
Understanding and Mitigating Hardware
Interference Channels on Heterogeneous Multicore

Heechul Yun
University of Kansas, USA.

heechul.yun@ku.edu

Abstract—Contention for shared microarchitectural resources
is a significant challenge for using modern heterogeneous multi-
core processors in safety-critical real-time applications.

In this talk, I will first discuss major microarchitectural
interference channels in modern multicore architecture. I will
describe why microarchitectural designs aiming to achieve high
memory-level parallelism (MLP), such as non-blocking cache and
banked cache/DRAM organizations, could also become prob-
lematic interference channels from a real-time perspective. To
illustrate their potential dangers, I will explain several effective
“attack” strategies that have been shown to cause massive cross-
core interference in real multicore platforms.

Next, I will focus on the industrial challenge put forth by ARM
in 2022, which is based on an augmented reality head-up display
case-study from the automotive domain. I will discuss the impact
of “aggressor” workloads on the performance of the case study’s
real-time applications on a real heterogeneous multicore platform
(Jetson Nano). I will then present our software-based solution to
achieve desired real-time performance without resorting to over-
provisioning. Lastly, I will discuss the limitations of our approach
and the need for better hardware support.

I. INTRODUCTION

Heterogeneous multicore platforms are increasingly being
adopted in safety-critical cyber physical systems (CPS) to meet
their growing performance requirements while meeting size,
weight, power and cost (SWaP-C) constraints. Applications
running on these systems are often subject to stringent real-
time and safety requirements. However, meeting these require-
ments on a heterogeneous multicore platform is challenging
because contention on shared hardware resources among the
computing elements in the platform can dramatically impact
the execution timing and jeopardize the safety of the system.

In this presentation, we first summarize common character-
istics of modern multicore architecture, which are essential for
performance but also problematic interference channels from a
real-time perspective. We then describe how we mitigated the
interference channels of a heterogeneous multicore platform
to tackle the ARM industrial challenge [4]. Lastly, we discuss
the potentials and limitations of existing hardware support for
shared hardware resource management and the need for better
hardware support.

II. UNDERSTANDING INTERFERENCE CHANNELS

Modern multicore architectures employ various techniques
to improve performance. Much of the optimization is focused
on improving memory performance, as memory has become
a critical bottleneck that limits the performance of multi-
core [21]. The introduction of heterogeneous computing units,

such as graphic processing units (GPUs), only exacerbates
the memory problem. Therefore, memory-level parallelism
(MLP) is key to understand modern multicore architecture,
where MLP refers to the ability to perform multiple memory
operations concurrently in parallel.

In a modern multicore processor (MCP), even a single CPU
core can generate multiple concurrent memory requests to the
memory hierarchy. Integrating multiple cores and accelerators
on a single chip means that the memory hierarchy—caches,
buses, memory controllers, and the main memory—must be
able to provide a very high degree of MLP to minimize mem-
ory related stalls. For this reason, the interconnect (bus) used
in modern multicore supports split-transactions to allow many
concurrent outstanding memory accesses [18]. The caches are
non-blocking as they can serve cache hit requests even while
multiple outstanding cache misses are pending [15]. Memory
controllers can buffer multiple requests and schedule them in
ways to maximize memory performance (throughput) [16],
[23]. In addition, caches and main memory (DRAM) adopt
multi-bank organizations so that access to different banks can
occur simultaneously without delay [5], [6], [23]. In short,
high MLP designs at all levels of the memory hierarchy are
essential for performance in modern multicore architectures.

However, they can also be problematic interference chan-
nels. Firstly, we have shown that, even after cache partitioning,
a task accessing a dedicated cache partition can be delayed dra-
matically due to contention in other shared hardware resources,
such as miss-status-holding registers (MSHRs) and write-back
buffers in non-blocking caches [20], [12]. Moreover, we have
shown that the multi-bank organization of shared cache and
DRAM can also be exploited to cause extreme worst-case
contention and slowdowns [8], [11], [10]. Specifically, we
show that generating lots of concurrent memory requests that
are targeted at a specific cache or DRAM bank (i.e., bank-
aware memory access) is much more effective in creating
contention than simply generating lots of requests that may
be accessing all cache/dram banks (i.e., bank unaware). The
latter can be processed efficiently in parallel, while the former
cannot, thereby dramatically delaying the victim’s requests to
the contended bank.

In summary, our findings are: (1) MLP is key to un-
derstand modern multicore processors; (2) High MLP de-
signs at all levels of the memory hierarchy are essential
for performance/throughput, but they also can be problematic
hardware interference channels from a real-time perspective;



(3) Contrary to popular beliefs, interconnects are usually not
major interference channels in modern MCPs. Major ones
are at the edges; (4) There are effective “attack” strategies
to cause massive cross-core interference, which cannot be
easily mitigated by existing software/hardware partitioning
techniques.

III. MITIGATING INTERFERENCE CHANNELS

In 2022, ARM presented an industrial challenge to stimulate
innovations in developing “novel methodologies, tools, and
best practices to assist application designers working on high-
performance real-time systems” [4]. The case-study in the
challenge is based on an augmented reality heads-up display
(AR-HUD) application, whose main workloads are composed
of a visual simultaneous localization and mapping (SLAM)
and a driver head pose estimation deep neural network (DNN).
According to ARM [4], it can be considered a represen-
tative example of a high-performance real-time use case.
The challenge introduces “aggressor” workloads, which may
compete for the shared hardware resources alongside the main
workloads. As such, a key objective is to ensure the real-time
performance of the main real-time workloads in the presence
of the aggressor workloads.

In [10], we study the effects of various aggressor workloads
on the real-time performance of the AR-HUD application,
particularly the SLAM task, on a heterogeneous multicore
platform (NVidia Jetson Nano). While all tested aggressor
workloads were effective at degrading the performance of
the SLAM task, a cache bank-aware denial-of-service (DoS)
attack, which targets a specific shared L2 cache bank [11],
has shown to be the most effective. This is despite our best
effort to isolate the SLAM task by applying a state-of-the-art
cache partitioning technique [22], and allocating a dedicated
cache partition to it. Because the aggressor targets the L2 cache
but not the DRAM, memory bandwidth throttling techniques
such as MemGuard [24] are also not effective in protecting the
SLAM task. We also find that even without any aggressors, the
other main workload of the AR-HUD application, the DNN
task, which runs on the integrated GPU, significantly degrades
the performance of the SLAM due to DRAM bandwidth
contention between the CPU and the GPU.

To tackle the ARM industrial challenge, we propose RT-
Gang++ [10], which integrates and extends several techniques
we previously developed to mitigate the hardware interference
channels. First, it supports L2 cache bandwidth throttling [11]
by extending MemGuard [24] to monitor and regulate L2
cache bandwidth rather than DRAM bandwidth. Second, it
supports memory bandwidth throttling of the integrated GPU
by utilizing the platform’s hardware-level memory throttling
capability [17]. Lastly, it implements a partitioned gang
scheduling capability by extending RT-Gang [3], [2]. We show
that RT-Gang++ enables strong isolation for the critical real-
time workloads of the AR-HUD case study application in the
presence of the fully loaded aggressors on the system.

In summary, our findings are: (1) Consolidating multiple
workloads with mixed criticality on heterogeneous multicore is

challenging due to interference on shared hardware resources;
(2) Cache bank-aware DoS attacks are especially effective in
impacting performance of the real-time SLAM task in the AR-
HUD case-study; (3) Executing a DNN task on the integrated
GPU also significantly impact the performance of the SLAM
on the CPU; (4) RT-Gang++ mitigates the interference prob-
lem via software-based cache bandwidth throttling, hardware-
based GPU bandwidth throttling, and partitioned real-time
gang scheduling.

IV. HARDWARE SUPPORT FOR MITIGATION

In recent years, Intel and ARM introduced hardware-level
support to monitor and manage shared hardware resources in
multicore. Intel Resource Director Technology (RDT) [14] is
already available on recent Intel server processors as well as
some embedded processors, and it includes Cache Alloca-
tion Technology (CAT) and Memory Bandwidth Allocation
(MBA), which allow cache space (way) partitioning and
memory bandwidth throttling, respectively. ARM’s Memory
System Resource Partitioning and Monitoring (MPAM) [7]
also provide similar capabilities for ARM architectures. Un-
fortunately, our studies on Intel’s CAT and MBA on two
recent generations of Intel processors show that they do not
provide strong isolation guarantees needed for critical real-
time systems [19], [9]. Other researchers have also reported
limitations of ARM MPAM [25] from the real-time per-
spective. Moreover, both RDT and MPAM mainly focus on
shared cache space and memory bandwidth. They do not
consider other pervasive shared hardware resources or the
multi-bank nature of cache and DRAM resources, which can
have profound impact to the application execution time as we
discussed earlier.

We believe better hardware support is needed to meet the
real-time and safety requirements of safety-critical CPS. We
present our “wish-list” for such potential improvements that
are currently lacking in existing hardware support by Intel
and ARM. First, better monitoring and throttling capabilities
are needed. For example, per-bank bandwidth monitoring and
regulating capabilities could allow more efficient and effective
bandwidth control for better isolation with minimal throughput
impact. Second, better control over physical address-based
resource mapping is needed. For instance, software controlled
physical address to cache or DRAM bank mapping could
enable flexible bank partitioning. Third, better control over
all shared hardware resources in the memory hierarchy is
needed. For example, we proposed partitioning of miss-status-
holding-registers (MSHRs) in shared caches [20] to balance
parallelism and predictability. A centralized management of
the entire memory hierarchy, proposed by Abdelhalim et
al. [1], can help bound the worst-case. Lastly, a better memory
abstraction between software and hardware is needed. For
example, we proposed the Deterministic Memory abstraction,
which enables efficient and deterministic handling of certain
user-declared memory regions throughout the entire memory
hierarchy [13].



V. CONCLUSION

Hardware interference channels on heterogeneous multicore
platforms pose a serious threat to safety-critical real-time
applications. Our research has shown that existing techniques,
such as cache (space) partitioning and memory bandwidth
throttling, may not be sufficient, as they are unaware of
the organization of cache/DRAM banks or internal shared
hardware structures. We have demonstrated that it is possible
to provide stronger isolation guarantees in today’s commodity
heterogeneous multicore systems. However, we believe that
better hardware support is ultimately needed to achieve a better
balance between performance and predictability, essential for
critical real-time systems.

ACKNOWLEDGEMENTS

The research described in this article has been supported
in part by NSF grant CNS-1815959, CPS-2038923 and NSA
Science of Security initiative contract no. H98230-18-D-0009.

REFERENCES

[1] S. Abdelhalim, D. Germchi, M. Hossam, R. Pellizzoni, and M. Hassan.
A tight holistic memory latency bound through coordinated management
of memory resources. In ECRTS, 2023.

[2] W. Ali, R. Pellizzoni, and H. Yun. Virtual gang scheduling of parallel
real-time tasks. In DATE, pages 270–275. IEEE, 2021.

[3] W. Ali and H. Yun. RT-Gang: Real-Time Gang Scheduling Framework
for Safety-Critical Systems. In RTAS, 2019.

[4] M. Andreozzi, G. Gabrielli, B. Venu, and G. Travaglini. Industrial
Challenge 2022: A High-Performance Real-Time Case Study on Arm.
In ECRTS, 2022.

[5] ARM. Cortex™-A57 Technical Reference Manual, Rev: r1p3, 2016.
[6] ARM. Cortex™-A72 Technical Reference Manual, Rev: r0p3, 2016.
[7] ARM. Arm Architecture Reference Manual Supplement: Memory System

Resource Partitioning and Monitoring (MPAM), DDI:0598B.b, 2020.
[8] M. Bechtel and H. Yun. Memory-Aware Denial-of-Service Attacks

on Shared Cache in Multicore Real-Time Systems. Transactions on
Computers, 2021.

[9] M. Bechtel and H. Yun. Denial-of-Service Attacks on Shared Resources
in Intel’s Integrated CPU-GPU Platforms. In ISORC, 2022.

[10] M. Bechtel and H. Yun. Analysis and mitigation of shared resource
contention on heterogeneous multicore: An industrial case study. arXiv
preprint arXiv:2304.13110, 2023.

[11] M. Bechtel and H. Yun. Cache Bank-Aware Denial-of-Service Attacks
on Multicore ARM Processors. In RTAS, 2023.

[12] M. G. Bechtel and H. Yun. Denial-of-Service Attacks on Shared Cache
in Multicore: Analysis and Prevention. In RTAS, 2019.

[13] F. Farshchi, P. K. Valsan, R. Mancuso, and H. Yun. Deterministic
Memory Abstraction and Supporting Multicore System Architecture. In
ECRTS, 2018.

[14] Intel. Intel® Resource Director Technology (Intel® RDT) Framework.
https://www.intel.com/content/www/us/en/architecture-and-technology/
resource-director-technology.html.

[15] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In
ISCA, 1998.

[16] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. Owens. Memory
Access Scheduling. In ACM SIGARCH Computer Architecture News,
2000.

[17] E. Seals, M. Bechtel, and H. Yun. Bandwatch: A system-wide memory
bandwidth regulation system for heterogeneous multicore. In RTCSA,
2023.

[18] J. P. Shen and M. H. Lipasti. Modern Processor Design: Fundamentals
of Superscalar Processors. Waveland Press, 2013.

[19] P. Sohal, M. Bechtel, R. Mancuso, H. Yun, and O. Krieger. A Closer
Look at Intel Resource Director Technology (RDT). In RTNS, pages
127–139, 2022.

[20] P. K. Valsan, H. Yun, and F. Farshchi. Taming Non-blocking Caches to
Improve Isolation in Multicore Real-Time Systems. In RTAS, 2016.

[21] W. A. Wulf and S. A. McKee. Hitting the memory wall: Implications of
the obvious. ACM SIGARCH computer architecture news, 23(1):20–24,
1995.

[22] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. PALLOC: DRAM
Bank-Aware Memory Allocator for Performance Isolation on Multicore
Platforms. In RTAS, 2014.

[23] H. Yun, R. Pellizzon, and P. K. Valsan. Parallelism-aware memory
interference delay analysis for cots multicore systems. In ECRTS. IEEE,
2015.

[24] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard:
Memory Bandwidth Reservation System for Efficient Performance Iso-
lation in Multi-core Platforms. In RTAS, 2013.

[25] M. Zini, D. Casini, and A. Biondi. Analyzing arm’s mpam from the
perspective of time predictability. IEEE Transactions on Computers,
72(1):168–182, 2022.

https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html

	Introduction
	Understanding Interference Channels
	Mitigating Interference Channels
	Hardware Support for Mitigation
	Conclusion
	References

