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7-3 The Biot-Savart Law and  
the Magnetic Vector Potential 

 
Reading Assignment:  pp. 208-218 
 
Q:  Given some field ( )rB , how can we determine the 
source ( )rJ  that created it? 
 
A: Easy!    ( ) ( ) 0r x r µ=∇J B   
 
Q:  OK, given some source ( )rJ , how can we determine 
what field ( )rB  it creates? 
 
A:  
 
 
HO: The Magnetic Vector Potential 
 
HO: Solutions to Ampere’s Law 
 
HO:  The Biot-Savart Law 
 
Example: The Uniform, Infinite Line of Current 
 
HO: B-field from an Infinite Current Sheet 



11/14/2004 The Magnetic Vector Potential.doc 1/5 

Jim Stiles The Univ. of Kansas Dept. of EECS 

The Magnetic  
Vector Potential 

 
From the magnetic form of Gauss’s Law ( )r 0∇ ⋅ =B , it is 
evident that the magnetic flux density ( )rB  is a solenoidal 
vector field. 
 
Recall that a solenoidal field is the curl of some other vector 
field, e.g.,: 

( ) ( )r x r= ∇B A  
 

Q:  The magnetic flux density ( )rB  is the curl of what 
vector field ?? 
 
A:  The magnetic vector potential ( )rA ! 
 

The curl of the magnetic vector potential ( )rA  is equal to the 
magnetic flux density ( )rB : 
 
 

( ) ( )x r r∇ =A B  
 
 

where: 
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( ) Webersmagnetic vector potential r      
meter

⎡ ⎤
⎢ ⎥⎣ ⎦

A  

 
 

Vector field ( )rA  is called the magnetic vector potential 
because of its analogous function to the electric scalar 
potential ( )rV .   
 
An electric field can be determined by taking the gradient of 
the electric potential, just as the magnetic flux density can be 
determined by taking the curl of the magnetic potential: 
 

( ) ( ) ( ) ( )r r               r x rV= −∇ = ∇E B A  
 

Yikes! We have a big problem! 
 
There are actually (infinitely) many vector fields ( )rA  whose 
curl will equal an arbitrary magnetic flux density ( )rB .  In 
other words, given some vector field ( )rB , the solution ( )rA  to 
the differential equation ( ) ( )x r r∇ =A B  is not unique ! 
 
But of course, we knew this! 
 
To completely (i.e., uniquely) specify a vector field, we need to 
specify both its divergence and its curl. 
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Well, we know the curl of the magnetic vector potential ( )rA  is 
equal to magnetic flux density ( )rB .  But, what is the 
divergence of ( )rA  equal to ?  I.E.,: 
 

( )r  ???∇ ⋅ =A  
 

By answering this question, we are essentially defining ( )rA . 
 
           Let’s define it in so that it makes our computations 
easier!  
 
To accomplish this, we first start by writing Ampere’s Law in 
terms of magnetic vector potential: 
 

( ) ( ) ( )0x r x x r rµ∇ = ∇ ∇ =B A J  
 

We recall from section 2-6 that: 
 

( ) ( )( ) ( )2x x r r r∇ ∇ = ∇ ∇ ⋅ −∇A A A  
 

Thus, we can simplify this statement if we decide that the 
divergence of the magnetic vector potential is equal to zero: 
 
 

( )r 0∇ ⋅ =A  
 
 

We call this the gauge equation for magnetic vector potential.  
Note the magnetic vector potential ( )rA  is therefore also a 
solenoidal vector field. 
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As a result of this gauge equation, we find: 
 

( ) ( )( ) ( )
( )

2

2

rx x r r

r

∇ ∇ = ∇ −∇

= −

⋅

∇

∇ AAA

A
 

 
And thus Ampere’s Law becomes: 
 
 

( ) ( ) ( )2
0x r r rµ∇ = −∇ =B A J  

 
 

Note the Laplacian operator 2∇  is the vector Laplacian, as it 
operates on vector field ( )rA . 

 
Summarizing, we find the magnetostatic equations in terms of 
magnetic vector potential ( )rA  are: 
 
 

( ) ( )

( ) ( )

( )

2
0

x r r

r r

r 0

µ

∇ =

∇ = −

∇ ⋅ =

A B

A J

A

 

 
 

Note that the magnetic form of Gauss’s equation results in the 
equation ( )x r 0∇ ⋅∇ =A .  Why don’t we include this equation in 
the above list? 
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Compare the magnetostatic equations using the magnetic vector 
potential ( )rA  to the electrostatic equations using the electric 
scalar potential ( )rV : 
 
 

( ) ( )

( ) ( )
0

r

r
r v

V r

ρ
ε

= −∇

∇ ⋅ =

E

E

 

 
 

Hopefully, you see that the two potentials ( )rA  and ( )rV  are in 
many ways analogous. 
 
For example, we know that we can determine a static field ( )rE  
created by sources ( )rvρ  either directly (from Coulomb’s Law), 
or indirectly by first finding potential ( )rV  and then taking its 
derivative (i.e., ( ) ( )r V r= −∇E ). 
 
Likewise, the magnetostatic equations above say that we can 
determine a static field ( )rB  created by sources ( )rJ  either 
directly, or indirectly by first finding potential ( )rA  and then 
taking its derivative (i.e., ( ) ( )x r r∇ =A B ). 
 

( ) ( ) ( )

( ) ( ) ( )

v r V r r

r r r

ρ ⇒ ⇒

⇒ ⇒

E

J A B
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Solutions to Ampere’s Law 
 
Say we know the current distribution ( )rJ  occurring in some 
physical problem, and we wish to find the resulting magnetic 
flux density ( )rB . 
 

Q:  How do we find ( )rB  given ( )rJ ? 
 
A:  Two ways! We either directly solve the differential 
equation: 

( ) ( )0x r rµ∇ =B J  
 

Or we first solve this differential equation for vector field 
( )rA : 

( ) ( )2
0r rµ−∇ =A J  

 
and then find ( )rB  by taking the curl of ( )rA  (i.e., 

( ) ( )x r r∇ =A B ). 
 

It turns out that the second option is often the easiest! 
 
To see why, consider the vector Laplacian operator if vector 
field ( )rA  is expressed using Cartesian base vectors: 
 

( ) ( ) ( ) ( )2 2 2 2r r r rˆ ˆ ˆx x y y z zA a A a A a∇ = ∇ + ∇ + ∇A  
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We therefore write Ampere’s Law in terms of three separate 
scalar differential equations: 
 

( ) ( )

( ) ( )

( ) ( )

2
0

2
0

2
0

r r

r r

r r

x x

y y

z z

A J

A J

A J

µ

µ

µ

∇ = −

∇ = −

∇ = −

 

 
Each of these differential equations is easily solved.  In fact, 
we already know their solution! 
 
Recall we had the exact same differential equation in 
electrostatcs (i.e., Poisson’s equation): 
 

( ) ( )2

0

rr vV ρ
ε

−
∇ =  

 
We know the solution ( )rV  to this differential equation is: 
 

( ) ( )r1r
4 r r

v

V
V dvρ

π
′

′=
′−∫∫∫

0ε
 

 
Mathematically, Poisson’s equation is exactly the same as each 
of the three scalar differential equations at the top of the 
page, with these substitutions: 
 

( ) ( ) ( ) ( )x 0
1r r      r J r      x vV A ρ µ→ → →
0ε
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The solutions to the magnetic differential equation are 
therefore: 

( ) ( )

( )
( )

( ) ( )

0

0

0

rr
4 r r

r
r

4 r r

rr
4 r r

x
x

V

y
y

V

z
z

V

JA dv

J
A dv

JA dv

µ
π

µ
π

µ
π

′
′=

′−

′
′=

′−

′
′=

′−

∫∫∫

∫∫∫

∫∫∫

 

 
and since: 

( ) ( ) ( ) ( )ˆ ˆ ˆr r r rx x y y z zA a A a A a= + +A  
 

and: 
( ) ( ) ( ) ( )ˆ ˆ ˆr r r rx x y y z zJ a J a J a= + +J  

 
we can combine these three solutions and get the vector 
solution to our vector differential equation: 
 
 

( ) ( )0 rr
4 r rV

dvµ
π

′
′=

′−∫∫∫
JA  

 
 
Therefore, given current distribution ( )rJ , we use the above 
equation to determine magnetic vector potential ( )rA .  We 
then take the curl of this result to determine magnetic flux 
density ( )rB .  
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For surface current, the resulting magnetic vector potential is:  
 
 

( ) ( )0 rr
4 r r

s

S
dsµ

π
′

′=
′−∫∫

JA  

 
 
and for a current I  flowing along contour C, we find: 
 
 

( ) 0r
4 r rC

I dµ
π

′
=

′−∫A  

 
 

Again, ponder the analogy between these equations involving 
sources and potentials and the equivalent equation from 
electrostatics: 
 

 

( ) ( )r1r
4 r r

v

V
V dvρ

π
′

′=
′−∫∫∫

0ε
 



11/14/2004 The Biot Savart Law.doc 1/4 

Jim Stiles The Univ. of Kansas Dept. of EECS 

The Biot-Savart Law 
 
So, we now know that given some current density, we can find 
the resulting magnetic vector potential ( )rA : 
 

( ) ( )0 rr
4 r rV

dvµ
π

′
′=

′−∫∫∫
JA  

 
and then determine the resulting magnetic flux density ( )rB  
by taking the curl: 

( ) ( )r x r= ∇B A  
 

 
 
 
 
 
 
 
 
 
 
Combining the two above equations, we get: 
 

( ) ( )0 rr x
4 r rV

dvµ
π

′
′= ∇

′−∫∫∫
JB  

 
This result is of course not very helpful, but we note that we 
can move the curl operation into the integrand: 

Q:  Golly, can’t we somehow 
combine the curl operation 
and the magnetic vector 
potential integral? 

A:   Yes! The result is known
as the Biot-Savart Law. 
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( ) ( )0 rr x
4 r rV

dvµ
π

′
′= ∇

′−∫∫∫
JB  

 
Note this result reverses the process: first we perform the 
curl, and then we integrate. 
 
We can do this is because the integral is over the primed 
coordinates (i.e.,r′) that specify the sources (current density), 
while the curl take the derivatives of the unprimed coordinates 
(i.e., r ) that describe the fields (magnetic flux density). 
 
Q:  Yikes! That curl operation still looks particularly difficult.  
How we perform it? 
 
A:  We take advantage of a know vector identity!  The curl of 
vector field ( ) ( )r rf G  , where ( )rf  is any scalar field and ( )rG  
is any vector field, can be evaluated as: 
 

( ) ( )( ) ( ) ( ) ( ) ( )x f r r r x r r x rf f∇ = ∇ − ∇G G G  
 

Note the integrand of the above equation is in the form 
( ) ( )( )x f r r∇ G , where: 

 

( ) ( ) ( )1r           and         r r
r r

f ′= =
′−

G J  

 
Therefore we find: 
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( ) ( ) ( )r 1 1x x r r x
r r r r r r

⎛ ⎞ ⎛ ⎞′
′ ′∇ = ∇ − ∇⎜ ⎟ ⎜ ⎟′ ′ ′− − −⎝ ⎠ ⎝ ⎠

J J J  

 
In the first term we take the curl of ( )r′J .  Note however that 
this vector field is a constant with respect to the unprimed 
coordinates r .  Thus the derivatives in the curl will all be equal 
to zero, and we find that: 
 

( )x r 0′∇ =J  
 

Likewise, it can be shown that: 
 

3
1 r r

r r r r
⎛ ⎞ ′−

∇ = −⎜ ⎟′− ′−⎝ ⎠
 

 
Using these results, we find: 
 

( ) ( ) ( )
3

r r x r rx
r r r r

⎛ ⎞′ ′ ′−
∇ =⎜ ⎟′− ′−⎝ ⎠

J J  

 
and therefore the magnetic flux density is: 
 
 

( ) ( ) ( )0
3

r x r rr
4 r rV

dvµ
π

′ ′−
′=

′−∫∫∫
JB  

 
 

This is know as the Biot-Savart Law ! 
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For a surface current ( )rsJ , the  Biot-Savart Law becomes: 
 
 

( ) ( ) ( )0
3

r x r rr
4 r r

s

S

dsµ
π

′ ′−
′=

′−∫∫
JB  

 
 

and for line current I, flowing on contour C, the Biot-Savart Law 
is: 
 

( ) ( )0
3

x r rr
4 r rC

dIµ
π

′ ′−
=

′−∫B  

 
 

Note the contour C is closed. Do you know why? 
 
 
  
 
 
 
 
 
 

Note that the Biot-Savart Law is 
therefore analogous to Coloumb’s 
Law in Electrostatics (Do you see 
why?)! 

This is dad-gum outstanding! 
The Biot-Savart Law allows us 
to directly determine magnetic 
flux density ( )rB , given some 
current density ( )rJ ! 
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Example: The Uniform, 
 Infinite Line of Current 

 
Consider electric current I flowing along the z-axis from 
z = −∞  to z = ∞ .   What magnetic flux potential ( )rB  is 
created by this current? 
 
 

                                

( )

( )

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ( , )

22 2 2 2

22

r
 cos  sin

r 0 0

r r  cos  sin

z

x y z

x y z

z

d a dz

x a y a z a
a a z a

z a x y

z z

z z

ρ φ ρ φ

ρ φ ρ φ

ρ

′=

= + +

= + +

′ ′ ′ ′= = =

′ ′− = + + −

′= + −

 

  
 
 

 
 
We can determine the magnetic flux density by applying the 
Biot-Savart Law:  
 

z 

I 
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( ) ( )

( )

( )

( )

( )

( )

( )

ˆ ˆ

ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ

0
3

0
3

2 22

0
3

2 22

0
3

2 2 2

0
2 2 2

0

x r r
r

4 r r

x cos sin
4

cos s

cos s

in
4

4

u

in

4 -

4

|

y x

C

z x y z

y x

dI

a a a z z aI dz
z z

a aI dz
z z

I du
u

I
u

I a

a a

aφ

φ

µ
π

ρ φ ρ φµ
π ρ

ρ φ ρ φµ
π ρ

µ
π ρ

µ
π ρ ρ

µ ρ
π

ρ φ ρ φ

ρ

∞

−∞

∞

−∞

∞

−∞

′ ′−
=

′−

⎡ ⎤′+ + −⎣ ⎦ ′=
⎡ ⎤′+ −⎣ ⎦

−
′=

⎡ ⎤′+ −⎣ ⎦

=
⎡ ⎤+⎣ ⎦

∞

∞ +

=

−

=

∫

∫

∫

∫

B

ˆ

2

0

2

2
I aφ

ρ
µ
π ρ

=

 

 
Therefore, the magnetic flux density created by a “wire” with 
current I flowing along the z-axis is: 
 
 

( ) 0r
2

ˆ
I aφ

µ
π ρ

=B  
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Think about what this expression tells us about magnetic flux 
density: 
 
*  The magnitude of ( )rB  is proportional to 1 ρ , therefore 
magnetic flux density diminishes as we move farther from 
“wire”. 
 
*  The direction of ( )rB  is âφ . In other words, the magnetic 
flux density points in the direction around the wire. 
 
 
 
 
 
 

      = current I flowing
out of this page. 

y 

x 

Plot of vector field 
( )rB  on the  x-y 

plane, resulting 
from current I  
flowing along the z-
axis 
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Or, plotting in 3-D: 
 
 
  
 
 
 
 
 
 
 

z 
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B-Field from an Infinite 
Sheet of Current 

 
Consider now an infinite sheet of current, lying on the z = 0 
plane.  Say the surface current density on this sheet has a 
value: 

( )r ˆs x xJ a=J  
 

meaning that the current density at every point on the surface 
has the same magnitude, and flows in the ˆ xa  direction. 
 
  
 
 
 
 
 
 
 
 
 
 
Using the Biot-Savart Law, we find that the magnetic flux 
density produced by this infinite current sheet is: 
 
 

 
 

x 

y 

z 

ˆx xJ a
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( )

0

0

       z 0
2

r

       z 0
2

ˆ

ˆ

x
y

x
y

J a

J a

µ

µ

⎧
− >⎪
⎪

= ⎨
⎪
⎪ <
⎩

B  

 
 
 

Think about what this expression is telling us. 
 
*  The magnitude of this magnetic flux density is a constant.  
In other words, ( )rB  is just as large a million miles from the 
infinite current sheet as it is 1 millimeter from the current 
sheet! 
 
*   The direction of the magnetic flux density in the ŷa−  
direction above the current sheet, but points in the opposite 
direction (i.e., ŷa ) below it. 
 
*   The direction of the magnetic flux density is orthogonal to 
the direction of current flow ˆ xa . 
 
 
Plotting the vector field ( )rB  along the y-z plane, we find: 
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z 

y 

ˆx xJ a


