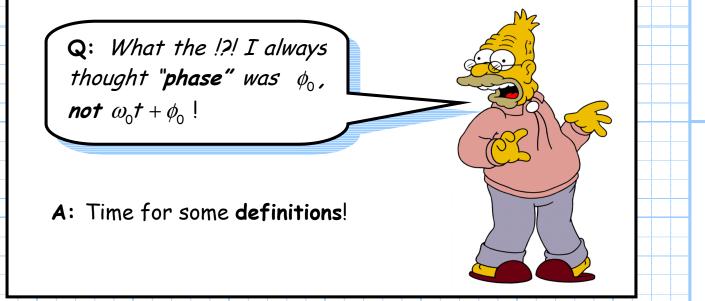
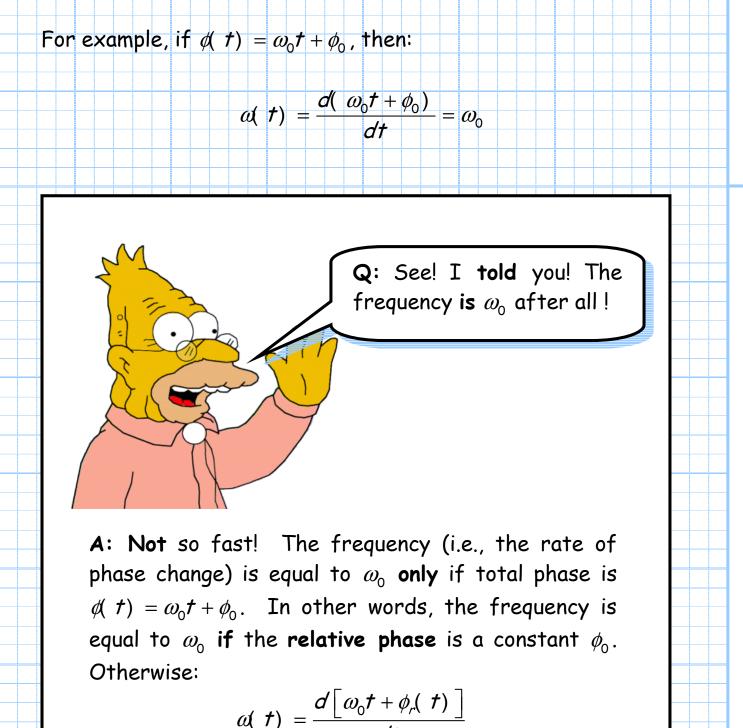
Phase and Frequency


Consider the trig functions sin x and cos x.

- Q: What are the units of x??
- A: The units of x must be radians.

In other words x is phase ϕ , i.e., cos ϕ and sin ϕ .


Phase can of course be a function of **time**, i.e., $\cos \phi(t)$. For example: $\cos(\omega_0 t + \phi_0)$

In other words, the signal **phase** $\phi(t)$ is $\phi(t) = \omega_0 t + \phi_0$!

We call
$$\phi(t) = \omega_0 t + \phi_0$$
 the total, or absolute phase of the sinusoidal signal. Note the total phase is a linearly increasing function of time !
 $\phi(t)$
 ϕ_0
 ϕ_0

Q: O.K., so you have made **phase** really complicated, but at least the signal frequency is still ω_0 , right ?? Wrong ! Frequency too is a little more **A**: complicated than you might have imagined. Angular frequency is **defined** as the rate of (total) phase change with respect to time. As a result, it is measured in units of radians/second. How do we determine the rate of phase change with respect to time? We take the **derivative** of $\phi(t)$ with respect to $t \neq t$ I.E. $\omega(t) = \frac{d' \phi(t)}{dt}$ (radians/sec)

$$w(t) = \frac{d \left[\omega_0 t + \varphi_r(t) \right]}{dt}$$
$$= \frac{d(\omega_0 t)}{dt} + \frac{d \phi_r(t)}{dt}$$
$$= \omega_0 + \frac{d \phi_r(t)}{dt}$$
$$= \omega_0 + \omega_r(t)$$

In other words, the **total** frequency $\omega(t)$ is the sum of the **carrier** frequency ω_0 and the **relative** frequency $\omega_r(t)$.

• The signal frequency can change with **time** !

Remember, we can also express frequency in cycles/second (i.e., Hz) if we divide by 2π .

$$f(t) = \frac{a(t)}{2\pi}$$
 (Hz)

Therefore, we can write:

$$f(t) = f_0 + f_r(t)$$