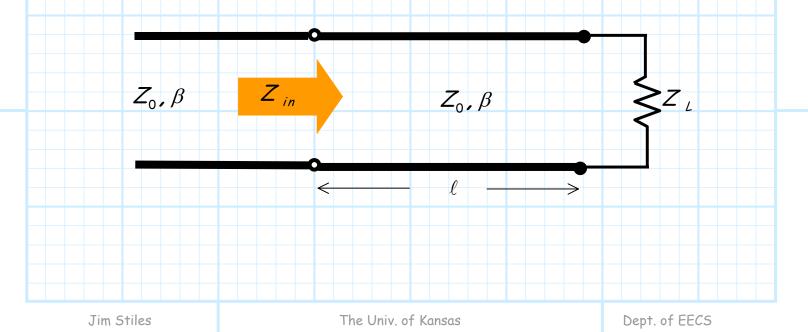
## <u>The Reflection Coefficient</u> Transformation

The **load** at the end of some length of a transmission line (with characteristic impedance  $Z_0$ ) can be specified in terms of its impedance  $Z_L$  or its reflection coefficient  $\Gamma_L$ .

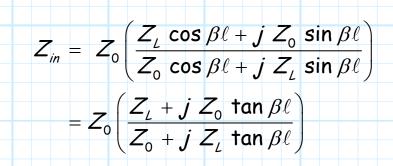
Note **both** values are complex, and **either one** completely specifies the load—if you know **one**, you know the **other**!

$$\Gamma_{L} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}} \quad \text{and} \quad Z_{L} = Z_{0} \left( \frac{1 + \Gamma_{L}}{1 - \Gamma_{L}} \right)$$

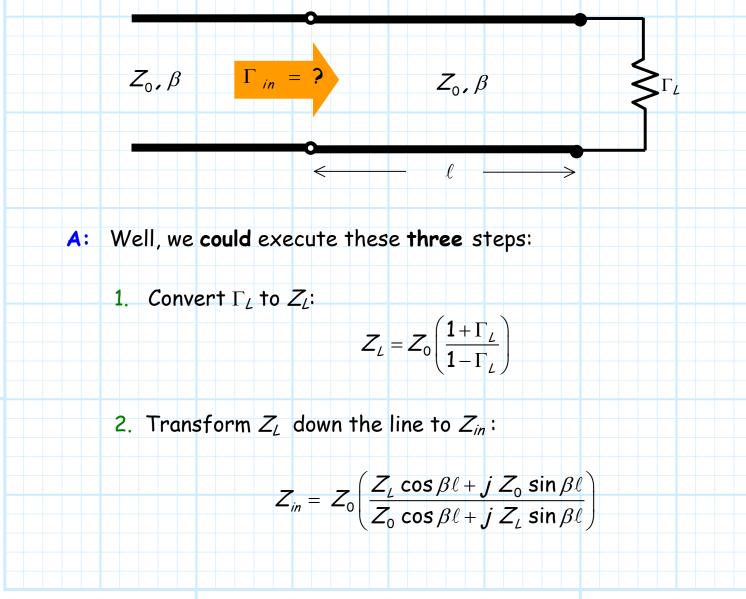
Recall that we determined how a length of transmission line **transformed** the load **impedance** into an input **impedanc**e of a (generally) different value:







**Q:** Say we know the load in terms of its **reflection coefficient**. How can we express the **input** impedance in terms its **reflection coefficient** (call this  $\Gamma_{in}$ )?



3. Convert  $Z_{in}$  to  $\Gamma_{in}$ :

Q: Yikes! This is a **ton** of complex arithmetic—isn't there an easier way?

 $\Gamma_{in} = \frac{Z_{in} - Z_0}{Z_{in} + Z_0}$ 

A: Actually, there is!

Recall in an **earlier handout** that the input impedance of a transmission line length  $\ell$ , terminated with a load  $\Gamma_{L}$ , is:

$$Z_{in} = \frac{V(z = -\ell)}{I(z = -\ell)} = Z_0 \left( \frac{e^{+j\beta\ell} + \Gamma_L e^{-j\beta\ell}}{e^{+j\beta\ell} - \Gamma_L e^{-j\beta\ell}} \right)$$

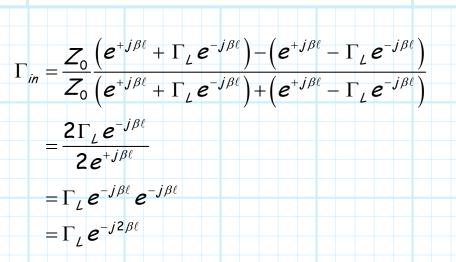
Note this directly relates  $\Gamma_{L}$  to  $Z_{in}$  (steps 1 and 2 combined!).

If we directly insert this equation into:

$$_{in} = \frac{Z_{in} - Z_0}{Z_{in} + Z_0}$$

we get an equation **directly** relating  $\Gamma_L$  to  $\Gamma_m$ :

Г



**Q:** Hey! This result looks **familiar**. Haven't we seen something like this **before**?

A: Absolutely! Recall that we found that the reflection coefficient function  $\Gamma(z)$  can be expressed as:

$$\Gamma(\boldsymbol{z}) = \Gamma_0 \, \boldsymbol{e}^{2\gamma \boldsymbol{z}}$$

Now, for a lossless line, we know that  $\gamma = j\beta$ , so that:

$$\Gamma(\boldsymbol{Z}) = \Gamma_0 \,\boldsymbol{e}^{j \, 2\beta \boldsymbol{Z}}$$

Evaluating this function at the **beginning** of the line (i.e., at  $z = z_L - \ell$ ):  $\Gamma(z = z_L - \ell) = \Gamma_{-} e^{j2\beta(z_L - \ell)}$ 

$$= \mathbf{Z}_{L} - \ell = \Gamma_{0} \mathbf{e}^{j 2 \beta \mathbf{Z}_{L}} \mathbf{e}^{-j 2 \beta \ell}$$
$$= \Gamma_{0} \mathbf{e}^{j 2 \beta \mathbf{Z}_{L}} \mathbf{e}^{-j 2 \beta \ell}$$

But, we recognize that:

$$\Gamma_0 \boldsymbol{e}^{j2\beta \boldsymbol{z}_L} = \Gamma(\boldsymbol{z} = \boldsymbol{z}_L) = \Gamma_L$$

Jim Stiles

 $\Gamma(\boldsymbol{z} = \boldsymbol{z}_{L} - \ell) = \Gamma_{0} \boldsymbol{e}^{j 2 \beta \boldsymbol{z}_{L}} \boldsymbol{e}^{-j 2 \beta \ell}$ 

## And so:

 $= \Gamma_{L} e^{-j^{2\beta \ell}}$ Thus, we find that  $\Gamma_{in}$  is simply the value of function  $\Gamma(z)$ 

evaluated at the line input of  $z = z_L - \ell$  !

$$\Gamma_{in} = \Gamma(\boldsymbol{z} = \boldsymbol{z}_{L} - \ell) = \Gamma_{L} \boldsymbol{e}^{-j2\beta\ell}$$

Makes sense! After all, the input impedance is **likewise** simply the line impedance evaluated at the line input of  $z = z_L - \ell$ :

$$Z_{in} = Z\left(z = z_L - \ell\right)$$

It is apparent that from the above expression that the reflection coefficient at the input is simply related to  $\Gamma_{L}$  by a **phase shift** of  $2\beta\ell$ .

In other words, the **magnitude** of  $\Gamma_{in}$  is the **same** as the magnitude of  $\Gamma_{L}$ !

$$|\Gamma_{in}| = |\Gamma_{L}| |\boldsymbol{e}^{j(\theta_{\Gamma} - 2\beta\ell)}|$$
$$= |\Gamma_{L}| (\mathbf{1})$$
$$= |\Gamma_{L}|$$

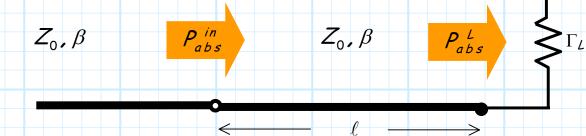
If we think about this, it makes perfect sense!

Recall that the power **absorbed** by the load  $\Gamma_{in}$  would be:

$$P_{abs}^{in} = \frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}} \left(1 - \left|\Gamma_{in}\right|^{2}\right)$$

while that absorbed by the load  $\Gamma_L$  is:

$$P_{abs}^{L} = \frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}} \left(1 - \left|\Gamma_{L}\right|^{2}\right)$$



Recall, however, that a lossless transmission line can absorb **no** power! By adding a length of transmission line to load  $\Gamma_L$ , we have added only **reactance**. Therefore, the power absorbed by load  $\Gamma_{in}$  is **equal** to the power absorbed by  $\Gamma_L$ :

$$P_{abs}^{in} = P_{abs}^{L}$$

$$\frac{|V_{0}^{+}|^{2}}{2 Z_{0}} (1 - |\Gamma_{in}|^{2}) = \frac{|V_{0}^{+}|^{2}}{2 Z_{0}} (1 - |\Gamma_{L}|^{2})$$

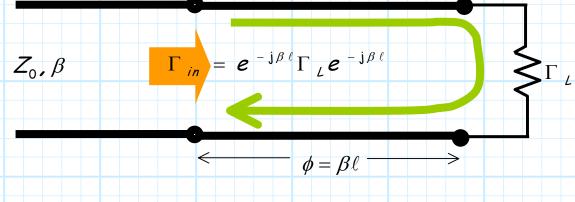
$$1 - |\Gamma_{in}|^{2} = 1 - |\Gamma_{L}|^{2}$$

Thus, we can conclude from conservation of energy that:

 $\left|\Gamma_{in}\right| = \left|\Gamma_{L}\right|$ 

Which of course is **exactly** the result we just found!

Finally, the **phase shift** associated with transforming the load  $\Gamma_{\mathcal{L}}$  down a transmission line can be attributed to the phase shift associated with the wave propagating a length  $\ell$  down the line, reflecting from load  $\Gamma_{\mathcal{L}}$ , and then propagating a length  $\ell$  back up the line:



To **emphasize** this wave interpretation, we recall that by definition, we can write  $\Gamma_{in}$  as:

 $\boldsymbol{V}^{-}(\boldsymbol{z}=\boldsymbol{z}_{L}-\boldsymbol{\ell})=\boldsymbol{\Gamma}_{in}\,\boldsymbol{V}^{+}(\boldsymbol{z}=\boldsymbol{z}_{L}-\boldsymbol{\ell})$ 

$$\Gamma_{in} = \Gamma(z = z_L - \ell) = \frac{V^{-}(z = z_L - \ell)}{V^{+}(z = z_L - \ell)}$$

Therefore:

 $= \boldsymbol{e}^{-j\beta\ell} \Gamma_{L} \boldsymbol{e}^{-j\beta\ell} \boldsymbol{V}^{+} (\boldsymbol{z} = \boldsymbol{z}_{L} - \ell)$