance im-
provement. This is because Cortex-A7 is in-order architecture in which only one out-
standing request can be made at a time. For Cortex-A9, Cortex-A15, and Nehalem—
all out-of-order architecture based—performance improves as the number of lists
increases until 4, 6, and 10 lists, respectively, suggesting their local MLPs. As we
increase the number of benchmark instances, the point of saturation becomes shorter
in the out-of-order cores. In case of Cortex-A15O and Cortex-A15T , the aggregate
bandwidth saturates at three lists when four instances are used. This suggests that
the global MLP of both Cortex-A15 is close to 12; according to [3], Cortex-A15’s
integrated LLC (L2) can support up to 11 outstanding cache-misses (global MLP of
11). In case of Nehalem, performance saturates when per-instance MLP is about four
with four instances, suggesting the global MLP of 16. 1 Lastly, in case of Cortex-A9,

1 According to [17], Nehalem architecture supports up to 32 outstanding LLC cache-misses. The ob-
served global MLP in the platform is likely limited by MLP of the DRAM, not by MLP of the LLC.
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Fig. 4 Aggregate memory bandwidth as a function of MLP (the number of lists) per benchmark.

Table 2 Local and global MLP

Cortex-A7 Cortex-A9 Cortex-A15O Cortex-A15T Nehalem
local MLP 1 4 6 6 10

global MLP 4 4 11 11 16

both local and global MLP appear to be 4. 2 Table 2 shows the identified MLP of each
platform.

Note first that all architectures, including in-order based Cortex-A7, support sig-
nificant parallelism in the shared memory hierarchy (global MLP). This suggests that
non-blocking caches are used in COTS multicore processors. In case of the Cortex-

2 Cortex-A9 was released much earlier (2007) than Cortex-A7 (2011) and its cache-line size is smaller
(32B/line) than the others (64B/line); we suspect these are the reasons of its relatively low memory perfor-
mance.
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A7, its local MLP is one because it is in-order architecture based and only one out-
standing request can be made at a time. On the other hand, the other three architec-
tures are out-of-order based and therefore can generate multiple outstanding requests.
Moreover, note that the aggregated parallelism of the cores (the sum of local MLP)
exceeds the parallelism supported by the shared memory hierarchy (global MLP) in
the out-of-order architectures. As we will demonstrate in the next subsection, this
can cause serious additional interference that is not handled by the existing cache
partitioning techniques.

3.3 Understanding Interference in Non-blocking Caches

While most previous research on shared cache has focused on unwanted cache-line
evictions that can be solved by cache partitioning, little attention has been paid to
the problem of shared MSHRs in non-blocking caches. As we will see later in this
section, cache partitioning does not necessarily provide cache access timing isolation
even when the application’s working-set fits entirely in a dedicated cache partition,
due to contention in the shared MSHRs.

3.3.1 Methodology and synthetic workloads

To find out worst-case interference, we use various combinations of two micro-
benchmarks, Latency and Bandwidth, which we call the IsolBench suite. Latency
is a pointer chasing synthetic benchmark, which accesses a randomly shuffled single
linked list. Due to data dependencies, Latency can only generate one outstanding re-
quest at a time. Bandwidth is another synthetic benchmark, which sequentially reads
or writes a big array; we henceforth refer BwRead as Bandwidth with read accesses
and BwWrite as the one with write accesses. Unlike Latency, Bandwidth can generate
multiple parallel memory requests on an out-of-order core as it has no data depen-
dency.

Table 3 shows the workload combinations we used. Note that the texts with
parentheses—(LLC) and (DRAM)—indicate working-set sizes of the respective bench-
mark. In case of (LLC), the working size is configured to be smaller than 1/4 of the
shared LLC size, but bigger than the size of the last core-private cache.3 As such,
in case of (LLC), all memory accesses should be LLC hits. In case of (DRAM), the
working-set size is the twice the size of the LLC so that all memory accesses result
in LLC misses.

In all experiments, we first run the subject task on Core0 and collect its solo
execution time. We then co-schedule an increasing number of co-runners on the other
cores (Core1-3) and measure the response times of the subject task. Note that in all
cases, we evenly partition the shared LLC among the four cores (i.e., each core gets
1/4 of the LLC space) and each task is assigned to a dedicated core and a dedicated
cache partition. Note also that the working-set of each subject benchmark is accessed
multiple times to warm-up the cache.

3 The last core-private cache is L1 for ARM Cortex-A7, A9, and A15 while it is L2 for Intel Nehalem.
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Table 3 Workloads for cache-interference experiments.

Experiment Subject Co-runner(s)
Exp. 1 Latency(LLC) BwRead(DRAM)
Exp. 2 BwRead(LLC) BwRead(DRAM)
Exp. 3 BwRead(LLC) BwRead(LLC)
Exp. 4 Latency(LLC) BwWrite(DRAM)
Exp. 5 BwRead(LLC) BwWrite(DRAM)
Exp. 6 BwRead(LLC) BwWrite(LLC)

3.3.2 Exp. 1: Latency(LLC) vs. BwRead(DRAM)

In the first experiment, we use the Latency benchmark as a subject and the BwRead
benchmark as co-runners. Recall that BwRead has no data dependency and therefore
can generate multiple outstanding memory requests on an out-of-order processing
core (i.e., Cortex-A9, Cortex-A15O, Cortex-A15T and Intel Nehalem). Figure 5(a)
shows the results. For Cortex-A7 and Intel Nehalem, Cache-partitioning is shown to
be effective in providing timing isolation. For Cortex-A9, A15O, and A15T , how-
ever, the response times are still increased by up to 2.0X, 3.7X and 6.4X, respec-
tively. This is an unexpectedly high degree of interference considering the fact that
the cache-lines of the subject benchmark, Latency, are not evicted by the co-runners
as a result of cache partitioning; in other words, the cache-hit accesses of the Latency
benchmark are being delayed by co-runners.

3.3.3 Exp. 2: BwRead(LLC) vs. BwRead(DRAM)

To further investigate this phenomenon, the next experiment uses the BwRead bench-
mark for both the subject task and the co-runners. Therefore, both the subject and co-
runners now generate multiple outstanding memory requests to the shared memory
subsystem in out-of-order architectures. Figure 5(c) shows the results. While cache
partitioning is still effective for Cortex-A7, the same is not true for the other plat-
forms: Cortex-A9, A15O, A15T and Nehalem now suffer up to 2.1X, 10.6X, 10.4X
and 7.9X slowdowns, respectively. The results suggest that cache-partitioning does
not necessarily provide expected performance isolation benefits in out-of-order archi-
tectures. We initially suspected the cause of this phenomenon is likely the bandwidth
contention at the shared cache, similar to the DRAM bandwidth contention [45]. The
next experiment, however, shows it is not the case.

3.3.4 Exp. 3: BwRead(LLC) vs. BwRead(LLC)

In this experiment, we again use the BwRead benchmark for both the subject and
the co-runners but we reduce the working-set size of the co-runners to (LLC) so that
they all can fit in the LLC. If the LLC (bus) bandwidth contention is the problem,
this experiment would cause even more slowdowns to the subject benchmark as the
co-runners now need more LLC bandwidth. Figure 5(e), however, does not support
this hypothesis. On the contrary, the observed slowdowns in all out-of-order cores
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(a) Exp.1: Latency(LLC) vs. BwRead(DRAM)
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(b) Exp.4: Latency(LLC) vs. BwWrite(DRAM)
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Fig. 5 Normalized execution times of the subject tasks, co-scheduled with co-runners on cache partitioned
quad-core systems. Each task (both subject and co-runners) runs on a dedicated core and a dedicated cache
partition. Also, each subject task’s working-set size is smaller than its dedicated cache partition size. (i.e.,
its memory accesses are cache hits.)

are much less, compared to the previous experiment in which co-runners’ memory
accesses are cache misses and therefore use less cache bandwidth.

3.3.5 Exp. 4,5,6: Impact of write accesses

In the next three experiments, we repeat the previous three experiments except that
now we use BwWrite benchmark as co-runners. Note that BwWrite updates a large
array and therefore generates a line-fill (read) and a write-back (write) for each mem-
ory access. Figure 5(b), 5(d), and 5(f) show the results. Compared to BwRead, using
BwWrite generally results in even worse interference to the subject tasks.
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3.3.6 The sources of interference

MSHR contention: To understand this phenomenon, we first need to understand how
non-blocking caches process cache accesses from the cores. As described in Sec-
tion 2, MSHRs are used to allow multiple outstanding cache misses. If all MSHRs
are in use, however, the cores can no longer access the cache—both hits and misses—
until a free MSHR becomes available [2]. Because servicing memory requests from
DRAM takes much longer than doing it from the LLC, cache-miss requests occupy
MSHR entries longer. This causes a shortage of MSHRs, which will in turn block
additional memory requests to the cache even when they are cache hits. The subject
tasks generally suffer even more slowdowns when running write heavy co-runners
(e.g., BwWrite) because the additional write-back traffic delays the processing of
line-fills, which in turn exacerbate the shortage of MSHRs. The high-degree of inter-
ference observed in Exp. 1, 2, 4 and 5 on the out-of-order cores (all but the Cortex-A7,
which is in-order) can be explained as the result of the MSHR contention because the
co-runners stress the MSHRs, but not the cache bus (cache bus will be idle when the
cache is blocked due to full MSHRs.) In Cortex-A7, the only in-order architecture,
however, the observed interference is near zero in the four experiments because the
MSHRs in its L2 cache never be stressed as each core only can generate one out-
standing miss at a time.

Cache bus contention: On the other hand, the observed interference in Exp. 3
and 6 is not the result of MSHR contention because, in the two experiments, nearly
all accesses to the LLC—from both the subject and co-runners—are cache-hits and
therefore LLC’s MSHRs are not stressed. Instead, the chief source of interference is
likely the cache bus contention as all cores are trying to access the same shared bus to
the LLC. Note, however, that the degree of interference in Exp. 3 and 6—the effect of
cache bus contention (up to 2.6X slowdown on Cortex-A15O)—is much smaller than
those in Exp. 1, 2, 4 and 5—the effect of MSHR contention (up to 21.3X slowdown
on Cortex-A15O). This is because cache bus speed is much faster than DRAM speed.

In summary, from the experiments, we deduce that MSHR contention is a major
interference source in out-of-order architectures. We further validate the finding with
a cycle-accurate architecture simulator in Section 4.

3.4 Impact to Real-Time Applications

So far, we have shown the impact of MSHR contention using a set of synthetic bench-
marks. The next question is how significant the MSHR contention problem is to
worst-case execution times (WCETs) of real-world real-time applications.

To find out, we use a set of benchmarks from EEMBC [1] and SD-VBS [40]
benchmark suites as real-time workloads. To focus on contention at the shared cache-
level, we carefully chose the benchmarks with the following two characteristics:
1) high L1 miss rates and 2) low LLC miss rates. The first is to filter out those
benchmarks which can fit entirely in private L1 cache and the second is to filter
out those that heavily depend on DRAM performance. Table 4 shows the Miss-Per-
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Table 4 Benchmark characteristics

Benchmark L1-MPKI L2-MPKI Description
EEMBC Automotive, Consumer [1]

aifftr01 3.64 0.00 FFT (automotive)
aiifft01 3.99 0.00 Inverse FFT (automotive)

cacheb01 2.14 0.00 Cache buster (automotive)
rgbhpg01 1.59 0.00 Image filter (consumer)
rgbyiq01 3.81 0.01 Image filter (consumer)
SD-VBS: San Diego Vision Benchmark Suite [40]. (input: sqcif)

disparity 56.92 0.13 Disparity map
mser 16.12 0.57 Maximally stable regions
svm 7.81 0.01 Support vector machines

Kilo-Instructions (MPKI) characteristics of the benchmarks on a Cortex-A15 setting
(32KB L1-I/D, 512KB L2 cache partition 4).

We measured their execution times first alone in isolation and then with multiple
instances of the BwWrite(DRAM), which has shown to cause the highest delays in
the previous synthetic experiments. In all experiments, the LLC is evenly partitioned
on a per-core basis and the benchmarks are scheduled using the SCHED FIFO real-
time scheduler in Linux to minimize OS interference.

Figure 6 shows the results. As expected, Cortex-A7 shows good isolation as we
observe no significant WCET increases across all benchmarks. On the other hand,
Cortex-A9, A15O, A15T show significant execution time increases in many of the
benchmarks, even though they all access their own private cache partitions. The cause
of this is again likely due to MSHR contention. In Cortex-A9, we observe up to
2.08X (108%) WCET increase for the disparity benchmark; in Cortex-A15O and
Cortex-A15T , we observe up to 5.0X and 6.4X WCET increase, respectively, for
the same benchmark. Lastly, unlike the IsolBench results in the previous subsection
(Section 3.3.1), Nehalem shows good isolation performance for the EEMBC and SD-
VBS benchmarks. This is because it has additional private L2 cache (256KB) that
absorbs most of L1 cache misses of these benchmarks; as a result, its shared LLC (L3)
is rarely accessed when running the benchmarks and the observed WCET increases
are much smaller (up to 30% WCET increase) than the other out-of-order cores.

While the overall trend is similar for both EEMBC and SD-VBS benchmarks, the
latter tend to suffer substantially higher delays than the former benchmarks. This is
because the SD-VBS benchmarks access the shared LLC much more frequently (i.e.,
higher L1 MPKI rates) than the EEMBC benchmarks and, therefore, suffer more from
LLC lock-ups due to MSHR contention.

In summary, while cache space competition is certainly an important source of
interference, eliminating it, via cache-partitioning, does not necessarily provide ex-
pected isolation in modern COTS multicore platforms due to MSHR contention.

4 We used the gem5 cycle-accurate simulator, described in Section 4, to analyze the MPKI characteris-
tics of the benchmarks
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(c) Cortex-A15O
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(d) Cortex-A15T
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Fig. 6 MSHR contention effects on WCETs of EEMBC and SD-VBS benchmarks.

4 Understanding Isolation and Throughput Impacts of Cache MSHRs

In this section, we study isolation and throughput impacts of MSHRs in non-blocking
caches, by exploring different MSHR configurations using a cycle accurate full sys-
tem simulator.

4.1 Isolation Impact of MSHRs in Shared LLC

In this experiment, we study how the number of MSHRs at the shared LLC affects
the MSHR contention problem of a multicore system. For the study, we use the Gem5
simulator [5] and configure the simulator to approximately model a Cortex-A15 quad-
core system, which has been shown to suffer the highest degree of MSHR contention
in our real platform experiments. The baseline simulation parameters are shown in Ta-
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Table 5 Baseline simulator configuration

Core Quad-core, out-of-order, 1.6GHz
ROB: 40, IQ: 32, LSQ: 16/16 entries

L1-I/D caches private 32/32 KiB (2-way)
L2 cache shared 2 MiB (16-way), no h/w prefetcher

DRAM controller 64/64 read/write buffers,
FR-FCFS [16], open-adaptive page policy

DRAM module LPDDR2@533MHz, 1 rank, 8banks

ble 5 5. On the simulator, we run a full Linux 3.14 kernel, patched with PALLOC [45]
to partition the LLC, as we have done in the real platform experiments.

Using the simulator, we evaluate three different MSHR configurations: MSHR(6/8),
MSHR(6/12), and MSHR(6/24). The numbers in a parenthesis represents L1 (data)
and L2 MSHRs, respectively. At MSHR(6/8), for example, each core’s private L1
cache has 6 MSHRs (i.e., up to 6 outstanding misses per core) and the shared L2
cache has 8 MSHRs (up to 8 outstanding misses of all cores). For each MSHR config-
uration, we repeat the cache interference experiments described in Section 3. Again,
as in the previous real platform experiments, the LLC is evenly partitioned among
the four cores and all tasks (both the subject and co-runners) are given their own pri-
vate cache partitions. In other words, observed delays, if any, are not caused by cache
space evictions.

Figure 7 shows the results of the six IsolBench workloads (Table 3). As expected,
when the number of L2 MSHRs is not big enough to support parallelism of the cores,
the subject tasks suffer significant delays due to cache (shared L2) lock-ups caused
by MSHR contention. At MSHR(6/8), we observe up to 14.4X slowdown, which is
driven by a sharp increase in the number of blocked cycles of the L2 cache. As we in-
crease the L2 MSHRs, however, the delays decrease. At MSHR(6/24), in all but Exp.
3 and Exp. 6, the subject tasks achieve near perfect isolation as increased L2 MSHRs
eliminates MSHR contention. In cases of the Exp. 3 and Exp. 6, eliminating MSHR
contention does not result in ideal isolation because the main source of the delays is
limited cache bandwidth, not MSHR contention. Note that in the two experiments,
almost all memory accesses of both subject and co-runners are L2 cache hits, which
do not allocate MSHRs.

Figure 8 shows the results of EEMBC and SD-VBS benchmarks, which are mea-
sured with three instances of BwWrite(DRAM) co-runners. The results are in tandem
with the IsolBench results. At MSHR(6/8), the subject task suffers contention—up to
1.43X slowdown for EEMBC cacheb01 and 4.3X slowdown for SD-VBS disparity.
At MSHR(6/24), interference is almost completely eliminated for most benchmarks.
Notable exceptions are disparity and mser from the SD-VBS benchmark suite. For
the two benchmarks, while isolation performance is significantly improved, they still

5 We use gem5’s detailed out-of-order CPU model, O3CPU. The CPU parameters are largely based on
gem5’s default ARM configuration, which is, according to [15], similar to Cortex-A15. However, because
not all details of Cortex-A15 are publicly available by ARM, some of the parameters could be different
from a real one. For example, the reorder buffer (ROB) size of Cortex-A15 is referred as 128 in [34], 60
in [6], and 40 in the default arm configuration of gem5. We do not know which is the correct ROB value.
However, we would like to stress that our main focus is not in accurate modeling of a Cortex-A15 platform
but in understanding relative impacts of MSHRs in out-of-order cores.
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Fig. 7 Effects of MSHR configurations on WCETs of IsolBench

suffer considerable delays. This can be explained as a result of their relatively high
DRAM access rates (see L2 MPKI values at Table 4). Because the co-runners—
BwWrite(DRAM) instances—are highly memory (DRAM) intensive, they cause se-
vere contention at the DRAM controller queues, which in turn delays memory re-
quests from the subject benchmarks; we observe a large increase in the average queue
length and the average memory access latency in the memory controller statistics of
the simulator. (COTS DRAM controller-level contention is an important orthogonal
problem, which has been actively studied in recent years [25,46,22,24].)

The results validate that MSHRs in a shared LLC can be a significant source of
contention, which causes frequent cache lockups even when the cache is spatially par-
titioned. The results also show that eliminating MSHR contention, by increasing the
number of MSHRs in the shared LLC, significantly improves isolation performance.
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Fig. 8 Effects of MSHR configurations on WCETs of EEMBC and SD-VBS benchmarks

4.2 Throughput Impact of MSHRs in Private L1 Cache

Increasing the number of MSHRs in the shared LLC is, however, not always desir-
able because supporting many highly associative MSHRs can be challenging due to
increased area and logic complexity [37]. Furthermore, it becomes even more dif-
ficult as the number of cores increases and each core supports more memory-level
parallelism (higher local MLP).

Another simple solution to eliminate MSHR contention is reducing the number
of MSHRs in the private L1 caches (reduction of local MLP), instead of increas-
ing the number of LLC MSHRs. However, an obvious downside of this approach is
that it could affect the core’s single-thread performance. The question is, then, how
important is the core-level memory-level parallelism (local MLP) to application per-
formance?

In the following experiments, we evaluate the single-thread performance impact
of the number of L1 MSHRs using a set of benchmarks from EEMBC, SD-VBS,

17



and SPEC2006 benchmark suites. The benchmarks from EEMBC and SD-VBS are
the same as the ones used in previous experiments: cache intensive (high L1 MPKI)
but not DRAM intensive (low L2 MPKI). On the other hand, we also choose highly
memory (DRAM) intensive SPEC2006 benchmarks for better comparison. On the
simulator, we vary the number of L1 MSHRs from 1 to 6, while fixing the number of
L2 MSHRs at 12. Note that one L1 MSHR means that the cache will block on each
miss and therefore is equivalent to a blocking cache. For each L1 MSHR configura-
tion, we measure each benchmark’s Cycles-Per-Instructions (CPI).
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Fig. 9 Performance impact of MSHRs in private L1 cache. (Lower is Better)

Figure 9(a) shows the results of EEMBC and SD-VBS benchmarks, normalized
to the one L1 MSHR configuration. For EEMBC benchmarks, performance does not
improve much as the number of L1 MSHRs increases. For example, we observe only
4% improvement for cacheb01 with 2 MSHRs and additional MSHRs do not make
any difference in performance. For SD-VBS vision benchmarks, performance im-
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provement is more significant. In particular, disparity shows up to 26% improvement
with 6 MSHRs, although the difference between 6MSHRs and 2MSHRs is relatively
small. These results can be explained as follows: The working sets of the EEMBC
and SD-VBS benchmarks fit in the L2 cache and therefore most L1 misses result
in L2 cache hits. Because L2 cache is relatively fast, compared to DRAM, the L1
MSHRs quickly become available as soon as the L2 cache returns the data. As a re-
sult, only a small number of MSHRs can deliver most of the performance benefits of
out-of-order cores.

On the other hand, Figure 9(b) and 9(c) show the results of SPEC2006 and
BwWrite benchmarks. The two figures differ in that in Figure 9(c), we significantly
increased the sizes of Instruction Queue (IQ), Reorder buffer (ROB), and Load/Store
Queue (LSQ) to simulate more aggressive out-of-order cores. In general, memory-
intensive benchmarks greatly benefit from the increase of L1 MSHRs as it reduces
memory related stalls. And the performance improvements are even greater on more
aggressive out-of-order cores. For example, with 6 MSHRs, BwWrite, lbm, libquan-
tum, and omnetpp, achieve more than 50% performance improvements on the aggres-
sive out-of-order core setting.

These results show that throughput impact of the number of MSHRs at core-
private L1 caches is highly application dependent. This observation motivates us
to propose a solution to eliminate MSHR contention problem without increasing
MSHRs as we will describe in Section 5.

5 OS Controlled MSHR Partitioning

In this section, we propose a hardware and system software (OS) collaborative ap-
proach to efficiently eliminate MSHR contention for real-time systems.

5.1 Assumptions

We consider a multicore system with m identical cores. The cores are out-of-order
architecture-based and each core equips a non-blocking private L1 data cache with
NL1

mshr MSHRs (i.e., local MLP of NL1
mshr). Also, there is a non-blocking shared LLC

(L2) with NLLC
mshr MSHRs (i.e., global MLP of NLLC

mshr). We assume the sum of the
local MLP is bigger than the MLP of the shared cache—m ×NL1

mshr > NLLC
mshr—as

we experimentally observed in the real COTS multicore platforms shown in Sec-
tion 3.2. This means that the shared LLC can suffer from MSHR contention when its
MSHRs are exhausted. We assume the task system is composed of a mix of critical
real-time tasks and best-effort tasks. We assume that the tasks are partitioned on a
per-core basis and each core uses a two-level hierarchical scheduling framework that
first schedules the real-time tasks with a fixed priority scheduler and then schedules
the best-effort tasks with a fairness focused general purpose scheduler (e.g., CFS in
Linux). Note that any core may execute both real-time tasks and best-effort tasks. In
other words, there are no designated “real-time cores.”
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Fig. 10 Proposed MSHR Architecture. Grey areas indicate our proposed addition.

5.2 MSHR Partitioning Hardware Mechanism

In order to eliminate MSHR contention, we propose to dynamically control the num-
ber of usable MSHRs in the private L1 caches. We achieve this via a low cost ex-
tension to the L1 caches. Figure 10 shows the proposed extension. We add two
hardware counters TargetCount and V alidCount for each L1 cache controller.
The V alidCount tracks the number of total valid MSHR entries (i.e., entries with
outstanding memory requests) of the cache and is updated by the hardware. The
TargetCount defines the maximum number of MSHRs that can be used by the core
and is set by the system software (OS). If V alidCounti >= TargetCounti, the
cache immediately locks up. System software can update TargetCount registers by
executing privileged instructions (e.g., wrmsr instructions in Intel [18]). By control-
ling the value of TargetCount, the OS can effectively control the core’s local MLP.
The added area and logic complexity is minimal as we only need two additional
counter registers and one comparator logic.

To eliminate MSHR contention, the OS employs a partitioning scheme that limits
the sum of TargetCount values of all L1 caches be equal or less than the num-
ber of MSHRs of the (shared) LLC, while also respecting the maximum number of
MSHRs of each private L1 cache. In other words, the OS would satisfy the following
inequalities.

m∑
i=1

TargetCounti ≤ NLLC
mshr, (1)

1 ≤ TargetCounti ≤ NL1
mshr (2)

For example, in a quad-core system in which the LLC has 12 MSHRs and each
core’s L1 cache has 6 MSHRs, the OS may set TargetCount value of all L1 caches
to 3 (half of the physically allowed number 6) to eliminate MSHR contention.

However, care must be taken to minimize potential throughput reduction because
some workloads may be greatly affected by the reduction of parallelism offered by
the L1 cache. For example, according to our experiments in Section 4.2, assigning
TargetCount = 1 to a core that executes the lbm SPEC2006 benchmark would
cause more than 40% performance reduction.
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1 i n t r e d i s t b e m s h r ( )
2 {
3 / / f a i r l y d i s t r i b u t e non−r e s e r v e d MSHRs
4 m r t = 0 ;
5 mshr rema in = NLLC

mshr ;
6 f o r ( i = 0 . . . m− 1 ) {
7 i f ( m s h r p a r t [ i ] > 0) {
8 m r t ++;
9 mshr rema in −= m s h r p a r t [ i ] ;

10 }
11 }
12 Rnrt = c e i l i n g ( mshr rema in / (m − m r t ) ) ;
13 f o r ( i = 0 . . . m− 1 ) {
14 i f ( m s h r p a r t [ i ] == 0) {
15 TargetCounti = min (Rnrt , msh r r ema in ) ;
16 mshr rema in −= Rnrt

17 }
18 }
19 re turn m r t ;
20 }
21
22 void p r e p a r e t a s k s w i t c h ( prev , n e x t )
23 {
24 / / myid = l o c a l cpu i n d e x
25 myid = s m p p r o c e s s o r i d ( ) ;
26 i f ( nex t−>m s h r r e s e r v e > 0) {
27 / / e n a b l e / up da t e MSHR p a r t i t i o n i n g
28 R = next−>m s h r r e s e r v e ;
29 m s h r p a r t [ myid ] = R ;
30 TargetCountmyid = R ;
31 r e d i s t b e m s h r ( ) ;
32 } e l s e i f ( prev−>m s h r r e s e r v e > 0) {
33 m s h r p a r t [ myid ] = 0 ;
34 m r t = r e d i s t b e m s h r ( ) ;
35 i f ( m r t > 0)
36 re turn ;
37 / / d i s a b l e MSHR p a r t i t i o n i n g
38 f o r ( i = 0 . . . m− 1 ) {
39 TargetCounti = NL1

mshr ;
40 }
41 }
42 }

Fig. 11 MSHR partitioning algorithm in the CPU scheduler.

5.3 OS Scheduler Design

We enhance the OS scheduler to efficiently utilize MSHRs while eliminating the
MSHR contention. First, the OS provides a system call that allows users to reserve
a certain number of MSHRs needed by the chosen task. We assume that all critical
real-time tasks reserve MSHRs while best-effort tasks do not. The MSHR reservation
information of each (real-time) task is kept in the OS (e.g., task struct in Linux)
and used by the scheduler when the task is being scheduled. We limit the maximum
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number of reservable MSHRs of a task to NLLC
mshr/m to guarantee reservation when

the task is scheduled. This is needed because, in our model, all m cores may execute
m real-time tasks, all of which request MSHR reservation, at the same time. The
best-effort tasks equally share remaining MSHRs—i.e., those that are not used by the
currently scheduled real-time tasks.

To minimize unnecessary throughput impact to best-effort tasks, we apply MSHR
partitioning only when at least one core is executing a real-time task with MSHR
reservation. When enabled, reserved MSHRs of each task is enforced globally by
the OS scheduler by updating the TargetCount registers of all cores to satisfy the
Eqs. 1 and 2. Note that updating a core’s TargetCount register controls the core’s
maximum L1 MSHRs, which in turn control the maximum necessary LLC MSHRs
for the core. Thus, by controlling each core’s L1 MSHRs, the scheduler effectively
partitions LLC MSHRs among the cores.

Figure 11 shows the algorithm. prepare task switch() is called by the
CPU scheduler to prepare a context switch from prev task to next task. Note that
in Linux, each core independently schedules the tasks in the core’s run queue. On a
context switch, if the next scheduled task is a real-time task that requires MSHR reser-
vation (Line 27-32), we configures the TargetCount register of the corresponding
core (Line 31). Note that R denotes the number of reserved MSHRs of the next task.
It then determines the number of available MSHRs (excluding reserved MSHRs),
which is then fairly distributed to the cores that execute best-effort tasks by call-
ing redist be mshr() (Line 32). On the other hand, if the prev task reserves
MSHRs and the next task does not, then the previously reserved MSHRs of the prev
task will be fairly re-distributed to all best-effort tasks (Line 34-35). if no currently
running tasks wish to reserve MSHRs, the scheduler resets the TargetCount reg-
isters of all cores to the maximum (Line 38-41), which effectively disables MSHR
reservation.

6 Evaluation

In this section, we evaluate isolation and throughput impacts of the proposed ap-
proach through a set of experiments.

6.1 Setup

We use the same experimental setup as explained in Section 4—a Quad-core Cortex-
A15 platform model on the Gem5 simulator having 6 per-core L1 MSHRs and 12
L2 MSHRs—as the baseline hardware platform. On the simulator, we implement
the proposed hardware extension by modifying its cache subsystem. We modify the
Linux kernel’s scheduler to communicate with the simulator to adjust the number of
MSHRs (prepare task switch() in kernel/sched/core.c)

In the following, we compare two system configurations: (1) ‘cache part’ and (2)
‘cache+mshr part’. In cache part, we apply only cache partitioning. In cache+mshr
part, on the other hand, we use the proposed OS-controlled MSHR partitioning ap-
proach in addition to the cache partitioning. In this configuration, when a real-time
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task is released, the OS reserves 2 MSHRs for the task and the rest of the non-reserved
MSHRs are equally shared by the best-effort tasks. While the “right” number of re-
served MSHRs for a task may vary depending on the task’s characteristics, we choose
to reserve 2 MSHRs because the real-time tasks used in our experiments do not ben-
efit from more than 2 MSHRs (see Section 4.2.)

6.2 Isolation Effect of MSHR Partitioning
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Fig. 12 Normalized exec. times of EEMBC and SD-VBS

First, we investigate the isolation impact of the proposed MSHR partitioning tech-
nique by repeating the experiment described in Section 4.1. Briefly, the experiment
is as follows: we run each of the EEMBC and SD-VBS benchmarks as a real-time
task, with three instances of the BwWrite benchmark as (non-real-time) co-runners;
we then measure the response time of the real-time tasks under two system configu-
rations: ’cache part’ and ’cache+mshr part’. Again, in this setup, each core executes
only one task each (either the real-time task or a co-runner).

Figure 12 shows the normalized execution time of the real-time tasks. Note that
we use the performance measured in isolation under the equal cache partitioning
setup—without applying MSHR partitioning—as baseline. As can be seen clearly in
the figure, under cache+mshr part, the interference is almost completely eliminated
because the MSHR contention problem has been eliminated by ensuring dedicated
MSHRs in the shared LLC to the real-time tasks. In other words, we could eliminate
MSHR contention without increasing the number of LLC MSHRs.

6.3 Case Study: A Mixed Criticality Task System

In this experiment, we model a mixed-criticality task system using four instances
of EEMBC benchmarks—aifftr01, aiifft01, cacheb01 and, rgbhpg01 6—as real-time
tasks and four instances BwWrite(DRAM) as best-effort tasks, such that both real-
time and best-effort tasks are co-scheduled on a single multicore system. We modified
the EEMBC benchmarks to run periodically.

6 We choose the benchmarks with (near) zero L2-MPKI values to avoid DRAM controller level con-
tention.
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Fig. 13 WCETs of real-time tasks (EEMBC), co-scheduled with best-effort tasks.

The experiment procedure is as follows. We start four BwWrite benchmark in-
stances on Core0, Core1, Core2 and Core3, respectively. While these Bandwidth in-
stances are running in the background, we start the four EEMBC benchmarks, one
per core, so that each core runs one real-time task and one best-effort task. As the
LLC cache is partitioned on a per-core basis, the two tasks (one real-time and one
best-effort) on each core use the same cache partition in this experiment. Our fo-
cus in this experiment is inter-core interference, not intra-core interference. Note
that the EEMBC benchmarks are scheduled using the SCHED FIFO real-time sched-
uler in Linux, and therefore they are always prioritized over the BwWrite instances.
The EEMBC benchmarks have different periods—20ms, 30ms, 40ms, and 60ms for
Core0, 1, 2, and 3 respectively—but their computation times are configured to be ap-
proximately 8 milliseconds. Each EEMBC benchmark runs to completion and then
sleeps until the next period starts. During this time the core is yielded to the best-
effort task (i.e., BwWrite). The experiment is performed for the duration of 120ms
(two hyper-periods of the real-time tasks).

Figure 13 shows observed WCETs of the real-time tasks, normalized to their
run-alone execution times on the baseline system configuration. In cache part., the
real-time tasks suffer significant WCET increases—up to 20% for cacheb01—even
though they always execute on their own dedicated cores, accessing dedicated cache
partitions, due to MSHR contention. In cache+mshr part., on the other hand, the real-
time tasks suffer almost no WCET increases because MSHR contention is eliminated
by the proposed MSHR partitioning scheme. In terms of throughput of the best-effort
tasks (BwWrite), we observe 3% throughput reduction in cache+mshr part as they
are given fewer MSHRs. We believe it is an acceptable trade-off for real-time sys-
tems.

7 Other Factors Influencing MSHR Contention

In this section, we study other factors that could influence the MSHR contention
problem. Specifically, we would like to answer the following three questions:

1. Is the MSHR contention problem still significant when more realistic (less ag-
gressive) co-runners are used?

2. Do more aggressive and faster out-of-order cores make MSHR contention worse?
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3. What are the impacts of simultaneous multi-threading (SMT) and hardware prefetch-
ers in private and shared caches?

7.1 Aggressiveness of Co-runners

So far, we have used synthetic memory intensive tasks with a high degree of memory-
level parallelism (MLP) as co-runners. This is to generate the maximum degree of
MSHR contention. An interesting question is whether we can observe significant
MSHR contention when more realistic workloads are used as co-runners. To find
out, we use two SPEC2006 benchmarks, lbm and omnetpp, as co-runners and repeat
the subset of experiments in Section 4.1 that use EEMBC and SD-VBS benchmarks
as the subject tasks. The two SPEC2006 benchmark are chosen as they are relatively
memory intensive real-world applications. For this experiment, we use the gem5 sim-
ulator as in Section 4.
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Fig. 14 Effects of co-runners on WCETs of EEMBC and SD-VBS benchmarks
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Figure 14 shows the results. Note that we observe less severe MSHR contention
when we use lbm or omnetpp as co-runners instead of the synthetic BwWrite. In
inset (a), in which three instances of synthetic BwWrite are used as co-runners 7, the
subject tasks (EEMBC and SD-VBS benchmarks) suffer up to 4.3X slowdown (The
disparity benchmark). In inset (b), in which lbm is used as co-runners instead, we
observe only up to 1.43X slowdown. In inset (c), in which omnetpp is used as co-
runners, the impact of MSHR contention is further reduced as we observe only up to
1.20X slowdown. Also, notice that the effect of increasing MSHRs in the shared L2
cache is less dramatic as we use lbm and omnetpp as co-runners.

In short, the degree of MSHR contention problem is less severe when realis-
tic applications—less aggressive in terms of memory intensity and parallelism than
the synthetic ones—are co-scheduled. We would argue, however, that the fact that
carefully designed synthetic applications could cause severe slowdowns—by several
factors—is an important security and safety issue. For example, a malicious program
can potentially mount timing attacks to critical real-time tasks by stressing shared
cache MSHRs.

7.2 Aggressiveness of Cores

In an out-of-order core, a stalled instruction, for example, due to a cache-miss or
data dependency, does not necessarily block the entire processor pipeline. Instead, a
subsequent instruction can be executed ahead of the stalled instruction as long as it is
ready—that is, all operands are available and there is an available execution unit.

To enable the out-of-order execution, a typical out-of-order core design employs a
number of hardware resources such as Reorder Buffer (ROB), Instruction Queue (IQ)
and Load/Store Queue (LSQ). The ROB provides temporary storage for execution
results and ensure that the instructions are still appeared to be executed in the instruc-
tion order (in-order completion). The LSQ and IQ provide buffer spaces for memory
(load and store) and non-memory instructions, respectively, until they become ready
to be executed regardless of the instruction order (out-of-order execution). The more
these resources are available, the more aggressive (potentially faster) out-of-order ex-
ecution is possible in general. However, it would also increase the possibility of more
severe MSHR contention as more memory instructions can be executed in parallel at
a time. As such, we expect that the MSHR contention problem would become worse
on more advanced (aggressive) processors.

We evaluate this hypothesis with the gem5 simulator. We compare three core
configurations: Baseline@1.6GHz, Aggressive@1.6GHz, and Aggressive@2.0GHz.
Baseline@1.6GHz is the same setting as in Table 5. In Aggressive@1.6GHz, the
sizes of ROB, IQ, and LSQ are increased by a factor of three, to simulate more ag-
gressive cores. Lastly, in Aggressive@2.0GHz, we increase each core’s clock speed
from 1.6GHz to 2.0Hz to further stress the shared memory hierarchy. Note that the
DRAM memory speed is unchanged (533MHz LPDDR2). Note that in all configu-
rations, the MSHR setting is fixed at MSHR(6/12)—i.e., 6 MSHRs in L1 (private)

7 Note that this is a redrawing of Figure 8, focusing only on the case of three co-runners.
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and 12 MSHRs in L2 (shared)—and the L2 cache space is equally partitioned on a
per-core basis. For each simulator configuration, we repeat the experiment described
in Section 4.1 using the IsolBench, EEMBC, and SD-VBS benchmarks.
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Fig. 15 Effects of core aggressiveness on MSHR contention of IsolBench.

Figure 15 shows the results for the IsolBench suite (see Table 3 for the work-
load details). Comparing insets (a) and (b), which only differ in their core resources,
we can observe significant WCET increases in the latter. In Exp.2, for example,
the subject task BwRead(LLC) suffers a dramatic WCET increase when three in-
stances of BwRead(DRAM) are co-scheduled as co-runners. This is because, as we
expected, the increased resources result in more slowdowns due to increased MSHR
contention—validating our hypothesis. Also as expected, the degree of contention
further increases as we increase the speed of the cores in inset(c), because the mem-
ory subsystem is further stressed.
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Fig. 16 Effects of core aggressiveness on MSHR contention of EEMBC and SD-VBS benchmarks.

Figure 16 shows the results for the EEMBC and SD-VBS benchmarks. Unlike
the IsolBench results (Figure 15), the observed WCET increases are much smaller
when EEMBC and SD-VBS benchmarks are the subject benchmarks (The co-runners
are still the same BwWrite(DRAM)). This is mainly because they are not memory
intensive and, for them, increased core resources do not make much of a difference
in their baseline performance.

7.3 SMT Threads and Hardware Prefetchers

In Simultaneous Multi-threading (SMT) processors, multiple hardware threads share
not only the memory hierarchy but also much of important core resources such as
arithmetic logic units (ALUs). Although such design increases hardware resource
utilization (thus improves throughput), it also results in highly unpredictable timing
behavior. As such, in real-time systems, it is common to disable SMT threads if it is
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possible in the considered processor. For example, most Intel processors allow dis-
abling SMT in BIOS. Similar effect can be achieved at the OS-level by not scheduling
tasks on certain logical processors (SMT). Therefore, in this paper, we do not con-
sider SMT-level sharing.

On the other hand, hardware prefetchers in both private and shared caches require
more careful consideration. A hardware prefetcher is tightly coupled with a cache and
monitors the memory access patterns to the cache and prefetch predicted cach-lines
into the cache to minimize latency. A hardware prefetcher in a private L1 cache can
increase the likelihood of MSHR contention by generating more memory requests
to the shared LLC, starving the LLC’s MSHRs. Similarly, a hardware prefetcher in
the shared LLC could result in more severe MSHR contention because additional
prefetched memory requests to DRAM can quickly exhaust the MSHRs in the shared
LLC. Note that our proposed MSHR partitioning scheme in Section 5, which con-
trols the number of valid L1 MSHRs, would still eliminate MSHR contention even if
hardware prefetchers are used at the L1 caches because the L1 prefetchers, just like
the cores, would use the same L1 MSHRs (which is the case in the gem5 model.)
However, if a hardware prefetcher is used at the shared LLC, it may fail to eliminate
MSHR contention because the prefetcher’s use of LLC MSHRs is not controlled by
the OS. Recall that in our proposed scheme, the OS ensures that the sum of valid
L1 MSHRs does not exceed the number of LLC MSHRs. However, if the hardware
prefetcher in the LLC allocates additional MSHRs to serve prefetch requests, the
cores’ memory requests can still suffer MSHR contention.
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(b) L2 Prefetcher On

Fig. 17 Effects of L2 Prefetcher on Gem5 at MSHR(6/24) for IsolBench.

We investigate the potential impact of the hardware prefetcher of the shared LLC
using the gem5 simulator. On the simulator, we repeat the IsolBench, EEMBC, and
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(b) L2 Prefetcher On

Fig. 18 Effects of L2 Prefetcher on Gem5 at MSHR(6/24) for EEMBC and SDVBS.

SD-VBS experiments in previous sections after enabling the LLC prefetcher; and
compared the results with the ones without the prefetcher. Note that in both config-
urations, each of the private L1 caches has 6 MSHRs while the shared L2 cache has
24 MSHRs. In other words, the cores alone cannot generate more than 24 concurrent
memory requests at a time. Therefore, if MSHR contention is observed, it would have
been caused by the LLC prefetcher, which generates additional requests to the LLC.

Figure 17 shows the results for IsolBench. As expected, when the L2 prefetcher
is enabled, we observe significantly higher interference—up to 9.2X—than the case
of without the prefetcher. This is because the additional prefetch memory requests
starve the MSHRs in the shared L2 cache, causing MSHR contention.

Figure 18 shows the results for EEMBC and SD-VBS benchmarks. The overall
trend is similar in the sense that with the L2 prefetcher we observe significant MSHR
contention even with the increased MSHRs at the shared L2 cache.

A solution to this problem would require close coordination between the cores
and the LLC prefetcher. We leave this problem for future work.

8 Related Work

Cache space sharing is a well-known source of timing unpredictability in multicore
platforms [4]. Various hardware and software cache partitioning methods have been
studied to improve cache access timing predictability. Way-based cache partition-
ing [35] is the most well-known hardware based approach, which partitions the cache
space at the granularity of cache ways. Some embedded processors and a few recent
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Intel Xeon processors support way-based cache partitioning [12,19]. However, not
all COTS multicore processors support such hardware mechanisms.

Page-coloring is a software-based cache partitioning technique that does not re-
quire any special hardware support other than the standard memory management unit
(MMU). Therefore, it is more readily applicable to most COTS multicore platforms
and has been studied extensively in the real-time systems community [26,30,42,44].
As discussed in 2.2, in page coloring, the OS carefully controls the physical addresses
of memory pages so that they can be allocated in specific sets of the cache. By allo-
cating memory pages over non-overlapping sets of the cache, the OS can effectively
partition the cache. In recent years, page-coloring has also been applied to partition
DRAM banks [29,36,45] and TLB [32]. In this paper, we also use a page-coloring
based technique to partition the shared cache.

Cache locking is another technique to improve cache access timing predictability,
which has been explored in [30] in combination with page coloring. In the MC2

project [9], both hardware-based way-partitioning and page-coloring are used to gain
more flexibility in partitioning the cache.

While all the aforementioned techniques are effective in eliminating cache space
contention problem, they however do not address the problem of MSHR contention.

In the context of general purpose computing systems, hardware based adaptive
management of MSHRs has been studied in [10,20,21] to improve throughput and
fairness. They use sophisticated hardware mechanisms to periodically estimate the
slowdown ratios of the cores and adaptively control the number of MSHRs to reduce
memory pressure of the cores that cause high interference. While our work is similar
to these works in the sense we also control the number of MSHRs, the key difference
is that in our approach it is controlled by the OS to guarantee the absence of MSHR
contention in real-time tasks, while in their works it is controlled by complex hard-
ware implementations (no OS involvement), which do not guarantee the absence of
MSHR contention.

9 Conclusion

We have shown that cache partitioning does not guarantee predictable cache ac-
cess timing in COTS multicore platforms that use non-blocking caches to exploit
memory-level-parallelism (MLP). Through extensive experimentation on real and
simulated multicore platforms, we have identified that special hardware registers in
non-blocking caches, known as Miss Status Holding Registers (MSHRs), can be a
significant source of contention. We have proposed a hardware and system software
(OS) collaborative approach to efficiently eliminate MSHR contention for multicore
real-time systems. Our evaluation results show that the proposed approach signifi-
cantly improves the cache access timing isolation without noticeable throughput im-
pact.

As future work, we plan to integrate the proposed OS-controlled MSHR man-
agement technique with a DRAM management technique [38] to further improve
isolation of high-performance multicore real-time systems.
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