Phase and Frequency

Consider the trig functions sin x and cos x.

Q: What are the units of x??

A: The units of x must be radians.

In other words x is phase ϕ , i.e., $\cos \phi$ and $\sin \phi$.

Phase can of course be a function of **time**, i.e., $\cos \phi(t)$. For example:

$$\cos(\omega_0 t + \phi_0)$$

In other words, the signal **phase** $\phi(t)$ is $\phi(t) = \omega_0 t + \phi_0$!

Q: What the !?! I always thought "phase" was ϕ_0 , not $\omega_0 t + \phi_0$!

A: Time for some definitions!

We call $\phi(t) = \omega_0 t + \phi_0$ the **total**, or absolute phase of the sinusoidal signal. Note the **total** phase is a **linearly increasing** function of time!

The slope of this line is ω_0 , while the y-intercept is ϕ_0 .

We can define the **relative phase** $\phi_r(t)$ as:

$$\phi_r(t) = \phi(t) - \omega_0 t$$

Thus, if $\phi(t) = \omega_0 t + \phi_0$, then $\phi_r(t) = \phi_0$.

But, the relative phase need not be a **constant**. In general, we can write:

$$\cos\left[\omega_0 t + \phi_r(t)\right]$$

Therefore, the relative phase is in general some arbitrary function of time.

Q: O.K., so you have made **phase** really complicated, but at least the signal **frequency** is still ω_0 , right ??

A: Wrong! Frequency too is a little more complicated than you might have imagined.

Angular frequency is **defined** as the rate of (**total**) phase change with respect to time. As a result, it is measured in units of **radians/second**.

How do we determine the rate of phase change with respect to time?

We take the **derivative** of $\phi(t)$ with respect to t!

I.E.,

$$\omega(t) = \frac{d \phi(t)}{dt} \quad \text{(radians/sec)}$$

Jim Stiles The Univ. of Kansas Dept. of EECS

For example, if $\phi(t) = \omega_0 t + \phi_0$, then:

Q: See! I told you! The frequency is ω_0 after all!

A: Not so fast! The frequency (i.e., the rate of phase change) is equal to ω_0 only if total phase is $\phi(t) = \omega_0 t + \phi_0$. In other words, the frequency is equal to ω_0 if the relative phase is a constant ϕ_0 . Otherwise:

$$\omega(t) = \frac{d[\omega_0 t + \phi_r(t)]}{dt}$$

$$= \frac{d(\omega_0 t)}{dt} + \frac{d\phi_r(t)}{dt}$$

$$= \omega_0 + \frac{d\phi_r(t)}{dt}$$

$$= \omega_0 + \omega_r(t)$$

Jim Stiles The Univ. of Kansas Dept. of EECS

In other words, the total frequency $\omega(t)$ is the sum of the carrier frequency ω_0 and the relative frequency $\omega_r(t)$.

The signal frequency can change with time!

Remember, we can also express frequency in cycles/second (i.e., Hz) if we divide by 2π .

$$f(t) = \frac{\omega(t)}{2\pi} \quad \text{(Hz)}$$

Therefore, we can write:

$$f(t) = f_0 + f_r(t)$$