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The Complex Propagation 
Constant γ 

 
Recall that the current and voltage along a transmission line 
have the form: 
 

 

where Z0 and γ are complex constants that describe the 
properties of a transmission line.  Since γ is complex, we can 
consider both its real and imaginary components. 
 

 

 
where .  Therefore, we can write: 
 

 
 

Since =1, then alone determines the magnitude of 
.   
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Therefore, α expresses the attenuation of the signal due to the 
loss in the transmission line. 
 
Since  is a real function, it expresses the magnitude of 

only.  The relative phase  of is therefore 
determined by  only (recall ).   
 
From Euler’s equation: 
 

 
 

Therefore, βz represents the relative phase of the 
oscillating signal, as a function of transmission line position z.  
Since phase is expressed in radians, and z is distance (in 
meters), the value β must have units of : 
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The wavelength  of the signal is the distance  over which 
the relative phase changes by 2  radians. So: 
 

 
 
or,  rearranging: 

 

 
Since the signal is oscillating in time at rate , the 
propagation velocity of the wave is:  
 

 

 
where f is frequency in cycles/sec. 
 
Recall we originally considered the transmission line current and 
voltage as a function of time and position 
(i ).  We assumed the time function was 
sinusoidal, oscillating with frequency : 
 

 



1/23/2004 The Complex Propagation Constant 4/4 

{ }0 0

0 0

0 0

z j z t z j z t

z j z t z j z t

v z t V e e V e e

V Vi z t e e e e
Z Z

+ − − − − −

+ +
− − − −

= +

 
= − 

 

α β ω α β ω

α β ω α β ω

( ) ( )

( ) ( )

( , ) Re

( , ) Re

2πλ
β

=

pv ω
β

=

0Z γ, 0
( )z j z tV e eα β ω+ − − −

0
( )z j z tV e eα β ω− −

 
Now that we know V(z) and I(z), we can write the original 
functions as: 
 

 

 
The first term in each equation describes a wave propagating in 
the +z direction, while the second describes a wave propagating 
in the opposite (-z) direction. 
 
 
 
 
 
 
 z 
Each wave has wavelength: 
 

 

 
And velocity: 
 

 

 
 


