
Memory Access Control in Multiprocessor for Real-time Systems with
Mixed Criticality

Heechul Yun‡, Gang Yao‡, Rodolfo Pellizzoni?, Marco Caccamo‡, Lui Sha‡
‡ University of Illinois at Urbana-Champaign, USA. {heechul,gangyao,mcaccamo,lrs}@illinois.edu

? University of Waterloo, Canada. rpellizz@uwaterloo.ca

Abstract—Shared resource access interference, particularly
memory and system bus, is a big challenge in designing
predictable real-time systems because its worst case behavior
can significantly differ. In this paper, we propose a software
based memory throttling mechanism to explicitly control the
memory interference. We developed analytic solutions to com-
pute proper throttling parameters that satisfy schedulability
of critical tasks while minimize performance impact caused by
throttling. We implemented the mechanism in Linux kernel and
evaluated isolation guarantee and overall performance impact
using a set of synthetic and real applications.

I. INTRODUCTION

Data intensive workloads, which require frequent memory
accesses, are increasingly more pervasive in modern embed-
ded computing systems including critical real-time systems.
For example, an aircraft now processes massive vision data
in real-time to track objects in flight [1]. Processing such
massive data requires more computing power. Therefore,
there is a growing need for powerful multiprocessor to
consolidate such workloads.

Consolidating data intensive tasks together with critical
real-time tasks, however, poses a significant challenge due
to interference on shared resources such as system bus
and memory. It becomes more apparent as core count and
memory intensity of tasks increase. The authors of [2] shows
that a task can suffer 300% WCET increase due to memory
interference even when tasks spend only 10% of their time
on fetching memory in an eight core system.

One solution is to use specialized hardware which has
capabilities to control such interferences. For example, a
predictable DRAM controller [3] can provide guaranteed
bandwidth and latency on accessing memory. Similarly a
TDMA based system bus [4] can provide timing guarantee
on accessing the shared bus. Hardware based approaches,
however, prevent us from using cost effective commercial
off-the shelf (COTS) components.

In this paper, we propose to use a software based memory
throttling mechanism to explicitly control the memory inter-
ference. The basic idea of memory throttling is periodically
limit the amount of memory accesses (i.e., last level cache-
misses or LLC misses) similar to aperiodic servers for
CPU bandwidth reservation [5]. In our implementation, OS
scheduler directly monitors cache-misses of each core and
dequeue/enqueue tasks based on the specified cache-miss
budget and the period.

Using this mechanism, we are interested in protecting
critical tasks from non-critical tasks where tasks are parti-

tioned based on their criticality. As a first step, we consider
a scenario where critical tasks run on a single core, we call
critical core, and non-critical tasks run on the rest of the
cores, we call interfering cores, as shown Figure 1. The
interfering cores are, however, throttled using our memory
throttling mechanism. Our goal is to find the throttling
parameters, namely budgets for a given period value, on the
interfering cores that satisfies schedulability of tasks on the
critical core while minimizing performance impact of tasks
on the interfering cores.

On throttling multiple interfering cores, we consider a
static and a dynamic throttling strategies which differs
in how budget is allocated in each period. We describe
algorithms to get analytic solution on computing throt-
tling parameters. We implemented the throttling mechanism
on Linux kernel by extending standard group scheduling
interface. We experimentally validate how the computed
throttling parameters affect execution time of tasks on the
critical core. We also compare the effect of static or dynamic
throttling strategies in terms of slowdown experienced due
to throttling on the interfering cores.

Although using throttling neither increases memory band-
width of the hardware, nor reduces the memory access
requests from tasks, it provides isolation for critical core
among multiple cores. Our software based approach allows
us to use COTS components and does not require any
modification on the existing applications.

Remainder sections are organized as follows. Section II in-
troduces memory throttling mechanism. Section III formally
defines system model and the problem. Section IV describes
solution in the case of single interfering core. Section V
extends the results to multiple interfering cores. Section
VI shows experiment results. We discuss the limitation and
future work in Section VII and conclude in Section IX.

II. MEMORY THROTTLING

In this section, we introduce our software based memory
throttling controller. In a typical shared memory multi-core
system, there is a shared system bus and memory controller
that arbitrates memory read/write requests among cores.
The arbitration scheme usually tries to maximize the bus
bandwidth and it is unaware of priority between memory
requests. As a consequence, individual request can be de-
layed by requests from the other cores. Memory throttling
is a technique to limit the memory request rate of each core.
For example, if memory requests from a core exceeds a
predefined value for a given duration of time, a memory

CORE CORE CORE CORE

SYSTEM BUS

RTOS Linux SMP

I D I D I D I D

MEMORY

Critical Core Interfering Cores

Figure 1: System model.

controller can delay the requests in order to maintain the
specified rate for the core. In this way, we can limit the
level of allowed interference of each core. While it can be
implemented in hardware [6], we choose a software based
approach for flexibility.

Fig. 2 shows how the throttling is performed in software.
While executing tasks on a core, the scheduler monitors
memory traffic by accounting the number of last level cache
(LLC) misses. If the memory traffic exceeds the pre-defined
budget, Q, the scheduler throttles tasks by temporarily
dequeuing all the tasks in the run queue for the core so that
no further requests can be performed in that period, P . At the
beginning of the next period, the scheduler replenishes the
budget in full and re-enqueues the throttled tasks, if any. To
monitor LLC misses, we configured a hardware performance
counter (PMC) in each core.

The behavior of throttling mechanism is similar to de-
ferrable server [5] in aperiodic task scheduling in the sense
that it allows quota to be used in full at any time during the
interval.

We implemented the throttling mechanism by extending
the standard Linux group scheduling interface called cgroup.
The cgroup interface is originally designed to specify frac-
tion of system resources such as CPU cores and memory
capacity to a group of tasks. We extended the cgroup
interface so that we can specify memory bandwidth with
a pair of period P and budget Q.

This architecture allows us to enforce memory throttling

Task

(a) accounting cache-misses

(b) budget exhausted,
dequeue task

Period

Task

(c) re-enqueue
task

Time

Figure 2: Basic throttling mechanism.

(1) for each individual core by creating a cgroup for each
core, or (2) for a group of cores by creating a single cgroup
and assigning the cores to the cgroup. We call the former
scheme static budget assignment and the latter dynamic
budget assignment, which we will detail in Section V.

In this paper, we use the described throttling mechanism as
a tool for providing performance isolation for a critical core
running critical tasks, from other interfering cores running
potentially unpredictable workload. Yet another goal is to
minimize delay for the tasks running on the interfering cores
while satisfying the schedulability tasks on the critical core.

In the next section, we first formally define the system
model and the problem.

III. SYSTEM MODEL

We consider a multiprocessor architecture as shown in
Fig. 1 where system bus and memory are shared among
cores and each core has its private cache. We assume that
cache miss is synchronous in the sense that whenever there is
a miss, the core is stalling until the cacheline is fetched from
the memory. There is only one DRAM controller connected
to the system bus which is a common system configuration in
practice. Furthermore, we assume that a single core can fully
utilize memory bandwidth and the bus arbitration scheme
is based on round-robin algorithm. These assumptions are
reasonable for many existing platforms including the Intel
platform we used in this paper.

We categorize cores into two groups, a core under analysis
which we call a critical core and interfering cores. For
the core under analysis, we assume that a fixed priority
preemptive scheduler is used to schedule tasks. We assume
WCET and the worst case number of cache misses for each
task are given a priori. These parameters can be obtained
from static analysis or from measurement by running in
isolation. We assume preemption does not affect the number
of cache-misses of a task, for example by partitioning cache
to each task.

On the core under analysis, i.e., critical core, a set T =
τ1, . . . , τn of n periodic real-time tasks are scheduled with a
deadline monotonic scheduling algorithm; the period and the
relative deadline of τi is denoted by Ti and Di (Di < Ti).
The WCET of a task is denoted by Ci and the number of
worst case cache misses is given by CMi. Note that the
CMi does not necessarily coincide the worst case execution
path. We denote the subset of tasks with priority higher/lower
than task τi with hp(i)/lp(i), and further more, let hep(i) =
hp(i) ∪ τi.

On the interfering cores, the number of cache-misses can
occur is throttled with period, P , and cache miss budget, Q
as described in Section II. The budget is distributed among
the interfering cores either (1) statically at the beginning
of each period, or (2) dynamically at runtime based on the
demand of each core. We made no assumption about the
scheduling policies on the interfering cores. In other words,
any scheduling algorithm can be used (e.g., CFS in Linux).

The goal is to find the throttling configuration, budget
Q values for a given period P , for throttled cores such

2

α(t)

α
u(t)

2Q
3Q

2Q

Bus time

Time interval2Q+P

 =tQ/P+2Q(P−Q)/P

Figure 3: Arrival curve and its upper bound for one throttled core
with P as period and Q as the cache-miss budget.

that satisfies schedulability of critical tasks on the critical
core while minimizing slowdown of tasks running on the
interfering cores.

IV. SINGLE INTERFERING CORE

In this section we consider a simple case where there are
only two cores: one is the core under analysis with critical
tasks assigned to it and the other is the interfering core.
We later extend our analysis to consider multiple interfering
cores in the next section.

We first describe how memory contention from the in-
terfering core can be estimated based on the throttling
parameters as presented in [7]. We then extend the response
time analysis by taking into account the task stalling caused
by contention from interfering cores. Finally, we formulate
a problem of finding a throttling budget Q for a given period
P of the interfering core such that the schedulability of the
tasks assigned on the critical core is satisfied.

A. Flow “reshaping” by throttling

In order to account the task stalling due to the contention
on the shared memory, we need to know the memory
access pattern of the task. However, this turns to be rather
complicated since it heavily depends on the dynamic task
execution as well as the scheduling algorithm applied on the
system. Prior work either assumes a specific memory access
pattern [8] or a static cyclic scheduler [2], [4], however,
these approaches suffer limitations when applying to the real
applications.

The throttling mechanism, described in Section II, pro-
vides another alternative to account the memory accesses
from the interfering core. The throttling controller works
independently of the specific scheduler and task set on the
throttled core, it simply stalls the task on the throttled core
when the budget is consumed within the period.

The arrival curve of the flow can be derived similar to
the method as commonly found in [9], i.e., the maximum
possible traffic amount α(t) for a given time interval t. In the
worst case the core can generate up to 2Q continuous cache
misses in a time window with 2Q length due to the back
logged one Q from the previous period, and then another
Q every period. The derived flow arrival curve is shown in
Figure 3. Notice that this curve is a step function and the
upper bound of the arrival curve, αu(t), is also depicted in
the figure.

B. Stall time calculation

As we assumed that the inter-connection network to
memory is bus and its arbitration is based on round robin,
each memory access could be delayed by one memory access
from the other core. The stall that one task can suffer
depends on both the number of memory accesses this task
needs to perform, as well as the number of memory accesses
generated on the other core during this task’s execution. To
this end, we show how these two factors and the task stall
can be accounted.

Let us consider a task which generates CM memory
accesses in worst case. Since each access can be delayed
by interfering core’s access, the maximum stall time this
task can suffer is upper bounded by CM ·L where L is the
time needed to perform one memory access. It represents
the task interior requirement on the memory resource.

The task stall due to the memory accesses from the other
core can be estimated by accounting the memory access
traffic during this task’s execution. However, unlike the CM
value which does not change depending on its stall time,
there is a circular dependency between the task stall time
and the number of memory accesses from the other core.
Figure 41 illustrates the stall for one task with worst case
execution time C, measured in isolation, and a throttled core
with arrival curve α(t). The amount of traffic d1 = α(C)
during the task’s execution could interfere this task and
cause an increase of d1 in its execution time. However, the
increased execution time, C + d1, would possibly suffer a
higher level of memory traffic interference, which is equal to
d2 = α(C + d1). This process continues until it converges.
As clearly showed in the figure, this can be formulated as
an iterative procedure, it terminates and returns the stall for
this task when the procedure is converged at ∆, that is

d(k+1) = α(C + d(k)) (1)

Finally, the task stall cannot exceed one of these two
factors—cache misses of the task under analysis and the
interfering flow of the other core, hence, the stalled execution
time Ĉ for one task can be expressed as the solution of this
iterative procedure:

Ĉ(k+1) = C + min{CM · L,α(Ĉ(k))} (2)

C. Extended response time analysis

With the stalled execution time for each task ,we can
perform the classical response time analysis [10]. However,
this turns out to be quite pessimistic as each task under
analysis is assumed to possibly suffer the 2Q delay. In
reality, this cannot happen since for a continuous time
interval, there could be only one back-logged Q at the
beginning. We still use the iterative response time analysis;
refine it by adding another term to account the delay due to
the memory contention with other core. The main intuition
is that, instead of applying the delay upon each single task,

1The time length in the figure is selected to better demonstrate the
iterative procedure of task stall calculation. i.e., ∆ ≤ C and α(t) ≤ t
in Figure 4.

3

d1

d1

d2

(t)α

d2
d3

C

Time

Stall

∆

∆

Figure 4: The circular dependency between the traffic from throt-
tled core and the stall of task on the critical core, d represents the
amount of traffic for a given time interval while ∆ represents the
overall stall for this task.

we directly compute the delay for the response time at each
iteration.

The iterative response time calculation is expressed as
follows:

R
(k+1)
i =Ci+

∑
τj∈hp(i)

⌈
R

(k)
i

Tj

⌉
·Cj+min{N (R(k))·L,α(R(k))}

(3)
where

N (t) = CMi +
∑

τj∈hp(i)

⌈
t

Tj

⌉
· CMj . (4)

When ignoring the third term on the RHS of the equa-
tion, this is exactly the same as the classical response
time analysis. The new introduced third term represents the
maximum possible stall upon all tasks executing (include
τi itself and the preempting tasks) during the time interval
Rk. Specifically, number N (Rk) captures the total number
of cache misses among all tasks executing within this time
interval Rk, whereas α(Rk) is the total memory access
traffic from the throttled core during Rk. Following the stall
analysis for one task in previous subsection, we know that
the third term (the min function) is the total stall caused by
memory contention between all the executing tasks and the
traffic from the throttled core within this Ri time interval.
The response time of τi is obtained when Rk converges as
the classical response time analysis.

D. Calculation of throttling budget

Given a throttling period P on the throttled core, we now
consider how to calculate the maximum budget value Q
such that the tasks assigned on the critical core can have
their deadlines guaranteed. We first assume that tasks are
schedulable when they run in isolation. We also assume
the tasks on the critical core are scheduled according to
fixed priority assignment with τ1 being the highest priority

task, the budget Q for the throttled core can be calculated
by considering the feasibility of individual task on the
critical core, in decreasing priority order. Let Qi denote
the maximum budget value such that the subset hep(i) on
critical core have their deadline satisfied. The following
properties can be derived.

Property 1. The Qi sequence is monotonically non in-
creasing.

Property 2. The maximum budget that can be assigned
to the throttled core is Qn where n is the number of tasks
on the critical core.

Proof: Property 1 can be easily proved by contradiction.
Suppose for a task τi, there exists one task τj ∈ lp(i) with
Qj value larger than Qi. Since Qj is the value such that the
task set hep(j) is feasible, hence task subset hep(i) ∈ hp(j)
is also feasible. This contradicts the assumption that Qi is
largest value such that hep(i) is feasible.

Property 2 follows directly from Property 1.
The overall algorithm to compute the budget Q is pre-

sented in Algorithm 1. Line 2 initializes the Q value to the
period P ; this serves as the upper bound of Q. Then the tasks
on the critical are checked in decreasing priority order: if the
task is verified to be feasible by computing its response time,
then the algorithm moves on to the next task; otherwise, the
value Qi is calculated and Q is updated with Qi. Notice
that since the algorithm follows the priority order, hp(i) is
guaranteed to be feasible when checking task τi, hence Line
5 only needs to deal with task τi alone. Finally, when the
algorithm finishes all the tasks, it returns the value Q as the
maximum budget for the throttled core.

Input: The throttling period P and the taskset
parameters on the critical core.

Output: The maximum budget value Q such that the
critical core is feasible

1 begin
2 Q = P ;
3 for i← 1 to n do
4 Calculate the response time Ri according to

Equation (3) ;
5 if Ri > Di then
6 Calculate Qi such that τi is feasible ;
7 update Q with Q = Qi;

8 return Q ;
Algorithm 1: Calculate budget Q such that the critical core
is feasible.

Now it remains to explain how to calculate Qi to make
τi feasible, as the Line 5 in the algorithm. Notice the
response time calculation depends on both the arrival times
of high priority tasks and the delay caused by the throttled
core during the response time interval, which makes the Q
calculation not straightforward. Since for a given traffic delay
function α(t), the response time function for τi has dis-
continuous points only at the arrival time of high priority
task. We denote this set of time instants as the testing set as

4

in the following equation.

T S(τi)
.
= {t|t ∈ [Ci, Di] ∩ t = k · Tj ∀τj ∈ hp(i), k ∈ N}

(5)
For a certain time point from T S(τi), the number of

preemptions on τi is a fixed value independently of the
traffic function, which allows us to solve the α(t) function in
terms of budget Q. The Q can be calculated by the following
equation:

Qi(t) =

∅; if S(t) ≤ 0

∞; if S(t) ≥ N (t) · L
2P+t

4 − ((2P+t)2−8S(t)P)1/2

4

if 0 < S(t) < N (t) · L

(6)

where S(t) is the maximum allowed stall time for τi at time
t that still satisfies the schdulability constraints and can be
expressed

S(t)
.
= t− Ci −

∑
τj∈hp(i)

⌈
t

Tj

⌉
· Cj . (7)

Proof: The first case is when the task execution plus
the interference due to the preemptions from high priority
tasks already exceeds the time interval t, hence, there is
no solution at this point. On the other hand, the second
line shows the situation when the cache misses from the
tasks executing on this core is small or the task slack is big
enough, such that the delay bound from the task itself is
enough, regardless of the traffic flow on the other core.

The throttling mechanism plays an important role in the
third case: we have to limit the memory access traffic from
the other core by controlling the budget Q so that the delay
on this task would not cause deadline miss. With the upper
bound of traffic function as shown in Fig. 3, we have

α(t) ≤ αu(t) = t
Q

P
+

2Q(P −Q)

P
.

hence it is enough to guarantee that

t
Q

P
+

2Q(P −Q)

P
≤ S(t). (8)

Solve this equation and discard the unfeasible solution we
get

Q ≤ 2P + t

4
− ((2P + t)2 − 8S(t)P)1/2

4
.

This proves the Equation (6).
Notice that τi is feasible if there exists one point from

T S(τi) that satisfies Equation (3), therefore, the budget
value Qi that guarantees the feasibility of τi can be expressed
as:

Qi = max
t∈T S(τi)

Qi(t) (9)

where Qi(t) is computed according to Equation (6).
With this calculated Qi for each task, now we can follow

Algorithm 1 to calculate the budget Q for the throttled
core with the schedulability of the tasks on the critical core
guaranteed.

V. MULTIPLE INTERFERING CORES

Having shown the interference from one single core to
the critical core, now we extend the result to the case
when the system contains several throttled cores, which
both contend for the access to the main memory with
the critical core. This is the situation shown in Figure 1.
Depends on how the budget is distributed among all the
throttled cores, we propose two different throttling schemes:
static budget distribution, which assigns fixed amount of
budget to each core, and dynamic budget distribution, which
assigns dynamically assign budget on-demand basis. For
each scheme, our goal is to find a budget assignment for
throttled cores that maximizes utilization of throttled cores
that satisfy schedulability of the critical core.

A. Static budget distribution

In this scheme, we consider each core owns its budget
which is statically distributed from a global budget and
all cores share the same period. We assume the static
distribution proportion for each throttled core is given in
priori by, for example, analyzing the characteristics of tasks
on each throttled core.

First, we describe method to compute the stall of one
task on the critical core. Assuming each throttled core has
an individual budget, it is easy to see the upper bound of
its memory access can be computed by the corresponding
period and budget. Similar to the analysis presented in
the previous section, we denote the arrival curve for each
throttled core by αc(t), where c = 1, . . . ,M and M is the
number of throttled cores. The increased execution time of
one single task τl on the critical core, denoted by Ĉl, can
be computed by the following iterative way:

Ĉ
(k+1)
l = Cl +

∑
1≤c≤M

min{CMl · L, αc(Ĉ(k)
l)} (10)

The stalled execution time is calculated by summing up all
the delays caused by each throttled core and its original ex-
ecution time. The delay factor from each core is determined
similar to Equation (2) as analyzed in the section before:
the cache misses due to the task itself or the memory traffic
flow from the throttled cores. When the iterative procedure
converges, it returns the increased execution time, which
includes the original execution requirement plus maximum
delay from all throttled cores during this increased execution
time.

The response time analysis can be extended to the multi
throttled core case with the similar technique used for the
single throttled core. The main intuition is that, at each
iteration we should consider delay from each throttled core
and sum them up, as showed in the next equation.

R
(k+1)
i =Ci+

∑
τj∈hp(i)

⌈
R

(k)
i

Tj

⌉
Cj+

∑
1≤c≤M

min{N (R(k))L,αc(R
(k))}

(11)

5

, where N (t) is defined in Equation (4) and c is the index
of throttled core.

We assume throttled core with index c ∈ [1,M] is
assigned a fixed ratio rc of the global budget, i.e., the budget
for this core is rcQi. Furthermore, let the throttled cores
are indexed by increasing ratio order. Given the distribution
proportion of global budget, how to calculate the budget still
turns out to be a problem not easy to solve. The tricky
part is that when summing up the delay factor from each
throttled core, it is obtained either from the task cache miss
(as the first item in the min function) or the throttled core
flow (as the second item in the min function), depending on
the specific arrival curve of this throttled core and the time
instant.

To consider the schedulability of one task τi, i ∈ [1, N],
on the critical core, we get the testing set T S(τi) for τi as
in Equation (5) and the slack S(t), as defined in Equation
(7), at one specific time instant in the testing set. When
considering the schedulability of the task τi, for a given
time instant t ∈ T S(τi) and one throttled core with index
c ∈ [1,M], we calculate the ranges of global budget so
that we can determine the delay from this throttled core is
obtained from which factor. Notice that because the throttled
cores are indexed by the order of budget ratio, therefore the
arrival function, we can now determine the delay factor for
the remaining throttled cores. We solve the equation of the
Qc,ti and consider all the indexes of c, t, to get the value of
Qi to make task τi on the critical core schedulable. Finally,
we merge all the solutions for each task τi on the critical
core to get the final result of Q.

The computation process is explained in detail now. We
need to distinguish three cases depends on the range of value
S(t):

When S(t) is no larger than 0. In this case, the task on
the critical core could not suffer any delay at this time point.
Therefore, the budget would be zero.

When S(t) is no less than M · N (t)L. In this case, no
matter how large the traffic flow would be, since the delay
from each core is bounded by N (t)L, the budget can be
assigned arbitrarily.

We focus on the case when S(t) is within the range
between the two previous values. The main idea is to divide
the throttled cores by the return value of the min function
in Equation (11). Since the throttled cores are indexed by
increasing budget ratio, there may exist one core with index
c such that, for a specific time instant t and a global budget
Qi, the delay from the throttled core with a index no less
than c is obtained from the task cache miss term. These
cores have even higher traffic flow and the min function
would return the task cache miss item. Now consider the
min function and replace R(k) by t we have:

αc(t) ≥ N (t)L

where N (t) is defined in Equation (4). Notice the αc(t)
function is a step function and its upper bound αuc (t) is
used to simplify the computation.

αuc (t) = t
rcQi
P

+
2rcQi(P − rcQi)

P
≥ N (t)L

Solving this equation, let QLi (c, t) denote the lower bound
of Q value such that stall caused by core c at time t is
obtained from the cache miss part, we have:

Qc,ti ≥Q
L
i (c, t)=

rc(2P + t)

4r2c
− (r2c (2P + t)2 − 8r2cLN (t)P)1/2

4r2c
.

(12)
Now that we know if Qc,ti is larger than QLi (c, t), the

core with index no less than c would cause delay equal to
the cache miss part. This is actually the key idea to solve the
problem, we group the cores into the two sets depending on
their flow value. To be more specific, the first c−1 throttled
core contribute stall from the traffic flow part, while the
remaining cores (starting from index c inclusive) contribute
N (t)L each. Now we are ready to tackle Equation (11). The
third item of the RHS with R(k) replaced by t is:

∑
1≤c≤M

min{N (t)L,αc(t)} =
∑

1≤j<c

αj(t)+(M−c+1)N (t)L

Therefore, Equation (11) can be rewritten as∑
1≤j<c

αj(t) + (M − c+ 1)N (t)L ≤ S(t)

where S(t) is defined as in Equation (7)
Now the solution becomes similar to the single throttled

core case: we expand the summation part αj for each
throttled core with rj and Qi and sum up. Let Ŝ(t) = S(t)−
(M−c+1)∗N (t)L, r̂c =

∑
1≤j<c rj and r̂∗c =

∑
1≤j<c r

2
j .

Then we are ready to solve the following equation to get Q:

t
r̂cQi
P

+
2r̂cQiP − 2r̂∗cQ

2
i

P
≤ Ŝ(t).

Let QHi (c, t) denote the upper bound of Q value this
equation is satisfied. We get:

Qc,ti ≤Q
H(c, t)=

r̂c(2P + t)

4r̂∗c
− (r̂c

2(2P + t)2 − 8r̂∗cS(t)P)1/2

4r̂∗c
(13)

Put Equation (12) and Equation (13) together and consider
all indexes of throttled cores and all time points in testing set.
Since task τi is schedulable as long as there is one throttled
core c and one time instant t ∈ T S(τi) satisfied, we have:

Qi =
⋃

1≤c≤M

⋃
t∈T S(τi)

{Qc,ti ≥ Q
L
i (c, t)

⋂
Qc,ti ≤ Q

H
i (c, t)}

(14)
where QLi (c, t) and QHi (c, t) are solved in Equation (12)
and Equation (13) respectively.

Finally, considering the multiple tasks on the critical core,
the final result on Q is the intersection of all Qi ranges.

Q =
⋂

1≤i≤N

Qi

where each Qi is calculated in Equation 14.

6

CORE 0 CORE 1 CORE 2 CORE 3

SYSTEM BUS

I D I D I D I D

MEMORY

L2 Cache L2 Cache

Intel Core2Quad Processor

Figure 5: Architecture of our evaluation platform.

B. Dynamic budget distribution

In this scheme, all throttled cores share a single global
budget and a period. When each core accesses memory,
it consumes the global budget. When the global budget is
exhausted, tasks on all throttled cores are suspended until
the next period begins.

The dynamic budget distribution scheme reduces the pos-
sibility of throttling on the throttled cores because budget is
consumed more efficiently on-demand basis. Therefore it im-
proves responsiveness of applications on the throttled cores.
It becomes more evident when tasks have high variance on
memory access requests. On the other hand, however, it
makes analysis more difficult, because budget distribution
among cores keeps changing over time.

A safe, but pessimistic, upper bound of delay function is

Ĉ(k+1) = C + min{M · CM · L,α(Ĉ(k))} (15)

where M is the number of interfering cores. This is identical
to Equation (2) except that M is multiplied in the first part
of the min function. This is because the critical task on the
critical core now can wait up to M arbitration.

Similarly, we can use Equation (3) for response time
analysis just by multiplying M to the first part, N (Rk),
of the min function.

Finally, computing the global budget Q can be obtained
by using Equation (6), again multiplying M to all N (t)L.

Note that this analysis is more pessimistic than the
analysis in Section V-A, because we do not consider each
individual flow, which could possibly produce a tighter
bound.

VI. EVALUATION

In this section, we experimentally evaluate our approach
in terms of isolation guarantee of the critical core and
performance impact of throttled cores (i.e., interfering cores).

The testbed contains Intel Core2Quad Q8400 processor
running at 2.66GHz shown in Figure 5. Core0-1 share a 2MB
L2 cache, and Core2-3 share another 2MB L2 cache. L2
caches are directly connected to the shared FSB running at
1333MHz. For this paper, we only use Core1 and Core3 for
the experiment in order to eliminate the effect by sharing L2

Cache misses

Time30 40

DeadlineWCET

Figure 6: Task under analysis on the critical core.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 20 40 60 80 100

R
el

at
iv

e
ex

ec
u
ti

o
n
 t

im
e

o
n
 t

h
e

cr
it

ic
al

 c
o
re

Throttling memory b/w(%) on the interfering core

measured
calculated

Figure 7: Impact of throttling bandwidth to the response time on
the critical core.

cache 2. We experimentally obtained the maximum memory
bandwidth of 1.8GB/s and the average cost of 33ns for an
single cache-miss delay (i.e., L = 33ns). In this section, we
use the number of cache-misses to specify budget, instead of
stall time. We convert the cache-miss budget into stall time
value by multiplying 33ns. We use last level cache (LLC)
miss count, reported from hardware performance counter of
each core, as the cache-miss number. We use Linux 3.2.0
kernel and patched 3 the scheduler as described in Section II.

A. Response Time on the Critical Core

We present measured response time on the critical core
while varying memory bandwidth on the interfering core. In
this experiment, we use Core1 as a critical core and Core3
as an interfering core. The interfering core is regulated by
the throttling mechanism with period P , and budget Q.

Fig. 6 shows the task under analysis,τcrit, that runs on
Core1. It is engineered to take 30ms to finish when run in
isolation; it spends 50% of time stall on cache-misses. The
cache-misses are placed in 10 equally spaced chunks; each
chunk generates 1.5ms of continuous cache-misses; Note
that we engineered each memory access to cause a cache-
miss during the chunk. Then the task spends another 1.5ms
for pure computation without any cache-miss.

On Core3 another engineered task, τinter, is running. It
generates continuous cache-misses but throttled with P and
Q values. We measured response time of τcrit on the critical

2We disabled cpu cores because the processor we used does not support
disabling L2 cache.

3The source code can be found in https://github.com/heechul/linux-sched-
coreidle/tree/sched-3.2-throttle-v2

7

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 10 20 30 40 50 60 70 80 90 100

C
a
c
h
e
-m

is
se

s

Time (x100ms)

core1
core3

5% mem. b/w

(a) Static budget distribution

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 10 20 30 40 50 60 70 80 90 100

C
a
c
h
e
-m

is
se

s

Time (x100ms)

core1
core3

5% mem b/w

(b) Dynamic budget distribution

Figure 8: Cache-miss differences between static vs dynamic budget
distribution scheme. Red line is Core1 and blue line is Core3

Scheme Total throttled time
Static 9,689 ms

Dynamic 4,622 ms

Table I: Throttling time of interfering cores.

core, while varying the throttling memory bandwidth of the
interfering core.

Figure 7 shows response time impact of throttling. X-axis
shows the allocated memory bandwidth on the interfering
core, Core3; The throttling period, P , is set to 10ms and
budget, Q, is varied so that the bandwidth changes from
0 to 100%. Note that zero bandwidth is equivalent to the
case when nothing is running on the interfering core. Y-
axis shows the relative response time increase of Tcrit on
the critical core. The calculated curve shows the calculated
response time of Tcrit according to Eq 2. The measured
curve shows the measured worst case response time among
1000 repeated invocations of Tcrit; We randomly vary the
interval time between two successive invocations from 0 to
30ms in order not to be affected by regularity of interfering
flow on the interfering core.

In calculated curve, response time increases as the as-
signed bandwidth of the interfering core increases. When the
assigned bandwidth increases above 30%, resulting response
time saturates because from that point it is bounded by
the number of cache-misses of the Tcrit itself. In measured
curve, response time also increases as bandwidth increases,
but slower than the calculated curve. Notice that response
time increase is sharper as assigned bandwidth is above
50% and approaches to the calculated bound. The difference
between the calculated and measured curves show pessimism
of our analysis. In the analysis, we considered the worst
case scenario where every cache-miss from tcrit is delayed
from cache-misses of the interfering core. However, the
probability of such worst case scenario is low in a real
situation as suggested by the measurement result.

B. Performance Impact on Throttled Cores

In this experiment, we compare performance impact of
throttled cores under static and dynamic budget distribution
schemes with realistic workload.

We use both Core1 and Core3 as interfering cores. In this
experiment, we do not have a critical core, since we focus
on the impact of budget distribution schemes on the throttled
cores. We use two mpeg4 video streams, 720p and 1080p

movie trailers, as workloads and played them on Core1 and
Core3 respectively using mplayer.

For static scheme, the total budget is configured to be
evenly divided between the two cores. We set the period
equal to 10ms and the budget equal to approximately 5%
of memory bandwidth (15000 cache-misses per 10ms per
core). For dynamic configuration, we set the period equal
to the same 10ms and the shared global budget equal to
approximately 10% of memory bandwidth (30000 cache-
misses per 10ms on both cores).

Figure 8 shows measured cache-misses behavior of static
budget distribution scheme and dynamic budget distribution
scheme. X-axis is time in 100ms unit and Y-axis is the num-
ber of measured cache-misses for each 100ms time interval.
At any time instance, both schemes limit the total number of
cache-misses less than the global budget (300,000 misses for
every 100ms). In the case of static scheme, both Core1 and
Core3 are limited to the specified 5% bandwidth (150,000
misses) all the time. Note that, ideally both Core1 and Core3
should not exceed 5% bandwidth line. However, due to
the limitation of current implementation, detailed in Section
VII, we are observing small fluctuation. In case of dynamic
scheme, each core can generate much more cache-misses
than 5% bandwidth line, but when combines the cache-
misses for both cores, it does not exceed 10% bandwidth
limit. This allows more efficient bandwidth utilization.

Table I compares total throttled time, the amount of
suspended time by our kernel throttling controller, measured
over ten seconds of the video playback experiment. In the
static scheme, Core1 and Core3 are throttled total 9,689ms
(Core1: 3019ms, Core3: 6670ms), while they are throttled
only 4,622ms in the dynamic scheme. This is because of
more efficient global budget distribution of the dynamic
scheme.

C. Evaluation Summary

Evaluation result first demonstrate response time impact
of memory throttling both analytically and experimentally
on a real hardware platform. The results suggests that our
technique can provide isolation guarantee with analytic sup-
port. We also investigate performance impact of tasks on the
throttled cores under static and dynamic budget distribution
schemes. The result shows that dynamic distribution scheme
can provide better performance to the throttled cores for the
same aggregated memory bandwidth budget. However, this
can adversely affect to the critical core due to increased
contention and poor analytic bound.

VII. DISCUSSION

There are several assumptions we made on hardware that
may affect the validity of our analysis results. We assume
CPU synchronously waits fetch for cache-miss while it
may concurrently execute out-of-order instructions in reality.
Also, we assume that each single cache-miss take a constant
time, 33ns, but it can vary in reality (e.g., DRAM access
cost significantly differ whether data is located in an opened
row or a closed row). Taking into account of memory

8

access cost could be an interesting research topic. Finally,
we assumed bus arbitration schemes follows round-robin.
However, actual arbitration is not well known and may
differ from vendors. From our observation on the tested
platform, we believe our model reasonably follows the actual
hardware.

Our current throttling implementation has a couple of
limitations in providing guaranteed cache-miss bounds. Ide-
ally, the scheduler should stop immediately after the budget
is exhausted. However, the current implementation polls
the hardware performance counters to account the budget
consumption. The polling occurs at every 1ms or context
switching time, whichever comes first. Therefore, there can
be some amount of jitter from the time when the budget
is expired to the time when scheduler actually performs
the throttling operations. We are working on improving the
implementation to use counter overflow interrupt. This will
allow us to throttle at an exact point.

Another concern is scalability of our approach. Putting
more interfering cores may result in more pessimistic throt-
tling configuration for each of them. As future work, we plan
to investigate adaptive schemes to mitigate pessimism in the
analysis.

VIII. RELATED WORKS

Shared resource contention in modern multi-
core/multiprocessor systems is a big challenge in real-time
system design. Much effort has been spent to develop
analysis frameworks for shared resource arbitration, in
particular bus and memory, to compute worst case timing
bounds. Thiele et al. presented Real-time calculus [11], [12]
to model real-time tasks with request and service curves.
Real-time calculus is extended to support multiprocessor
systems by Leontyev et al [13]. Pellizzoni et al, also used
real-time calculus to model CPU memory traffic and PCI
IO traffic [7]. Schranzhofer el al. developed an analysis
framework to compute the worst-case response time of real-
time tasks under TDMA based bus arbitration and adaptive
arbitration [14], [4]. Pellizzoni el al. also developed a delay
analysis framework for round robin and fifo arbitration
based multiprocessor systems [2]. They assumed a task
consists of a set of superblocks and described the method
to compute tight WCET bound. Our delay model use the
main results from [2], [7] to compute maximum throttling
parameters that still guarantees the schedulability of a
critical core.

A line of research focuses on the scheduling technique
that is aware of resource contention, shared memory and
cache. Calandrino et al. [15], [16] proposed a shared cache
aware scheduling method for improving performance by
co-scheduling tasks preventing cache trashing. Their work
focuses on global multi-core scheduling in the context of
soft real-time applications. Our work considers partitioned
scheduling and focuses on providing hard real-time guaran-
tees for a chosen critical partition. Recently Dasari et al.
[17] developed a response time analysis for COTS based
multi-core systems. However, they do not consider specific

bus arbitration scheme and task cache-miss behavior, hence
more pessimistic than our analysis.

OS level memory throttling is first discussed in literature
by Bellosa [18]. He investigated several implementation
methods and demonstrated the possibility of using throttling
mechanism to reserve memory bandwidth for soft real-
time applications. More recently, hardware clock modulation
based throttling methods have been proposed [19] to provide
QoS guarantees for high-priority applications that co-exist
with memory intensive low priority applications. Existing
studies using throttling were not designed to provide core
isolation and lack analysis needed to support hard real-time
guarantee. In contrast, we focus on analytic method to pro-
vide strong isolation for safety-critical real-time applications.

Better timing guarantees on accessing shared memory and
bus can be achieved by adopting specially designed hardware
architectures. For example, a priority based bus arbiter could
easily solve the problem of protecting critical core presented
in this paper. Predator [20] adapted priority based arbitration
in the context of predictable DRAM controllers to provide
bandwidth and latency guarantees for each requestor. Such
arbitration scheme can be applied to a system bus as well.
Similarily, TDMA based bus arbitration is a very attractive
approach since it allows predictable performance analysis
independent from other cores. Indeed, Rosen et al, designed
a TDMA based system bus arbiter with algorithms that
produce efficient TDMA bus schedules [21]. However, these
schemes require extensive hardware modifications which are
not readily available in modern COTS based systems. Our
approach in contrast is entirely based on software with the
help of hardware performance counters readily available in
most COTS processors.

In real-time systems, various aperiodic real-time servers,
such as deferrable server, polling server, and sporadic
servers, are used execute aperiodic tasks together with other
real-time tasks without messing schedulability analysis [5].
Deferrable server maintains the budget for the duration of
each period. While it maximally utilizes the given budget,
it lowers schedulability because the budget can be executed
in sequence spanning two consecutive periods. Due to its
simplicity in implementation, however, it is commonly used
in practice as shown in CPU bandwidth controller in recent
Linux 3.2 kernel [22]. Sporadic server is theoretically best
but complex to implement and suffer significant overhead in
high load [23]. Our memory throttling controller implemen-
tation follows the semantic of deferrable server.

IX. CONCLUSION

In this study, we presented a method to control shared
resource contention on COTS based multiprocessor for use
in critical real-time systems. As a first step, we considered a
scenario where a dedicated core executes critical tasks while
other cores execute tasks which cause significant accesses
on the shared bus and memory. We presented a software
based memory throttling mechanism and analytic solutions
to compute throttling parameters that guarantee schedulabil-
ity of critical tasks while minimizing performance impact

9

of tasks on the throttled cores. We implemented the mech-
anism in Linux kernel and experimentally demonstrated the
viability of our approach. Future works include extending
this approach for more general scenarios and improving
the throttling implementation to support more fine-grained
control.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for useful feedback
that improved the quality of this paper. The material pre-
sented in this paper is based upon work supported by Lock-
heed Martin and This effort is funded in part by Lockheed
Martin, NSERC, and NSF under Award No. CNS-1035736.
Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do
not necessarily reflect the views of the NSF or Lockheed
Martin.

REFERENCES

[1] A. Kurdila, M. Nechyba, R. Prazenica, W. Dahmen, P. Binev,
R. DeVore, and R. Sharpley, “Vision-based control of micro-
air-vehicles: Progress and problems in estimation,” in Deci-
sion and Control, 2004. CDC. 43rd IEEE Conference on,
vol. 2. IEEE, 2004, pp. 1635–1642.

[2] R. Pellizzoni, A. Schranzhofery, J. Cheny, M. Caccamo, and
L. Thiele, “Worst case delay analysis for memory interference
in multicore systems,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2010. IEEE, 2010,
pp. 741–746.

[3] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a pre-
dictable sdram memory controller,” in Proceedings of the 5th
IEEE/ACM international conference on Hardware/software
codesign and system synthesis. ACM, 2007, pp. 251–256.

[4] A. Schranzhofer, R. Pellizzoni, J. Chen, L. Thiele, and
M. Caccamo, “Timing analysis for resource access inter-
ference on adaptive resource arbiters,” in Real-Time and
Embedded Technology and Applications Symposium (RTAS),
2011 17th IEEE. IEEE, 2011, pp. 213–222.

[5] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task schedul-
ing for hard-real-time systems,” Real-Time Systems, vol. 1,
no. 1, pp. 27–60, 1989.

[6] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a pre-
dictable sdram memory controller,” in Proceedings of the 5th
IEEE/ACM international conference on Hardware/software
codesign and system synthesis. ACM, 2007, pp. 251–256.

[7] R. Pellizzoni and M. Caccamo, “Toward the predictable
integration of real-time cots based systems,” in Real-Time Sys-
tems Symposium, 2007. RTSS 2007. 28th IEEE International.
IEEE, 2007, pp. 73–82.

[8] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Cac-
camo, and R. Kegley, “A predictable execution model for
cots-based embedded systems,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2011 17th
IEEE. IEEE, 2011, pp. 269–279.

[9] I. Shin and I. Lee, “Periodic resource model for composi-
tional real-time guarantees,” in Real-Time Systems Sympo-
sium, 2003. RTSS 2003. 24th IEEE. IEEE, 2003, pp. 2–13.

[10] N.C.Audsley, A. Burns, M.Richardson, K.Tindell, and
A.Wellings, “Applying new scheduling theory to static priority
preemptive scheduling,” Software Engineering Journal, vol. 8,
no. 5, pp. 284–292, 1993.

[11] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time cal-
culus for scheduling hard real-time systems,” in Circuits and
Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000
IEEE International Symposium on, vol. 4. IEEE, 2000, pp.
101–104.

[12] S. Chakraborty, S. Künzli, and L. Thiele, “A general frame-
work for analysing system properties in platform-based em-
bedded system designs,” in Proc. 6th Design, Automation and
Test in Europe (DATE), 2003, pp. 190–195.

[13] H. Leontyev, S. Chakraborty, and J. Anderson, “Multiproces-
sor extensions to real-time calculus,” in Real-Time Systems
Symposium, 2009, RTSS 2009. 30th IEEE. IEEE, 2009, pp.
410–421.

[14] A. Schranzhofer, J. Chen, and L. Thiele, “Timing analysis
for tdma arbitration in resource sharing systems,” in Real-
Time and Embedded Technology and Applications Symposium
(RTAS), 2010 16th IEEE. IEEE, 2010, pp. 215–224.

[15] J. Calandrino and J. Anderson, “Cache-aware real-time
scheduling on multicore platforms: Heuristics and a case
study,” in Real-Time Systems, 2008. ECRTS’08. Euromicro
Conference on. Ieee, 2008, pp. 299–308.

[16] ——, “On the design and implementation of a cache-aware
multicore real-time scheduler,” in Real-Time Systems, 2009.
ECRTS’09. 21st Euromicro Conference on. IEEE, 2009, pp.
194–204.

[17] D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easwaran,
and J. Lee, “Response time analysis of cots-based multicores
considering the contention on the shared memory bus,” in
Trust, Security and Privacy in Computing and Communica-
tions (TrustCom), 2011 IEEE 10th International Conference
on, nov. 2011, pp. 1068 –1075.

[18] F. Bellosa, “Process cruise control: Throttling memory access
in a soft real-time environment,” in Sixteenth Symposium on
Operating Systems Principles (Poster Session), 1997.

[19] A. Herdrich, R. Illikkal, R. Iyer, D. Newell, V. Chadha, and
J. Moses, “Rate-based qos techniques for cache/memory in
cmp platforms,” in Proceedings of the 23rd international
conference on Supercomputing, ser. ICS ’09. ACM, 2009.

[20] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens,
“Real-time scheduling using credit-controlled static-priority
arbitration,” in Embedded and Real-Time Computing Systems
and Applications, 2008. RTCSA’08. 14th IEEE International
Conference on. IEEE, 2008, pp. 3–14.

[21] J. Rosen, A. Andrei, P. Eles, and Z. Peng, “Bus access
optimization for predictable implementation of real-time ap-
plications on multiprocessor systems-on-chip,” in Real-Time
Systems Symposium, 2007. RTSS 2007. 28th IEEE Interna-
tional. IEEE, 2007, pp. 49–60.

[22] P. Turner, B. Rao, and N. Rao, “Cpu bandwidth control for
cfs,” in Ottawa Linux Symposium, 2010.

[23] M. Stanovich, T. Baker, and A. Wang, “Experience with
sporadic server scheduling in linux: Theory vs. practice,” in
Real-Time Linux Workshop, 2011, 2011.

10

