Phase and Frequency

Consider the trig functions $\sin x$ and $\cos x$.

Q: What are the units of x ??
A: The units of x must be radians.

In other words x is phase ϕ, i.e., $\cos \phi$ and $\sin \phi$.
Phase can of course be a function of time, i.e., $\cos \phi(t)$. For example:

$$
\cos \left(\omega_{0} t+\phi_{0}\right)
$$

In other words, the signal phase $\phi(t)$ is $\phi(t)=\omega_{0} t+\phi_{0}$!

Q: What the !?! I always thought "phase" was ϕ_{0}, not $\omega_{0} t+\phi_{0}$!

A: Time for some definitions!

We call $\phi(t)=\omega_{0} t+\phi_{0}$ the total, or absolute phase of the sinusoidal signal. Note the total phase is a linearly increasing function of time!

The slope of this line is ω_{0}, while the \boldsymbol{y}-intercept is ϕ_{0}.

We can define the relative phase $\phi_{r}(t)$ as:

$$
\phi_{r}(t)=\phi(t)-\omega_{0} t
$$

Thus, if $\phi(t)=\omega_{0} t+\phi_{0}$, then $\phi_{r}(t)=\phi_{0}$.
But, the relative phase need not be a constant. In general, we can write:

$$
\cos \left[\omega_{0} t+\phi_{r}(t)\right]
$$

Therefore, the relative phase is in general some arbitrary function of time.

Q: O.K., so you have made phase really complicated, but at least the signal frequency is still ω_{0}, right??

A: Wrong! Frequency too is a little more complicated than you might have imagined.

Angular frequency is defined as the rate of (total) phase change with respect to time. As a result, it is measured in units of radians/second.

How do we determine the rate of phase change with respect to time?

We take the derivative of $\phi(t)$ with respect to t !
I.E.,

$$
\left.\omega(t)=\frac{d \phi(t)}{d t} \quad \text { (radians } / \mathrm{sec}\right)
$$

For example, if $\phi(t)=\omega_{0} t+\phi_{0}$, then:

$$
\omega(t)=\frac{d\left(\omega_{0} t+\phi_{0}\right)}{d t}=\omega_{0}
$$

A: Not so fast! The frequency (i.e., the rate of phase change) is equal to ω_{0} only if total phase is $\phi(t)=\omega_{0} t+\phi_{0}$. In other words, the frequency is equal to ω_{0} if the relative phase is a constant ϕ_{0}. Otherwise:

$$
\begin{aligned}
\omega(t) & =\frac{d\left[\omega_{0} t+\phi_{r}(t)\right]}{d t} \\
& =\frac{d\left(\omega_{0} t\right)}{d t}+\frac{d \phi_{r}(t)}{d t} \\
& =\omega_{0}+\frac{d \phi_{r}(t)}{d t} \\
& =\omega_{0}+\omega_{r}(t)
\end{aligned}
$$

In other words, the total frequency $\omega(t)$ is the sum of the carrier frequency ω_{0} and the relative frequency $\omega_{r}(t)$.

The signal frequency can change with time!
Remember, we can also express frequency in cycles/second (i.e., Hz) if we divide by 2π.

$$
f(t)=\frac{\omega(t)}{2 \pi} \quad(H z)
$$

Therefore, we can write:

$$
f(t)=f_{0}+f_{r}(t)
$$

