The Complex Propagation

<u>Constant γ </u>

Recall that the current and voltage along a transmission line have the form:

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{+\gamma z}$$

$$I(z) = \frac{V_0^+}{Z_0} e^{-\gamma z} - \frac{V_0^-}{Z_0} e^{+\gamma z}$$

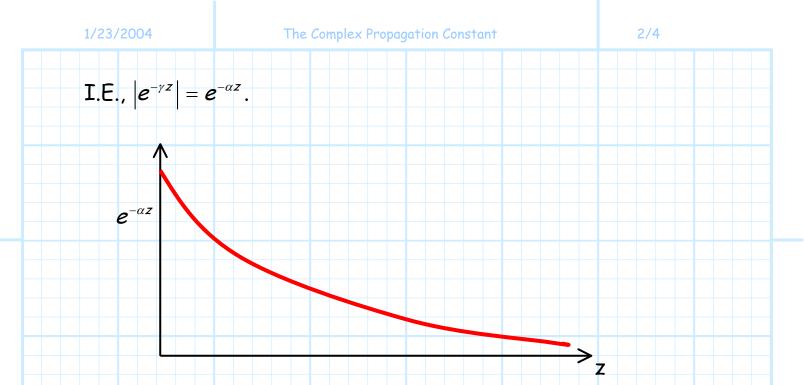
where Z_0 and γ are **complex constants** that describe the properties of a transmission line. Since γ is complex, we can consider both its **real** and **imaginary** components.

$$\gamma = \sqrt{(R + j\omega L)(G + j\omega C)}$$
$$\doteq \alpha + j\beta$$

where $\alpha = Re\{\gamma\}$ and $\beta = Im\{\gamma\}$. Therefore, we can write:

$$\boldsymbol{e}^{-\gamma \boldsymbol{z}} = \boldsymbol{e}^{-(\alpha+j\beta)\boldsymbol{z}} = \boldsymbol{e}^{-\alpha \boldsymbol{z}} \boldsymbol{e}^{-j\beta \boldsymbol{z}}$$

Since $|e^{-j\beta z}| = 1$, then $e^{-\alpha z}$ alone determines the magnitude of $e^{-\gamma z}$.



Therefore, α expresses the **attenuation** of the signal due to the loss in the transmission line.

Since $e^{-\alpha z}$ is a real function, it expresses the **magnitude** of $e^{-\gamma z}$ only. The **relative phase** $\phi(z)$ of $e^{-\gamma z}$ is therefore determined by $e^{-j\beta z} = e^{-j\phi(z)}$ only (recall $|e^{-j\beta z}| = 1$).

From Euler's equation:

$$e^{j\phi(z)} = e^{j\beta z} = cos(\beta z) + j sin(\beta z)$$

Therefore, βz represents the **relative phase** $\phi(z)$ of the oscillating signal, as a function of transmission line position z. Since phase $\phi(z)$ is expressed in radians, and z is distance (in meters), the value β must have units of :

$$\beta = \frac{\phi}{z}$$
 $\frac{\text{radians}}{\text{meter}}$

The wavelength λ of the signal is the distance $\Delta z_{2\pi}$ over which the relative phase changes by 2π radians. So:

$$2\pi = \phi(z + \Delta z_{2\pi}) - \phi(z) = \beta \Delta z_{2\pi} = \beta \lambda$$

or, rearranging:

$$\beta = \frac{2\pi}{\lambda}$$

Since the signal is oscillating in time at rate ω rad/sec, the propagation velocity of the wave is:

$$v_p = \frac{\omega}{\beta} = \frac{\omega\lambda}{2\pi} = f\lambda$$
 $\left(\frac{m}{\sec} = \frac{rad}{\sec}\frac{m}{rad}\right)$

where f is frequency in cycles/sec.

Recall we originally considered the transmission line current and voltage as a function of time and position (i.e., v(z,t) and i(z,t)). We assumed the time function was sinusoidal, oscillating with frequency ω :

$$v(z,t) = Re\{V(z)e^{j\omega t}\}$$

$$i(z,t) = Re\{I(z)e^{j\omega t}\}$$

 $V_0^+ e^{-\alpha z} e^{-j(\beta z - \omega t)}$

 \rightarrow

Now that we know V(z) and I(z), we can write the original functions as:

$$v(z,t) = Re\left\{V_0^+ e^{-\alpha z} e^{-j(\beta z - \omega t)} + V_0^- e^{\alpha z} e^{j(\beta z - \omega t)}\right\}$$

$$i(z,t) = Re\left\{\frac{V_0^+}{Z_0}e^{-\alpha z}e^{-j(\beta z-\omega t)} - \frac{V_0^+}{Z_0}e^{\alpha z}e^{j(\beta z-\omega t)}\right\}$$

The first term in each equation describes a wave **propagating** in the +z direction, while the second describes a wave propagating in the **opposite** (-z) direction.

$$V_0^- e^{\alpha z} e^{j(\beta z - \omega t)} \qquad Z_0, \gamma$$

Each wave has wavelength:

$$\lambda = \frac{2\pi}{\beta}$$

And velocity:

$$v_p = \frac{\omega}{\beta}$$