

Say there is a signal $v_{RF}(t)$ at the RF mixer port, and a signal $v_{LO}(t)$ at the LO mixer port. An **ideal** mixer would then produce at the IF port, a signal $v_{IF}(t)$, where:

$$v_{RF}(t) v_{LO}(t) = v_{IF}(t)$$
 (an ideal mixer)

To see why this might be **useful**, consider a case where:

$$v_{RF}(t) = cos \omega_{RF} t$$

$$V_{RF}(t) = cos \omega_{LO} t$$

Multiplying these signals, we get:

$$v_{IF}(t) = v_{RF}(t) v_{LO}(t)$$

= $cos(\omega_{RF}t) cos(\omega_{LO}t)$
= $\frac{1}{2}cos(\omega_{RF} - \omega_{LO})t + \frac{1}{2}cos(\omega_{RF} + \omega_{LO})t$

At the IF port we have created **two** signals with **new** frequencies!

One new signal has a frequency that is the **difference** of the LO and RF signal frequencies:

$$\frac{1}{2}\cos(\omega_{RF}-\omega_{LO})t$$

Jim Stiles

Just as with an amplifier, a mixer will produce 1st-order, 2ndorder, 3rd-order, and even higher order terms!

As a result, there will be **many** signals created at the IF port. If we did **all** the trigonometry, we would find that the signal **frequencies** created from these terms (in relation to ω_{RF} and ω_{LO}) are:

1st order:
$$\omega_{RF}$$
, ω_{LO}

2nd order:
$$|\omega_{RF} - \omega_{LO}|$$
, $2\omega_{RF}$, $2\omega_{LO}$, $\omega_{RF} + \omega_{LO}$

3rd order:
$$\begin{aligned} & \left| 2\omega_{RF} - \omega_{LO} \right|, \left| 2\omega_{LO} - \omega_{RF} \right|, 3\omega_{RF}, \\ & 3\omega_{LO}, 2\omega_{RF} + \omega_{LO}, \omega_{RF} + 2\omega_{LO} \end{aligned} \end{aligned}$$

examples of higher orders:
$$\begin{vmatrix} 4\omega_{RF} - 2\omega_{LO} \\ 7\omega_{LO} \\ 827\omega_{RF} + 134\omega_{LO} \end{vmatrix}$$

Note that the **ideal** mixer (multiplier) occurs when all constants a_n are zero, **except** for the constant a_4 . The result in this case being:

$$v_{IF}(t) = a_4 v_{RF}(t) v_{LO}(t)$$
 (ideal mixer response)

and thus the **only** signals created are the 2nd order terms $|\omega_{RF} - \omega_{LO}|$ and $\omega_{RF} + \omega_{LO}$.

Of course for a "real" mixer, all the constants a_n are nonzero, although for good mixers all but a_4 are relatively small.

Thus, for good mixers, most of the signals created at the IF output will be of relatively **low** power, with **exception** of the signal at frequencies $|\omega_{RF} - \omega_{LO}|$ and $\omega_{RF} + \omega_{LO}$.

All other signals (meaning other than $|\omega_{RF} - \omega_{LO}|$ and $\omega_{RF} + \omega_{LO}$) at the IF are known as spurious signals—or in the vernacular of radio engineers, "spurs".

Q: How are mixers constructed?

A: Multiplication is a decidedly **non-linear** operation. As such, it requires **non-linear devices** to implement.

Typically, these non-linear devices are **diodes**, but sometimes transistors are used.

For example, as those of you who aced EECS 312 know, the **junction diode** equation is:

$$i_{D} = I_{s} \left(e^{\frac{v_{D}}{v_{T}}} - 1 \right)$$

This non-linear function can be expanded using a Taylor series as:

$$i_{D} = I_{s} \left(e^{v_{D}/v_{T}} - 1 \right) = b_{1} v_{D} + b_{2} v_{D}^{2} + b_{3} v_{D}^{3} + \cdots$$

1_D

+

 V_D

And if, for example:

$$V_{D}(t) = V_{RF}(t) + V_{LO}(t)$$

we find that the diode will create **high-order** terms, including $v_{RF}(t)v_{LO}(t)$:

$$b_{2}\left(v_{RF}(t)+v_{LO}(t)\right)^{2}=b_{2}\left(v_{RF}^{2}(t)+2v_{RF}(t)v_{LO}(t)+v_{LO}^{2}(t)\right)$$

Basically, generating high-order terms with **any** non-linear device is **not** at all difficult (just try and **keep** it from happening!). The trick is to generate **only** the 2nd order term $v_{RF}(t)v_{LO}(t)$, while somehow **suppressing** the rest.

Thus, mixer design is as much **art** as it is science! Popular designs include the **balanced mixer** (with 2 junction diodes), and the **double balanced mixer** (with 4 junction diodes).

