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Special Values of 
Load Impedance 

 
Let’s look at some specific values of load impedance 

L L LZ R jX= +  and see what happens on our transmission line! 
 
1.  0LZ Z=  
 
In this case, the load impedance is numerically equal to the 
characteristic impedance of the transmission line.   Assuming 
the line is lossless, then Z0 is real, and thus: 
 

0LR Z=       and       0LX =  
 
It is evident that the resulting load reflection coefficient is 
zero: 
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This result is very interesting, as it means that there is no 
reflected wave ( )V z− ! 
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Thus, the total voltage and current along the transmission line 
is simply voltage and current of the incident wave: 
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Meaning that the line impedance is likewise numerically equal 
to the characteristic impedance of the transmission line for 
all line position z: 
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And likewise, the reflection coefficient is zero at all points 
along the line: 
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We call this condition (when 0LZ Z= ) the matched condition, 
and the load 0LZ Z=  a matched load. 
 
2.  0LZ =  
 
A device with no impedance is called a short circuit!  I.E.: 
 

0LR =     and     0LX =  
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In this case, the voltage across the load—and thus the 
voltage at the end of the transmission line—is zero: 
 

0L L LV Z I= =         and       ( ) 0LV z z= =  
 

Note that this does not mean that the current is zero! 
 

( ) 0L LI I z z= = ≠  
 

For a short, the resulting load reflection coefficient is 
therefore: 
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Meaning (assuming 0Lz = ): 
 

0 0V V− += −  
 
As a result, the total voltage and current along the 
transmission line is simply: 
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Meaning that the line impedance can likewise be written in 
terms of a trigonometric function: 
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( ) ( )
( )

( )0
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I z

β= = −  

 
Note that this impedance is purely reactive.  This means that 
the current and voltage on the transmission line will be 
everywhere 90  out of phase. 
 
Hopefully, this was likewise apparent to you when you 
observed the expressions for V(z) and I(z)!  

 
Note at the end of the line (i.e., 0Lz z= = ), we find that 
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As expected, the voltage is zero at the end of the 
transmission line (i.e. the voltage across the short).  Likewise, 
the current at the end of the line (i.e., the current through 
the short) is at a maximum! 
 
Finally, we note that the line impedance at the end of the 
transmission line is: 
 

( ) ( )00 0 0Z z jZ tan= = − =  
 
Just as we expected—a short circuit! 
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 Finally, the reflection coefficient function is (assuming 
0Lz = ): 
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Note that for this case ( ) 1zΓ = , meaning that: 
 

( ) ( )V z V z− +=  
 

In other words, the magnitude of each wave on the 
transmission line is the same—the reflected wave is just as 
big as the incident wave! 
 
3.  LZ = ∞  
 
A device with infinite impedance is called an open circuit!  
I.E.: 

LR = ∞     and/or     LX = ±∞  
 
In this case, the current through the load—and thus the 
current at the end of the transmission line—is zero: 
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Note that this does not mean that the voltage is zero! 
 

( ) 0L LV V z z= = ≠  
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For an open, the resulting load reflection coefficient is: 
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Meaning (assuming 0Lz = ): 
 

0 0V V− +=  
 
As a result, the total voltage and current along the 
transmission line is simply (assuming 0Lz = ): 
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Meaning that the line impedance can likewise be written in 
terms of trigonometric function: 
 

( ) ( )
( )

( )0 cotV zZ z jZ z
I z
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Again note that this impedance is purely reactive—V(z) and 
I(z) are again 90  out of phase! 
 
Note at the end of the line (i.e., 0Lz z= = ), we find that 
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As expected, the current is zero at the end of the 
transmission line (i.e. the current through the open).  Likewise, 
the voltage at the end of the line (i.e., the voltage across the 
open) is at a maximum! 
 
Finally, we note that the line impedance at the end of the 
transmission line is: 
 

( ) ( )00 0Z z jZ cot= = = ∞  
 
Just as we expected—an open circuit! 
 
Finally, the reflection coefficient is (assuming 0Lz = ): 
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Note that likewise for this case ( ) 1zΓ = , meaning again that: 
 

( ) ( )V z V z− +=  
 

In other words, the magnitude of each wave on the 
transmission line is the same—the reflected wave is just as 
big as the incident wave! 
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4.  0LR =  
 
For this case, the load impedance is purely reactive (e.g. a 
capacitor of inductor): 

L LZ j X=  
 
Thus, both the current through the load, and voltage across 
the load, are non-zero:  
 

( ) 0L LI I z z= = ≠                   ( ) 0L LV V z z= = ≠  
 

The resulting load reflection coefficient is: 
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Given that Z0 is real (i.e., the line is lossless), we find that 
this load reflection coefficient is generally some complex 
number.   
 
We can rewrite this value explicitly in terms of its real and 
imaginary part as: 
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Yuck! This isn’t much help!   
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Let’s instead write this complex value LΓ  in terms of its 
magnitude and phase.  For magnitude we find a much more 
straightforward result!   
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Its magnitude is one! Thus, we find that for reactive loads, 
the reflection coefficient can be simply expressed as: 
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 We can therefore conclude that for a reactive load: 
 

0 0
jV e VθΓ− +=  

 
As a result, the total voltage and current along the 
transmission line is simply (assuming 0Lz = ): 
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Meaning that the line impedance can again be written in terms 
of trigonometric function: 
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Again note that this impedance is purely reactive—V(z) and 
I(z) are once again 90  out of phase! 
 
Note at the end of the line (i.e., 0Lz z= = ), we find that 
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As expected, neither the current nor voltage at the end of 
the line are zero.  
 
We also note that the line impedance at the end of the 
transmission line is: 
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( ) ( )00 2Z z jZ cot θΓ= =  
 

With a little trigonometry, we can show (trust me!) that: 
 

( )
0

2 LXcot
Z

θΓ =  

and therefore: 
 

( ) ( )00 2 L LZ z jZ cot j X ZθΓ= = = =  
 
Just as we expected! 
 
Finally, the reflection coefficient function is (assuming 

0Lz = ): 
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Note that likewise for this case ( ) 1zΓ = , meaning once 
again: 

( ) ( )V z V z− +=  
 

In other words, the magnitude of each wave on the 
transmission line is the same—the reflected wave is just as 
big as the incident wave! 
 
Q:  Gee, a reactive load leads to results very similar to that 
of an open or short circuit.  Is this just coincidence? 
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A:  Hardly!  An open and short are in fact reactive loads—
they cannot absorb power (think about this!). 
 
Specifically, for an open, we find 0θΓ = , so that: 
 

1j
L e θΓΓ = =  

 
Likewise, for a short, we find that θ πΓ = , so that: 
 

1j
L e θΓΓ = = −  

 
5.  0LX =  
 
For this case, the load impedance is purely real (e.g. a 
resistor): 

L LZ R=  
 
Thus, both the current through the load, and voltage across 
the load, are non-zero:  
 

( ) 0L LI I z z= = ≠                   ( ) 0L LV V z z= = ≠  
 

The resulting load reflection coefficient is: 
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Given that Z0 is real (i.e., the line is lossless), we find that 
this load reflection coefficient must be a purely real value! 
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In other words: 
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The magnitude is thus: 
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whereas the phase θΓ  can take on one of two values: 
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For this case, the impedance at the end of the line must be 
real ( ( )L LZ z z R= = ).  Thus, the current and the voltage at 
this point are precisely in phase. 
 
However, even though the load impedance is real, the line 
impedance at all other points on the line is generally complex! 
 
Moreover, the general current and voltage expressions, as 
well as reflection coefficient function, cannot be further 
simplified for the case where L LZ R= . 
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Q:  Why is that?  When the load was purely imaginary 
(reactive), we where able to simply our general expressions, 
and likewise deduce all sorts of interesting results! 
 
A:  True! And here’s why.  Remember, a lossless transmission 
line has series inductance and shunt capacitance only.  In 
other words, a length of lossless transmission line is a purely 
reactive device (it absorbs no energy!). 
 
*  If we attach a purely reactive load at the end of the 
transmission line, we still have a completely reactive system 
(load and transmission line).  Because this system has no 
resistive (i.e., real) component, the general expressions for 
line impedance, line voltage, etc. can be significantly 
simplified. 
 
*  However, if we attach a purely real load to our reactive 
transmission line, we now have a complex system, with both 
real and imaginary (i.e., resistive and reactive) components.  
This complex case is exactly what our general expressions 
already describes—no further simplification is possible! 
 
5.  L L LZ R jX= +  
 
Now, let’s look at the general case, where the load has both a 
real (resitive) and imaginary (reactive) component. 
 
Q:  Haven’t we already determined all the general 
expressions (e.g., ( ) ( ) ( ) ( )L ,V z ,I z ,Z z , zΓ Γ ) for this general 
case?  Is there anything else left to be determined? 
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A: There is one last thing we need to discuss.  It seems 
trivial, but its ramifications are very important! 
 
For you see, the “general” case is not, in reality, quite so 
general.  Although the reactive component of the load can be 
either positive or negative ( LX−∞ < < ∞ ), the resistive 
component of a passive load must be positive ( 0LR > )—there’s 
no such thing as negative resistor! 
 
This leads to one very important and useful result.  Consider 
the load reflection coefficient: 
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Now let’s look at the magnitude of this value: 
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It is apparent that since both LR  and 0Z  are positive, the 
numerator of the above expression must be less than (or equal 
to) the denominator of the above expression. 
 

 In other words, the magnitude of the load reflection 
coefficient is always less than or equal to one! 
 
 

1LΓ ≤     (for 0LR ≥ ) 
 
 
Moreover, we find that this means the reflection coefficient 
function likewise always has a magnitude less than or equal to 
one, for all values of position z. 
 

( ) 1zΓ ≤     (for all  z) 
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Which means, of course, that the reflected wave will always 
have a magnitude less than that of the incident wave 
magnitude: 
 
 

( ) ( )V z V z− +≤          (for all  z) 
 

 
 
We will find out later that this result is consistent with 
conservation of energy—the reflected wave from a passive 
load cannot be larger than the wave incident on it. 
 
 

 
 


