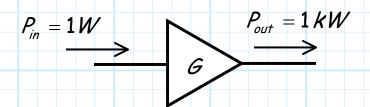
Amplifier Output Power

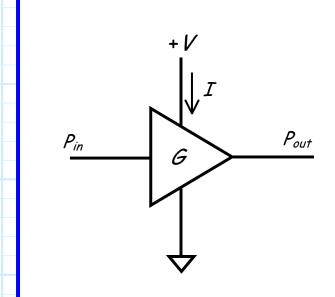

Say we have an amplifier with gain G = 30 dB (i.e., G = 1000).

If the input power to this amplifier is 0 dBw (i.e., P_{in} = 1W), then the output power is:

$$P_{in} G = P_{out}$$
 (1 W) 1000 = 1000 W

Or, in dB:

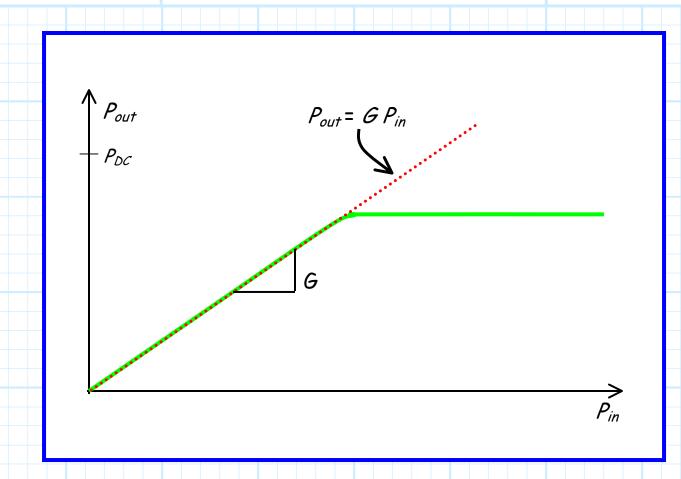
$$0 dBw + 30 dB = 30 dBw$$


WOW! We created 999 Watts!

Of course, the amplifier cannot create energy.

Q: Then, where does the power come from ???

A: The D.C. power supply! (Every amplifier has one).


D. C. Power = $P_{DC} = VI > P_{out}$

The output power P_{out} cannot exceed the power delivered by the D.C. supply.

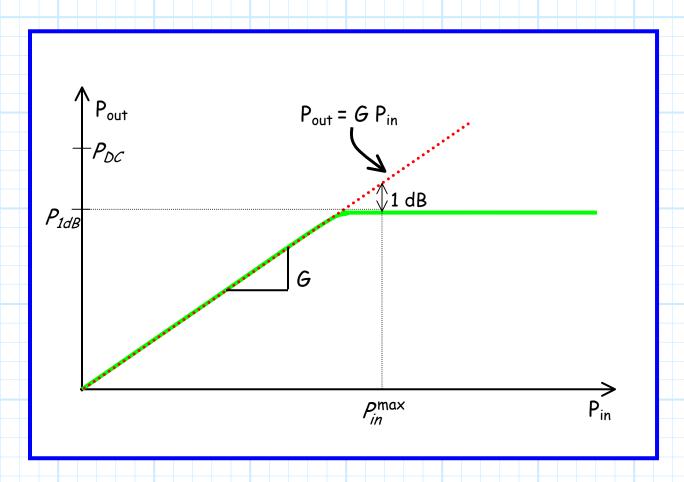
Q: What happens to the D.C. power not converted to signal power P_{out} ??

A:

So, if we were to plot P_{out} vs. P_{in} for a microwave amplifier, we would get something like this:

We notice that the output power compresses, or saturates.

Note there is **one** point on this curve where the amplifier output power P_{out} is 1 dB less than its ideal value of GP_{in} . In other words, there is one (and only one!) value of P_{in} and P_{out} that will satisfy the equation:


$$P_{out}(dB) = [P_{in}(dB) + G(dB)] - 1 dB$$

At this point, the amplifier is said to be compressed 1 dB. Therefore, a 10 dB amplifier would appear to be a 9 dB amplifier!

The output power when the amplifier has compressed 1dB is called the 1 dB compression point \doteq P_{1dB} of the amplifier.

The 1 dB compression point is generally considered to be the maximum power output of the amplifier.

The input power at the 1 dB compression point is said to be the maximum input power (P_{in}^{\max}) of the amplifier. We of course can put more than P_{in}^{\max} into the amplifier—but we won't get much more power out!

Note the equation $P_{out}(dB) = [P_{in}(dB) + G(dB)] - 1 dB$ alone is **not sufficient** to determine the 1 dB compression point, as we have two uknowns (P_{in} and P_{out}). We need **another** equation!

This second "equation" is the actual curve or table of data relating P_{in} to P_{out} for a specific amplifier.

Amplifier Efficiency

We can define **amplifier efficiency** e as the ratio of the maximum output power (P_{1dB}) to the D.C. power:

$$e = \frac{P_{1dB}}{P_{DC}}$$
 (don't use decibels here!)

For example, if e=0.4, then up to 40% of the D.C. power can be converted to output power, while the remaining 60% is converted to heat.

We require high power amps to be very efficient!