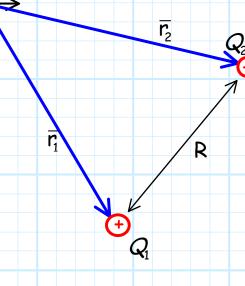
Coulomb's Law of Force

Consider **two** point charges, Q_1 and Q_2 , located at positions $\overline{r_1}$ and $\overline{r_2}$, respectively.

We will find that each charge has a force F (with magnitude and direction) exerted on it.

This force is **dependent** on both the **sign** (+ or -) and the **magnitude** of charges Q_1 and Q_2 , as well as the **distance** R between the charges.



Charles Coulomb determined this relationship in the 18th century! We call his result Coulomb's Law:

$$\mathbf{F}_1 = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{R^2} \hat{a}_{21} \quad [N]$$

This force F_1 is the force exerted on charge Q_1 . Likewise, the force exerted on charge Q_2 is equal to:

Jim Stiles The Univ. of Kansas Dept. of EECS

$$\mathbf{F}_{2} = \frac{1}{4\pi\varepsilon_{0}} \frac{Q_{2} Q_{1}}{R^{2}} \hat{a}_{12} [N]$$

In these formula, the value ε_0 is a **constant** that describes the **permittivity of free space** (i.e., a vacuum).

$$\varepsilon_0 \doteq \text{permittivity of free space}$$

$$= 8.854 \times 10^{-12} \quad \left[\frac{C^2}{\text{Nm}^2} = \frac{\text{farads}}{\text{m}} \right]$$

Note the only difference between the equations for forces F_1 and F_2 are the unit vectors \hat{a}_{21} and \hat{a}_{12} .

- * Unit vector \hat{a}_{21} points **from** the location of Q_2 (i.e., \bar{r}_2) **to** the location of charge Q_1 (i.e., \bar{r}_1).
- * Likewise, unit vector \hat{a}_{12} points **from** the location of Q_1 (i.e., \overline{r}_1) **to** the location of charge Q_2 (i.e., \overline{r}_2).

Note therefore, that these unit vectors point in **opposite** directions, a result we express mathematically as $\hat{a}_{21} = -\hat{a}_{12}$.

Therefore we find:

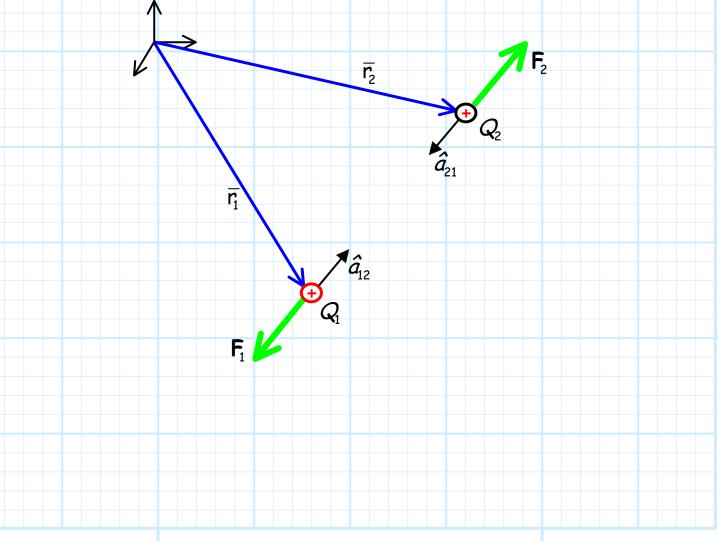
$$\mathbf{F}_{1} = \frac{1}{4\pi\varepsilon_{0}} \frac{Q_{1}}{R^{2}} \frac{Q_{2}}{R^{2}} \hat{a}_{21}$$

$$= \frac{1}{4\pi\varepsilon_{0}} \frac{Q_{1}}{R^{2}} \frac{Q_{2}}{R^{2}} \left(-\hat{a}_{12}\right)$$

$$= -\left(\frac{1}{4\pi\varepsilon_{0}} \frac{Q_{2}}{R^{2}} \hat{a}_{12}\right)$$

$$= -\mathbf{F}_{2}$$

Look! Forces F_1 and F_2 have equal magnitude, but point in opposite directions!



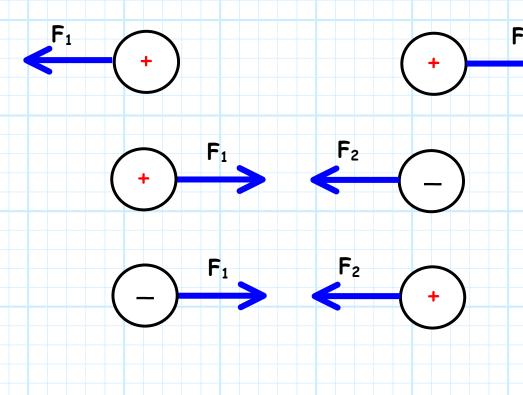
Jim Stiles The Univ. of Kansas Dept. of EECS

Note in the case shown above, both charges were positive.

Q: What happens when one of the charges is negative?

A: Look at Coulomb's Law! If one charge is positive, and the other is negative, then the **product** Q_1 Q_2 is **negative**. The resulting force vectors are therefore negative—they point in the **opposite** direction of the previous (i.e., both positive) case!

Therefore, we find that:

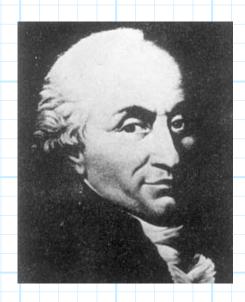


Jim Stiles The Univ. of Kansas Dept. of EECS

What about this case?

We come to the **important** conclusion that:

- 1) charges of opposite sign attract.
- 2) charges with the same sign repel.



Charles-Augustin de Coulomb (1736-1806), a military civil engineer, retired from the French army because of ill health after years in the West Indies. Forced from Paris by the disturbances of the revolution, he began working at his family estate and discovered that the torsion characteristics of long fibers made them ideal for the sensitive measurement of magnetic and electric forces. He was familiar with Newton's inverse-square law and in the period 1785-1791 he succeeded in showing that electrostatic forces obey the same rule. (from www.ee.umd.edu/~taylor/frame1.htm)