
A Data-Aware FM-index ∗

Hongwei Huo† Longgang Chen† Heng Zhao† Jeffrey Scott Vitter‡ Yakov Nekrich§

Qiang Yu†

Abstract

In this paper we present some practical modifications of the

higher-order entropy-compressed text indexing method of

Foschini et al. [6] based upon the Burrows-Wheeler trans-

form and the FM-index. Our method, called FM-Adaptive,

applies a wavelet tree to the entire BWT. It partitions each

bit vector of nodes in the wavelet tree into blocks and ap-

plies the hybrid encoding along with run-length Gamma

code rather than the fixed-length code of [14] to each block

while explores data-aware compression. FM-Adaptive re-

tains the theoretical performance of previous work and in-

troduces some improvements in practice. At the same time,

broad experiments indicate that our index achieves superior

performance, especially in terms of compression, in compar-

ison to the state-of-the-art indexing techniques. The source

code is available online.

1 Introduction.

Massive data sets are being produced at unprecedented
rates from sources like the World-Wide Web, genome
sequencing, XML, e-mail, satellite data, and business
records. A larger part of the data consists of text
in the form of a sequence of symbols representing not
only natural language, but also music, program code,
multimedia streams, biological sequences, and myriad
forms of media. A full-text index is a data structure
that stores a text (a.k.a. string) in preprocessed form
so that it can support fast string matching queries.
The best-known full-text indexes are the suffix tree
[18, 25] and suffix array [17], which support pattern
matching queries in optimal or almost-optimal time.
Both structures use O(n) words of storage, which is
O(n log n) bits, which is larger than the raw text size
n|Σ| bits, where Σ represents the text alphabet. It is
substantially larger than the size of the text in fully
compressed form, which we approximate by nHk(T),
for some k, where nHk(T) represents the kth-order

∗Supported by NSFC grants 61173025 and 61373044, and

RFDPC grant 20100203110010.
†Xidian University, Xi’an 710071, China. Hongwei Huo is the

corresponding author. E-mail: hwhuo@mail.xidian.edu.cn.
‡The University of Kansas, Lawrence, Kansas 66047.
§University of Waterloo, Waterloo ON N2L 3G1, Canada.

empirical entropy of the text T of length n.
The field of compressed or succinct data structures

attempts to build data structures whose space is prov-
ably close to the size of the data in compressed for-
mat and that still provides fast query functionality [12].
Theoretical breakthroughs about 15 years ago led to
the development of a new generation of space-efficient
search indexes. The compressed suffix array (CSA)
[8–10, 22–24] and the FM-index [3–6] have been devel-
oped to achieve this desired goal of compressed text
indexing, and their query time is proportional to the
query pattern size plus the product of the output size
and a small polylog function of n. The former maintains
a succinct representation of the full suffix array, and
the latter is based upon the Burrows-Wheeler Trans-
form (BWT) [1] data compressor. Both are described in
the appendix. Moreover, these indexes are self-indexes.
That is, they provide random access to any part of the
original text, and thus the text becomes redundant and
can be discarded.

Simpler implementations for the CSA and FM-
index achieve higher-order compression without explicit
partitioning into separate contexts. In fact, the original
BWT compressor was typically implemented by encod-
ing the BWT-transformed text, Tbwt , with the move-
to-front heuristics [3, 4]. Foschini et al. [6] proposed
using a single wavelet tree (see §2.4) to encode the en-
tire Tbwt and CSA lists rather than using a separate
wavelet tree for each partition or context. They showed
that the wavelet tree analysis of the CSA and FM-index
by Grossi et al. [8], which established the desired space
bound of nHk(T)+o(n) bits, also applies within a factor
of 2 when a single wavelet tree is applied to the entire
sequence rather than having separate wavelet trees ap-
plied to individual contexts. The bit vector comprising
each wavelet tree node is encoded using run-length en-
coding; every run is then represented using the Gamma
code. Mäkinen and Navarro [15] made further theo-
retical improvements and eliminated the factor of 2 and
achieved nHk(T)+o(n) bits of space. Huo et al. [13] pro-
posed a new representation of the neighbor function Φ of
the CSA and used a two-level scheme plus a lookup ta-
ble to support fast queries. The survey by Navarro and

10 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

02
/2

8/
21

 to
 7

0.
17

1.
98

.5
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Mäkinen [19] discusses index construction and other de-
velopments, and Ferragina et al. [2] report experimental
comparisons.

The rank and select operations are basic building
blocks of the FM-index, the CSA, and other succinct
data structures. FM-indexes do not require the select
operation and can focus on rank queries. There are
many data structures for representing bit vectors so that
rank queries can be answered efficiently, and wavelet
trees generalize the notion of bit vectors so that each
entry in the vector is from a multisymbol alphabet Σ.
They can be classified into two main categories: the
plain representation (uncompressed vectors) and the
compressed representation. The former keeps the vector
intact but uses a sublinear data structure on top of
it, which usually leads to an amount of space similar
to that of the uncompressed text. The latter exploits
the compressibility of the vectors while supporting a
rank operation. An example of the latter approach for
bit vectors is the RRR method by Raman et al. [21],
which requires a total of nH0(T) + o(n) bits for a bit
vector T . The recent improvements on the rank and
select operations on uncompressed bit vectors have been
made by [7, 14,20,27].

In this paper we present some practical modifica-
tions of the higher-order entropy-compressed text in-
dexing method of Foschini et al. [6], which encodes the
Burrows-Wheeler transform using a single wavelet tree.
Our method, called FM-Adaptive, partitions each bit
vector of nodes in the wavelet tree into blocks and ap-
plies a hybrid encoding to reduce space usage while ex-
plores data-aware compression. FM-Adaptive retains
the theoretical performance of previous work and intro-
duces some improvements in practice. At the same time,
broad experiments indicate that our index achieves su-
perior performance, especially in terms of compres-
sion, in comparison to the state-of-the-art indexing
techniques. The source code is available at https:

//github.com/chenlonggang/Adaptive-FM-index.

2 Preliminaries.

2.1 Empirical entropy and compressibility of a
text. Let T be a string of n characters from an alphabet
Σ of size σ. The empirical entropy of a text T provides
a lower bound to the number of bits needed to compress
T using any compressor. The compression methods
based upon Huffman coding assume that characters
are independent and identically distributed (i.i.d.), thus
their compression is close to the 0th-order empirical
entropy of the text. The Huffman codeword length for
each symbol is typical around 1.1–1.2H0, where H0 is
the 0th-order empirical entropy of T , defined as follows:

H0(T) = −
σ∑

i=1

ni

n
log

ni

n

where ni is the number of occurrences of character i in
T .

For most of data, the similar compressors are effec-
tive. However, the assumption that the characters in a
text are randomly drawn (i.i.d.) is sometimes unreal-
istic in some situations, as a character may be closely
related to its preceding k characters. For example, for
the text “Th* White House”, the ‘*’ is likely to repre-
sent the character ‘e’. That is, the ‘*’ depends upon
the characters around. For T = abcdabcdabcd, if we use
a 0th-order compressor, then the compression ratio is
close to H0, which is 2 bits for each character. However,
T [i] depends heavily upon the T [i+ 1] in this example,
i.e., if T [i] = a, then we are certain T [i + 1] = b. Thus
we can achieve a greater compression if the codeword
for each character uses the information of its preceding
k characters.

For any length-k string w ∈ Σk, let ws is the
string obtained by concatenating the single characters
immediately following each occurrences of w inside T .
The kth-order empirical entropy of T is defined as

Hk(T) =
1

n

∑
w∈Σk

|ws|H0(ws)

where Hk(T) represents a lower bound to the compres-
sion we can achieve using codewords which depend upon
the k most recently seen characters.

Let’s continue the above example, for T =
abcdabcdabcd , we have

H0(T) = − (1/4) log(1/4)− (1/4) log(1/4)−
(1/4) log(1/4)− (1/4) log(1/4) = 2

H1(T) = (1/12)(3H0(wa) + 3H0(wb) +

3H0(wc) + 2H0(wd))

= (1/4)H0(bbb) + (1/4)H0(ccc) +

(1/4)H0(ddd) + (1/6)H0(aa) = 0

and all higher-order empirical entropies of T are 0. This
means if we choose a character uniformly at random
from T to guess, then the uncertainty is 2. If we know
the preceding character before we guess, then we are
certain of the answer.

If we are computing any higher-order empirical
entropy of a string T , it would be 0, since all the
corresponding H0 terms would be 0. We will see in the
following sections that regardless whether the neighbor
function Φ of the CSA or the BWT and LF mapping
of the FM-index, both link the current position to the

11 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

02
/2

8/
21

 to
 7

0.
17

1.
98

.5
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

previous or following position of its neighbor, which
provides not only the possibility of restoring the text,
but also leads to a compression to the higher-order
entropy of the text.

2.2 The Burrows-Wheeler transform. Let T be
a string of n characters from an alphabet Σ of size σ
and P a query pattern of length p. The string T has n
suffix, which starts at each of the n locations in the text.
The ith suffix, which start at position i, is denoted by
T [i..n]. The suffix array SA[1..n] of T is an array of n
integers that gives the sorted order of the suffixes of T .
That is, SA[i] = j if T [j..n] is the ith smallest suffix of
T in lexicographical order. Similarly, the inverse suffix
array is defined by SA−1[j] = i. All the suffixes prefixed
by P occupy a contiguous range in the sorted array SA.

In the CSA [9, 10], the suffix array values are
indirectly encoded by instead storing the Φ function,
where Φ(i) = SA−1[SA[i] + 1]. The Φ function can
be compressed into optimal space (in entropy sense),
and then each SA value can be computed by referring
to a small portion of the Φ function in O(polylogn)
time. More recently, Huo et al. [13] gave a practical
implementation of the CSA by encoding the differences
Φ(i) − Φ(i − 1) using Elias’s Gamma coding, in which
they used a remarkable property of Φ, that is, an
increasing sequence of positions within each Σ list.

i SA Φ LF F L
0 7 3 5 # abaaba b
1 2 4 6 a abab#a b
2 5 5 7 a b#abaa b
3 0 6 0 a baabab #
4 3 7 1 a bab#ab a
5 6 0 2 b #abaab a
6 1 1 3 b aabab# a
7 4 2 4 b ab#aba a

 Figure 1: Example of the BWT of T = abaabab#.

The Burrows-Wheeler transform (BWT) of T is
an invertible permutation of T , denoted by L, such
that L[i] is the character in the text just preceding
the ith lexicographically smallest suffix of T . That is,
L[i] = T [SA[i] − 1 mod n]. Intuitively, the sequence
L[i] is easier to compress because adjacent characters
often share higher-order contexts, and thus space can
be reduced even further to about nHk bits. The LF
function [3] stands for last-to-first column mapping
since the character L[i] in the last column of Figure 1
is located in the column F at position LF (i), i.e.,
L[i] = F [LF (i)]. In the example of Figure 1, L[6] and

F [LF (6)] = F [3] both correspond to the third a in the
string abaabab#. Thus we can walk backwards through
the text T using the function LF . That is, if T [k] = L[i],
then T [k − 1] = L[LF (i)].

The FM-index and the CSA are closely related:
the LF function and the CSA neighbor function Φ are
inverses of one another. That is, SA[LF (i)] = SA[i]−1;
equivalently LF (i) = SA−1[SA[i]− 1] = Φ−1(i).

Since the BWT does not change the distribution of
characters, the 0th-order empirical entropy of T remains
the same. However, it tends to move characters with
similar contexts close together and thus the resulting
string L has a good locality (being consecutive piecewise
in the lexicographic order as shown in Figure 1) which
makes the move-to-front or wavelet tree transformation
more effective.

2.3 The FM-index. Ferragina and Manzini intro-
duced the elegant FM-index [3, 4], based upon the
Burrows-Wheeler transform. The FM-index was the
first self-index shown to have both fast performance
and space usage within a constant factor of the desired
entropy bound for constant-sized alphabets. The core
problem of the FM-index is to provide a compressed rep-
resentation of L together with some auxiliary structures
which makes it possible to compute the LF mapping
efficiently. LF (i) = C[L(i)] + Occ(i, L(i)) − 1, where
Occ(i, c) is the number of occurrences of character c in
the prefix L[0, i], and C[] is the array of length σ + 1
such that C[c] is the total number of text characters
which are alphabetically smaller than c. C = {0, 1, 5, 8}
for the example in Figure 1.

FM-index is based upon a procedure called
backward search [4, 10], which finds the range of rows
in the BWT matrix M (the last three columns in Fig-
ure 1) that begin with a given pattern P . This range
represents the occurrences of P in T , which answers
the count query (returns the number of occurrences of
P in T). Thus by backward search we turn the count
query on T into a sequence of rank queries on L. With
a slight extension, we can implement the locate and
extract queries, where locate reports the occurring po-
sitions of P in T and extract displays the text substring
T [start, start+ len− 1], given start and len.

The count algorithm describes the backward search-
based counting operation in which the while loop
performs p iterations from p−1 to 0,where p is the length
of pattern P . The algorithm maintains the following
invariant: after the k iterations, the variable l points to
the first row of the M prefixed by P [p − k, p − 1], and
the variable r points to the last row of the M prefixed
by P [p−k, p−1]. After the p iterations, occ = r− l+1,
the number of occurrences of P in T .

12 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

02
/2

8/
21

 to
 7

0.
17

1.
98

.5
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

count(P , l, r)
Input: P
Output: l and r
1 i← p− 1, c← P [p− 1]
2 l← C[c]
3 r ← C[c+ 1]− 1
4 while (l ≤ r and i ≥ 1) do
5 c← P [i− 1]
6 l← C[c] +Occ(c, l − 1)
7 r ← C[c] +Occ(c, r)− 1
8 i← i− 1
9 if l > r then
10 return “pattern does not exist”
11 else
12 return l and r

It is obvious that the running time of the count algo-
rithm depends upon how the value of Occ is computed.
By means of the wavelet tree [6, 8, 11] representation of
L, Occ(c, j) (= rankL(c, j)) can be answered by per-
forming a sequence of rank queries over bit vectors of
the wavelet tree, that is, a traversal from the root to
the leaf labeled by c. Thus we can retrieve character
L(i) and compute the number of occurrences Occ(i, c)
in O(log σ) time, provided constant-time responses to
the rank query on the bit vectors and a (nearly) bal-
anced wavelet tree. Therefore, the count algorithm runs
in O(p log σ) time.

For T = abaabab# in Figure 1, we use pattern
P = ab as an example to show how the count algorithm
works. After initialization in line 1, i = 1, c = b,
l = C[b] = 5, r = C[b+1]−1 = 7. For the first iteration
of the while loop, c = P [0] = a, l = C[a] +Occ(a, 4) =
1 + 1 = 2, r = C[a] + Occ(a, 7) − 1 = 4, i = 0. The
count returns l = 2 and r = 4.

The count algorithm reports an interval in which
the corresponding suffixes in T are prefixed by the
pattern P . Thus, for each value i in this interval, we
use the procedure getpos2(i) to find the position in
T of the suffix, i.e. the value (SAl[i] + step) mod n
returned by getpos2(i). The locate algorithm invokes
the getpos2(i) for each value in [l, r], given as follows.

locate(P , ans)
Input: l and r
Output: ans
1 ans[0..r − l]← 0
2 for i← l to r do
3 ans[i− l]← getpos2(i)
4 return ans

getpos2 (i)
1 step← 0

2 while (i mod d) ̸= 0 do
3 i← LF (i)
4 step← step+ 1
5 i← i/d
6 return (SAl[i] + step) mod n

For i = l · · · r, we can walk the text T us-
ing LF along indices i′(LF (i)), i′′(LF (i′)), · · · , such
that SA[i] − 1 = SA[i′], SA[i′] − 1 = SA[i′′], and
so on, until a sampled position, SAl, is met. If
we sample the suffix array at a regular text po-
sition interval d = Θ((logn)2/ loglogn), then the
while loop is executed O((logn)2/ loglog n) times.
Since LF (i) can be answered via O(log σ) computa-
tions of L() and Occ(), we have that getpos2 takes
O(log σ((logn)2/ loglogn)) time. Thus, the locate al-
gorithm runs in O(occ log σ((logn)2/ loglogn)) time.
Sampling suffix array at every (logn)2/ loglog n points
takes Θ(n loglog n/ logn) bits of space.

We continue to have pattern P = ab as an example
to show how the locate algorithm works. As we have
seen, the input for locate is l = 2 and r = 4. The
range [l, r] contains all the occurrences of ab in T in the
example of Figure 1. locate invokes getpos2 for i = 2
to 4. Let d = 4. We use i = 2 to illustrate. After
performing line 1, step = 0, then we judge the while
condition (2 mod 4) ̸= 0, updating i = LF (2) = 7
and step = 1. Continuing the loop, (7 mod 4) ̸= 0,
updating i = LF (7) = 4 and step = 2, At the time,
the while loop exits, since the loop condition is not
satisfied. Then after doing line 5, we get i = 4/d =
4/4 = 1. And the getpos2 returns (SAl[i] + step)
mod n = SAl[1] + 2 = 5, one of the positions where
the pattern ab occurs in T shown in Figure 1.

extract(start, len, seq)
Input: start and len
Output: seq
1 end← start+ len− 1
2 anchor ← (n− 2− end)/e
3 step← (n− 2− end) mod e
4 i← SA−1

l [anchor]
5 for j ← 0 to step− 1 do
6 i← LF (i)
7 for j ← 0 to len− 1 do
8 seq[len− j − 1]← L(i)
9 i← LF (i)
10 return seq

The extract algorithm displays substring
T [start..start + len − 1] of length len in T .
If we sample the inverse suffix array at every
e = Θ((logn)2/ log logn), the for loop in line 5

13 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

02
/2

8/
21

 to
 7

0.
17

1.
98

.5
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

is executed O((logn)2/ log logn) times. The for
loop in line 7 is executed len steps to collect the
text characters. Thus, the extract algorithm takes
O((len+ (log n)2/ log logn) log σ) time.

For T = abaabab# in Figure 1, we give an example
to show how the extract algorithm works. Assume that
the inverse suffix array sampling SA−1

l [] = [0, 7, 6] and
the sampling size e = 3. We want to display T [2..4]
for start = 2 and len = 3. After performing the first
three lines, we have end = 4, anchor = 0, and step =
2. After performing the for loop in line 5, we have i
= 2. Then we go into for loop in line 7. After the
first iteration, we seq[2] = L(2) = b and i = LF (2) =
7; next seq[1] = L(7) = a and i = LF (7) = 4; and
finally seq[0] = L(4) = a and i = LF (4) = 1. Thus
T [2..4] = aab.

Theorem 2.1. Let T be a string of n characters from
an alphabet Σ of size σ and P a query pattern of length
p.

(i) We can implement count query in O(p log σ)
time.

(ii) We can implement locate query in
O(occ((logn)2/ log logn) log σ) time, where occ is
the number of the occurrences of P in T .

(iii) We can implement extract query in
O((len + (log n)2/ log log n) log σ) time, where len
is number of characters to display.

2.4 The Wavelet tree. The wavelet tree, an elegant
data structure introduced by Grossi et al. [6, 8, 11], has
become a key tool in modern full-text indexing and data
compression [12]. It supports access, rank, and select
queries on arrays of characters from Σ. A member query
access(i) reports the character at a given position i of
the array. A rank query rank(c, i) counts how many
times character c occurs in the first i positions of the
array. A select query select(c, j) returns the location of
the jth occurrences of c.

The wavelet tree is conceptually a binary tree (often
a balanced tree) in which each node consists of a vector.
The root node is a bit vector of the same length as the
input text and partitions the alphabet into two sets, the
first half and the second half. The ith bit is 0 (resp., 1) if
the ith entry is an element of the first half (resp., second
half) of the alphabet, in which case it is recursively
represented in the left subtree (resp., right subtree).
Such a bit vector representation happens recursively at
each internal node; the text at the internal node consists
of the characters dispatched from the parent node, with
their order in the text preserved. The collective size of
the bit vectors at any given level of the tree is bounded
by n, and they can be stored in compressed format,

giving the 0th-order entropy space bound [8,11].

3 Data-aware FM-index.

3.1 The index structure for bit vectors. Let T
be a string of n characters from an alphabet Σ of size
σ. Applying the wavelet tree introduced by Grossi
et al. [8] to the BWT of T , which we denote L, we
obtain a wavelet tree representation of L, denoted by
WT (L). We conceptually concatenate the bit vectors at
any given level of the tree into a single one, denoted by
B, and then divide it into blocks of size b and compress
each independently by choosing one from three types of
compression methods (Plain, RLG0/1, All0/1) so that
the compression has the minimum space. Plain means
to represent the block intact. RLG0 (resp., RLG1)
encodes the block in run-length Gamma coding, in
which the first run is a 0-run (resp., 1-run). (We use
0-run to mean a run of 0s.) All0 (resp., All1) means
that the block consists entirely of a 0-run (resp., 1-run).

The idea of choosing among multiple encodings
comes from Kärkkäinen et al. [14], but we have made
several modifications. For example, we do not use fixed-
length coding for each run but rather Gamma coding
using blocks of size b. Moreover, our block size is
dependent upon the statistics of the input data.

To save further space, we combine a constant num-
ber of blocks into a superblock. A bit vector B in
WT (L) is represented by six structures: S, SBrank ,
SB, Brank, B, Header, where S is the bit vector B
stored in the compressed form (called the encoded se-
quence), SBrank stores the cumulative sum of 1s pre-
ceding the current superblock in B, SB stores the offset
of a superblock in the encoded sequence S (i.e., the to-
tal number of bits preceding the current superblock),
Brank stores the cumulative sum of 1s preceding the
current block inside its superblock, B stores the offset
relative to its superblock, and Header stores the types
of the encoding methods (each with at most three bits).

Figure 2 shows an example of the structures with
the bit vector size n = 84, the block size b = 12,
and superblock size sb = 36. We choose one encoding
method for each block. For the block containing only 0s
or only 1s, we store nothing, since we can identify them
from the header labeled with All0 or All1.

To obtain rank(i), we first query SB and B to
determine the position (offset) of the block in S to
which i belongs, then access the SBrank and Brank
(base rank) to obtain the total number of occurrences of
1s preceding the block, and then decode starting from
the offset in the S to obtain the number of 1s of the
first ((i+1) mod b) bits (called local rank, denoted by
lrank) within the block. It is added to the base rank to

14 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

02
/2

8/
21

 to
 7

0.
17

1.
98

.5
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

B 001101001010 000000000000 111111111111 000000111111 111111000000 011111111100 011100100000

Header Plain All0 All1 RLG0 RLG1 RLG0 Plain

S 001101001010 null null 0011000110 0011000110 10001001010 011100100000

SBrank 0 17 38

Brank 0 5 5 0 6 12 0

SB 0 12 43

B 0 12 12 0 10 20 0

 Figure 2: The index structure for the bit vector B (n = 84, b = 12, sb = 36).

obtain the final value of rank(i), defined as follows.

rank(k) = SBrank[⌊(i+1)/sb⌋]+Brank[⌊(i+1)/b⌋] +
lrank(S, offset, header[⌊i/b⌋], (i+ 1) mod b)

where sb and b is the superblock size and block size,
respectively. The lrank operation returns the number of
1s of the first ((i+1) mod b) bits within the block in S.
The starting position for decoding is determined by the
parameter offset, which is SB[(i+1)/sb] +B[(i+1)/b].
(i+ 1) mod b is the number of bits to decode.

For example, to solve rank(66), we compute the
starting decoding position in S: offset = SB[67/36] +
B[67/12] = SB[1] + B[5] = 12 + 20 = 32, then com-
pute the base rank: SBrank[67/36] + Brank[67/12] =
SBrank[1] + Brank[5] = 17 + 12 = 29. We know
that the first run in the encoded block is a 0-run since
header[66/12] = header[5] = RLG0. The number of
bits needed to decode is (i+1) mod b = 67 mod 12 = 7
bits. We start to decode at the 32th position of S. We
get #bits = 1 for the first decoding and the correspond-
ing run is a 0-run. The number of bits to decode be-
comes 6 bits. We get #bits = 9 for the second decoding,
and the corresponding run is a 1-run and 9 > 6. Thus
the number of 1s of the first 7 bits in the block is 6.
Therefore, rank(66) = 29 + 6 = 35.

3.2 Space usage. Let Bi (i = 1, 2, · · · , t = σ − 1)
denote the bit vector of internal node i of the wavelet
tree, and |Bi| denote the number of bits contained in
Bi. We divide the bit vector Bi into blocks, denoted by
Bj

i , of size b = O((logn)2/ log log n). Bj
i can be viewed

as a sequence of maximal runs of identical bits Bj
i =

bl11 b
l2
2 · · · blmm for some m ≤ |Bj

i |, where bi ̸= bi+1 for 1 ≤
i < m. The run-length Gamma coding of Bj

i is the bi-

nary string Bj
i|rle,γ = b1γ(l1)γ(l2) · · · γ(lm) where b1 is a

single extra bit necessary for decoding. The run-length
Gamma encoded wavelet trees are the ones whose bit
strings are run-length Gamma encoded. We compress
each block Bj

i by choosing the compression method that

minimizes the encoding length h(Bj
i) from three types

of compression methods: Plain, RLG0/1, and All0/1.
Obviously, |h(Bj

i)| = min{|Bj
i|rle,γ |, |Plain(B

j
i)|}, since

the blocks labeled with All0/1 store nothing. Therefore,
the run-length hybrid encoded wavelet trees for the cod-
ing scheme are the ones whose bit strings are run-length
hybrid encoded.

Lemma 3.1. ([11]) |Brle,γ | ≤ 2nH0(B) + 2 logn+ 2

Lemma 3.2. ([8])
∑t

i=1 |Bi|H0(Bi) = nH0(T)

Grossi et al. [8] introduced the wavelet tree for re-
ducing the redundancy inherent in maintaining sepa-
rate dictionaries for each symbol appearing in the text.
They partition the L into a table of lists y (columns)
and context x with length k (rows). All the entries
across the row of a context x correspond to a contigu-
ous piece of L, that is, some Ls. A wavelet tree is built
over each table row of context x so that the sum of
0th-order entropies over all contexts achieves the hth-
order entropy, nHh [8]. Note that the collection of all
Ls (s = 1, 2, · · · , σk) corresponding to some context x
is precisely L.

Theorem 3.1. We can encode L, the BWT of T , with
a wavelet tree and run-length Gamma encoding using
2nHk(T)+o(n) log σ bits of space for any k ≤ c logσ n−1
and any constant c < 1.

Proof. The bits corresponding to Ls regarding context
x form a substring (hereafter known context block Xs

i)
of the bit vectors at each node of the wavelet tree, since
the corresponding positions are mapped in the left and
right child, thus the order is preserved. For blocks Bj

i of
length b of node i in the wavelet tree, we classified them
into two categories: one is the blocks that are within
context block Xs

i , and the other is the ones that cross
the context block. Assume that the context block Xs

i

contains ti such complete blocks, so the concatenation,
B1

i B
2
i · · ·B

ti
i , of these ti blocks is a substring of Xs

i of
length bti.

Let Si,r denotes the set of blocks contained in
Xs

i of node i and coded in run-length Gamma when

15 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

02
/2

8/
21

 to
 7

0.
17

1.
98

.5
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

|Bj
i|rle,γ | < b; Si,p denotes the set of blocks contained in

Xs
i of node i and coded in Plain when |Bj

i|rle,γ | ≥ b; Sa

denotes the set of blocks contained in Xs
i of node i and

consisted of all 0s or 1s. Obviously, |Si,r|+ |Si,p| ≤ ti.
Using the coding scheme, the space required by the

substring B1
i B

2
i · · ·B

ti
i in compressed form (run-length

Gamma encoding) is

ti∑
j=1

h(Bj
i) =

ti∑
j=1

min{|Bj
i|rle,γ |, |Plain(B

j
i)|}

=
∑

k∈Si,r

|Bk
i|rle,γ |+

∑
j∈Si,p

|Plain(Bj
i)|

≤
∑

k∈Si,r

|Bk
i|rle,γ |+

∑
j∈Si,p

|Bj
i|rle,γ |

=
∑

j∈Si,r∪Si,p

|Bj
i|rle,γ |

≤
∑

j∈Si,r∪Si,p

(2bH0(B
j
i) + 2 log b+ 2)

≤ 2|Xs
i |H0(X

s
i) + 2ti log b+ 2ti

The first inequality is due to the fact that
|Plain(Bj

i)| ≤ |B
j
i|rle,γ | when j ∈ Si,p. The second in-

equality is due to Lemma 3.1. The third inequality is
due to Lemma 3.2 and |Si,r| + |Si,p| ≤ ti. Here we do
not count the space of the first bit b1 (a single bit neces-
sary for decoding) of the run-length Gamma coding of
Bj

i , since we do not store the bit in run-length Gamma

coding of Bj
i but store it in the Header structure.

Notice that these context blocks Xs
i are precisely

those that would result if we built the wavelet tree for
Ls regarding context x. By summing over all the (σ−1)
internal nodes in the wavelet tree and over all contexts of
length k, we proceed in evaluating our main inequality
as

σk∑
s=1

σ−1∑
i=1

(2|Xs
i |H0(X

s
i) + 2ti log b+ 2ti)

≤
σk∑
s=1

(2|Ls|H0(Ls) + 2|Ls| log σ log b/b+ 2|Ls| log σ/b)

= 2nHh(T) +O(n log σ(log logn)2/(log n)2 +

n log σ(log logn)/(logn)2

= 2nHh(T) + o(n) log σ

The first term in the inequality is due to Lemma 3.2
and the last two terms are due to the fact that bti ≤ |Xs

i |
and |Xs

i | lengths add up |Ls| at each level of the wavelet
tree. The first term in the first equality is due to [8] as
described in the paragraph just before Theorem 3.1 in

this Section and the last two terms are due to the fact
that

∑σk

s=1 Ls = n and b = O((logn)2/ log log n).
Moreover, we must count the space required by

the blocks that across the context block Xs
i , which is

O(σk+1 logn) bits, since there can be at most two such
blocks for a context block of a node in wavelet tree and
each takes log n bits in the worst case, and there are
total of σk contexts, and at most (σ− 1) internal nodes
in the wavelet tree, which is o(n) for any k ≤ c logσ n−1
and any constant c < 1.

The space required by the SB, SBrank, B, and
Brank is 2n

sb logn + 2n
b log(sb) bits, which is o(n) bits

for b = O((logn)2/ loglogn) and sb = O((logn)2). It is
obvious that the Header takes 3n/b bits, which is o(n)
bits of space, since there are five encoding methods, each
with at most three bits. Thus, the total space required
by these five structures is o(n).

By summing over all the space needed by all pieces,
we get the space required by the whole structure, which
is 2nHk(T) + o(n) log σ. This completes the proof of
Theorem 3.1.

3.3 Speedup for rank queries. Inspired by the
storage techniques used in [26], we store SBrank and
SB in an interleaved manner. The same technique is
applied to store Brank and B. Thus the memory access
times is reduced from 4 to 2 when answering a rank
query. Among the three types of encoding methods, it
is simple to decode the case All0/1. For Plain, we use
the solution described in [26] to obtain the number of
1s in the Plain. For RLG0/1, we use a lookup table
similar to [13] to optimize the computation of the lrank
operation defined in §3.1, since RLG0/1 accounts for a
high percentage of the three types of encoding methods.

We build two kinds of lookup tables, Z and R:
Z is used to speed up the counting of the number of
0s at the beginning of a bit string, and R is used to
quickly compute the value of the lrank operation. As we
know, to decode Elias’s Gamma encoded sequence for an
integer, we need first to scan and count the number of 0s,
say x, at the beginning of the bit vector; if x is zero, then
the decoded number is 1; otherwise, the decoder reads
the following x+ 1 bits and decodes the corresponding
bits to get the integer. We can create a table, Z, of
size W = O(logn/2) to accelerate the decoding. It
stores the length of the 0-run at the beginning of the bit
string of length W . We can obtain the value x directly
by accessing to the table once, if the table size is less
than

√
n. We can store Z in

√
n log log

√
n bits, since it

contains 2W entries and each needs at most logW bits.
Now we show how a run-length Gamma encoded bit

string is constructed. Assume that we are given a raw
bit string t = 1 0 0 1 0 0 1 1 1 0 1. We use run-length

16 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

02
/2

8/
21

 to
 7

0.
17

1.
98

.5
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

encoding to encode t and have 1 2 1 2 3 1 1, and then
we use Gamma encoding to encode the integer sequence
and have s = 1 0 1 0 1 0 1 0 0 1 1 1 1. If we want to
obtain the raw bit string t, we have to do the decoding
on s.

On the other hand, the table R (as shown in
Table 1) consists of four parts, denoted R1, R2, R3 and
R4, to provide fast decoding and computation of lrank.
The s in first column of Table 1 is a run-length Gamma
encoded bit string.

R1 stores the number of the complete Gamma
encodings contained in a bit string s of length W (i.e.,
the number of runs in the raw bit string). By similar
analysis as above, we know that R1 uses

√
n log log

√
n

bits of space.
R2 stores the cumulative sum of complete Gamma

decoded numbers in a bit string s. It is the number of
bits of the raw bit string. The space required by R2

is 1
4

√
n logn bits, since it contains 2W entries and each

needs at most W/2 bits.
R3 stores the total number of complete Gamma

decoded bits in a bit string s. Obviously, R3 requires√
n log log

√
n bits of space.

R4 stores the rank value of the raw bit string (i.e.,
the number of 1s in the raw bit string) assuming that
the first run in the string is 1-run. For example, if the
raw bit string is 1l10l21l30l41l5 , which can be completely
Gamma encoded in the form γ(l1)γ(l2)γ(l3)γ(l4)γ(l5),
the rank value we store in R4 is l1+ l3+ l5. R4 requires
1
4

√
n log n bits of space, since each entry needs at most

W/2 bits.
Thus the total space required by R is

2
√
n log log

√
n + 1

2

√
n logn bits, which is o(n) bits.

Therefore, the space required by Z and R is o(n) bits.

Table 1: The lookup table R (W = 16)
s R1 R2 R3 R4

0000000000000000 0 0 0 0

· · · · · · · · · · · · · · ·
0000000111111110 1 255 15 255

0000000111111111 2 256 16 255

· · · · · · · · · · · · · · ·
1000000011111111 2 256 16 1

· · · · · · · · · · · · · · ·
1010101001111001 7 11 13 6

· · · · · · · · · · · · · · ·
1111111111111111 16 16 16 8

The value of R2 achieves its maximum when
0000000111111111 or 1000000011111111 occurs. In this
case, we cannot represent the value, and it would over-

flow since we use 8 bits to represent each entry in R2.
In the implementation, when R1 > 0 and R2 = 0, the
actual value of R2 is set to 256.

Moreover, we use the same index to access R in
order of (R1, R2, R3, R4). By interleaving storage, we
can reduce four memory accesses to one memory access
plus three cache accesses. Notice that R4 store the rank
value that takes the first run as 1-run. If the first run
of a decoding is a 0-run, then the rank value is not the
one in R4 but the difference of corresponding entries of
R2 and R4.

Let’s take an example to show how the table R
works. Assume that we are given a run-length Gamma
encoded bit string s = 1 010 1 010 011 1 1 001 to decode
and the current start decoding position is at p, and the
number of bits to decode is 20. We start a lookup by
querying R along the eighth row of Table 1, we know
R1 = 7, since s contains 7 complete Gamma encodings,
which are 1, 010, 1, 010, 011, 1, 1; R2 = 11, since the
cumulative sum of complete Gamma decoded numbers
is (1 + 2 + 1 + 2 + 3 + 1 + 1) = 11; R3 = 13, since the
total number of complete Gamma decoded bits is (1 +
3 + 1 + 3 + 3 + 1 + 1) = 13; and R4 = 6, since the
corresponding raw bit string (after decoding on s) is 1
00 1 00 111 0 1 and contains 6 1s. As for the last three
bits in s, 001, it is not a complete Gamma encoding,
since there are 2 0s in front of 1, we should decode the
following 3 bits, but we have not that bits. So we start
the next lookup at the position p + R3(= p + 13) and
continue this process until the cumulative number of
decoded bits is up to 20.

Notice that we take the first run as 1-run. In the
example described above, the first complete Gamma
encoding is 1 and the corresponding decoded number
is 1. We take it as 1 not 0 in the raw bit string. That
is, thinking that the raw bit string is 1 00 1 00 111 0
1 not 0 11 0 11 000 1 0. If the first run is truly 1-run,
then the local rank value is 1 + 1 + 3 + 1 = 6, which
can be obtained directly by querying R4. Otherwise,
the raw bit string is 0 11 0 11 000 1 0, the local rank
value should be 5, which can be obtained by computing
the difference of corresponding entries of R2 and R4.

In terms of the type (0-run/1-run) of the first
run obtained by decoding a given run-length Gamma
encoded bit string and the number of runs in R1, we
can determine the type of the first run in a lookup. The
rules are as follows. If we have decoded even number
of runs before a lookup, then the type of the first run
of the lookup is the same as that of the first run in the
given run-length Gamma encoded bit string. If we have
decoded odd number of runs, then the type of the first
run of the lookup is the opposite to that of the first run
in the given run-length Gamma encoded bit string. We

17 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

02
/2

8/
21

 to
 7

0.
17

1.
98

.5
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

can determine the type of the first run in a given run-
length Gamma encoded bit string by checking the field
of the encoding methods, i.e., the RLG0/1 field. Thus
we do not need to keep the exact number of runs but
the parity of number of runs in R1. This is the reason
why we can compactly store R1 and R3 in a byte.

3.4 Data-aware compression. The statistical
characteristics of the input data have a significant
influence on the compression. For typical English-
like data, statistical experiments show that the bit
vector associated to one node of the corresponding
wavelet tree exhibits weaker locality than that of
highly-repetitive data. That is, its 0-runs and 1-runs
are generally shorter. The number of occurrences of
long 0-runs or 1-runs is typically less than that in the
highly-repetitive data. Therefore, for the same block
size, the English-like data have more runs than do
the highly-repetitive data, directly leading to a worse
compression and slower encoding or decoding. Thus the
decoding time will obviously increase when we increase
the block size for the English data. For the English
data of 100MB with different block sizes 256, 512, and
1024, the corresponding compression ratio is 30.7%,
27.4%, and 25.6%, respectively. The corresponding
single counting (pattern length 20) is 40.18us, 52.71us,
and 79.81us, respectively.

On the other hand, the highly-repetitive data con-
tains a high proportion of long runs and the fewer num-
ber of runs. These characteristics may result in a good
compression and fast decoding. For the kernel data
with different block sizes, 256, 512, and 1024, the cor-
responding compression ratio is 13.4%, 9.5%, and 7.4%,
respectively. The corresponding single counting (pat-
tern length 20) is 26.59us, 26.36us, and 26.72us, re-
spectively, almost unchanged. It turns out that the
highly-repetitive data is less sensitive than the English-
like data to an increase in the block size for the query
time. So we can choose a larger block for the highly-
repetitive data; otherwise a smaller block.

The superblock size, sb, is taken to be 16 times
the block size, b, i.e., sb = 16b, with adaptive block
size in the implementation. We choose b = 1024 for the
highly-repetitive data, 512 for the English-like data, and
256 otherwise. We motivate our choice of block size
b with statistical evidence of average runs, defined as
the average length of runs of the BWT L, denoted by
aver . The threshold, aver , capturers the characteristics
of classes of input data with respect to their degree
of locality. Loosely speaking, the larger the aver (the
more long runs there are) is, the higher the locality.
Therefore, the key decisions are as follows.

b =

 256, if aver ≤ l1
512, if l1 < aver ≤ l2
1024, if aver > l2

These thresholds are empirical values, which can be
weighed according to demand. The smaller threshold
emphasizes on the query speed while the larger one on
the compression. We provide the parameter, speedlevel,
which determines three typical thresholds:

Speedlevel = 0: corresponding to a threshold in
(l1, l2) = (2, 10), tuning for compression, and block size,
generally larger, and slower queries.

Speedlevel = 1: corresponding to a threshold in
(l1, l2) = (4, 20), a good trade-off between compression
ratio and query time.

Speedlevel = 2: corresponding to a threshold in
(l1, l2) = (10, 50), tuning for query time, and block size,
generally smaller, and faster queries.

Our design can automatically choose an appropriate
block size in terms of the characteristics of input data.

4 Experiments and Discussion.

4.1 Experimental setup and environment. We
performed experiments on a HP Z400 with a
2.53GHZ dual-core Intel Xeon W3503 equipped with
4MB L3 cache and 4GB of DDR2 main mem-
ory with 64bit Ubuntu12.04. Our program was
compiled using g++ version 4.7.3 with -O3 op-
tion. We implemented the algorithm in C++,
and used Mäkinen and González’s SAc.tgz (http://
pizzachili.dcc.uchile.cl/indexes.html) to build
suffix array, and our code is available at https://

github.com/chenlonggang/Adaptive-FM-index.
We use the standard data sets from

the Canterbury Corpus (http://corpus.
canterbury.ac.nz/), the Pizza&Chili Corpus
(http://pizzachili.dcc.uchile.cl/texts.html),
and the highly-repetitive data sets from the
Pizza&Chili repetitive Corpus (http://pizzachili.
dcc.uchile.cl/repcorpus.html).

4.2 Methods being compared. Our algorithm is
one of five methods being compared:

1. FM-Adaptive, our method described in this paper;

2. FM-Hybrid, developed by Kärkkäinen et al. [14];

3. FM-RRR, developed by Gog and Petri [7];

4. RLCSA, developed by Mäkinen et al. [16]; and

5. FGGV, developed by Foschini et al. [6].

18 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

02
/2

8/
21

 to
 7

0.
17

1.
98

.5
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

The comparisons are shown in Figure 4. We take our
superblock size sb = 16b, where b is the block size, that
is adaptively set to 256, 512, or 1024, depending on the
input data.

4.3 Results for standard corpus. Table 2 shows
the comparison of FM-Adaptive and the FGGV method
in [6] on the compression ratio. The test data used
comes from the Canterbury Corpus. The experiments
show that FM-Adaptive improves the compression re-
sults of [6]. We chose Speedlevel = 0 for the experiments
shown in Table 2.

Table 2: Comparison of space required by FM-Adaptive
and FGGV.

book1 bible E.coli world192
FGGV [6] 3.274 2.051 2.601 1.975

FM-Adaptive 3.016 1.912 2.256 1.832

Table 3 summarizes some general characteristics of
the standard data from the Canterbury Corpus (the
first seven files) and the Pizza&Chili Corpus (the last
five files).

The term aver is the average length of runs of
L, which can be used for measuring the degree of
compressibility of L. Speedlevel = 1 is a default value
in the experiments.

Table 3: General statistics for the standard data sets.

File size σ aver
book1 768.8KB 82 1.99

book2 610.9KB 96 2.55

paper1 53.2KB 95 2.40

world192 2.5MB 94 4.02

news 377.1KB 98 2.38

E.coli 610.9KB 96 2.55

bible 4.6MB 4 1.41

DNA 100MB 16 1.59

proteins 100MB 25 1.69

English 100MB 215 2.88

sources 100MB 227 4.29

dblp.xml 100MB 96 6.96

Figure 3 shows the build time of the FM-
Hybrid, FM-RRR, RLCSA, and our index (named FM-
Adaptive) in seconds. We took the default value of block
size for these indexes. The experiments show that FM-
Adaptive is the fastest among the indexes, about 1.5–2
times faster.

The size of the indexes includes what is necessary

for counting. The compression ratio is defined as the
ratio of the indexes size to the original size of the
input text. We searched for 104 patterns of length 20,
randomly extracted from the indexed text, performed
104 count operations on these indexes and took the
average time (in µsec) of a count as the counting query
time.

Figure 4 shows the compression and query time for
the indexes. For the data aver relatively small, FM-
Adaptive is usually the smallest index, while its query
speed is comparable with FM-Hybrid. When aver is
very small, such as in dna and proteins, the advantage of
FM-Adaptive on compression ratio is not very obvious,
but still one of the best. When the aver value is larger,
such as for sources and dblp.xml, FM-Adaptive still
performs very well in compression, but the query time
becomes worse. This effect is closely related to the
encoding method we used.

For modest size aver , such as in book2, bible, and
paper1, the better localities enhance the compressibility
of their corresponding L. Here the run-length Gamma
method is dominant. And compared with the fixed en-
coding of FM-Hybrid, FM-Adaptive has a much better
compression ratio since the number of occurrences of
small runs is generally greater than that of long runs.
Although the Gamma decoding is slower than fixed-
length decoding in the FM-Hybrid, the combination of
the lookup tables and the interleaving storage to in-
crease the cache hit rate results in competitive query
time.

The FM-RRR occasionally compress slightly better
but with significantly worse counting time. The RLCSA
tends to perform poorly in terms of compression on the
data sets but with a moderate query time.

Moreover, for the data with very small aver , if
the block size is taken to be very larger, then the
block would contain a lot runs so that the query time
would increase. Our design can automatically choose an
appropriate block size in terms of the characteristics of
data distribution, being capable of adaptive data-aware.

4.4 Results for highly-repetitive corpus. Table 4
summarizes some general characteristics of the highly-
repetitive data sets from the Pizza&Chili repetitive
corpus.

Figure 5 shows the build time of the FM-Hybrid,
FM-RRR, RLCSA, and FM-Adaptive in seconds. We
can see from Figure 6 that FM-Adaptive is the fastest
among the indexes, except for the influenza data. Fig-
ure 6 shows compression ratio and query time.

The aver values of the highly-repetitive data sets
are generally larger. The corresponding block contains
fewer runs. If we increase the block size, the query time

19 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

02
/2

8/
21

 to
 7

0.
17

1.
98

.5
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

news book2 paper1 world192 bible
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

files

B
ui

ld
−

tim
e[

s]

FM−Adaptive
RLCSA
FM−RRR
FM−hybrid

sources dblp dna proteins english
25

30

35

40

45

50

55

60

65

70

75

files

B
ui

ld
−

tim
e[

s]

FM−Adaptive
RLCSA
FM−RRR
FM−hybrid

Figure 3: The build time for the standard Canterbury corpus (left) and Pizza&Chili Corpus (right) for the indexing
methods described in §4.2.

Table 4: General statistics for the Pizza&Chili highly-
repetitive data sets

File size σ aver
para 100MB 5 7.97

influenza 100MB 15 48.45

world-leader 40MB 89 76.68

kernel 100MB 160 45.05

would not significantly increase while the compression
ratio would be significantly reduced. The block size can
be automatically adjusted by our method according to
the input data.

On the other hand, when runs are generally larger,
the role of the lookup table is limited, so our queries
would be slower than the FM-Hybrid, especially for para
and influenza data. However, our compression ratio is
always better than the FM-Hybrid approach, but worse
than RLCSA for the world-leaders and kernel data.

5 Conclusions.

In this paper we implemented an efficient compressed
indexing scheme. Our compressed index can be con-
structed quickly and provides new trade-offs between
compression ratio and the speed of searching in a text.

Acknowledgements. We would like to thank Simon
J. Puglisi for clarifying some issues in the paper [14] and
providing their source code.

References

[1] M. Burrows and D. J. Wheeler, A block-sorting lossless
data compression algorithm, Tech. Report SRC-RR-

para influenza world−leaders kernel
10

20

30

40

50

60

70

80

90

100

files

B
ui

ld
−

tim
e[

s]

FM−Adaptive
RLCSA
FM−RRR
FM−hybrid

Figure 5: The build time for the Pizza&Chili highly
repetitive corpus for the indexing methods described in
§4.2.

124,Digital Equipment Corporation, Palo Alto, CA,
1994.

[2] P. Ferragina, R. González, G. Navarro, and R. Ven-
turini, Compressed text indexes: From theory to prac-
tice, Journal of Experimental Algorithmics, 13 (2009),
Article 1.12.

[3] P. Ferragina and G. Manzini, Opportunistic data struc-
tures with applications, In Proceedings of the 41st An-
nual Symposium on Foundations of Computer Science,
2000, pp. 390–398.

[4] P. Ferragina and G. Manzini, Indexing compressed text,
Journal of the ACM, 52 (2005), pp. 552–581.

[5] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro,
An alphabet-friendly FM-index, In String Processing
and Information Retrieval, 2004, pp. 150–160.

[6] L. Foschini, R. Grossi, A. Gupta, and J. S. Vit-
ter, When indexing equals compression: Experiments
with compressing suffix arrays and applications, ACM

20 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

02
/2

8/
21

 to
 7

0.
17

1.
98

.5
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

25 30 35 40 45 50
10

15

20

25

30

35

40

45

50

bible

Compression [%]

T
im

e
[u

s]

FM−Adaptive
RLCSA
FM−RRR
FM−Hybrid

20 30 40 50 60 70 80 90
10

15

20

25

30

35

40

45
dna

Compression [%]

T
im

e
[u

s]

FM−Adaptive
RLCSA
FM−RRR
FM−Hybrid

30 35 40 45 50 55 60 65
10

15

20

25

30

35

40

45

50

55

60

book2

Compression [%]

T
im

e
[u

s]

FM−Adaptive
RLCSA
FM−RRR
FM−Hybrid

40 50 60 70 80 90 100 110
10

20

30

40

50

60

70

80

90
proteins

Compression [%]

T
im

e
[u

s]

FM−Adaptive
RLCSA
FM−RRR
FM−Hybrid

40 45 50 55 60 65 70 75 80
10

20

30

40

50

60

70
news

Compression [%]

T
im

e
[u

s]

FM−Adaptive
RLCSA
FM−RRR
FM−Hybrid

25 30 35 40 45 50 55 60
15

20

25

30

35

40

45

50

55

60

65
english

Compression [%]

T
im

e
[u

s]

FM−Adaptive
RLCSA
FM−RRR
FM−Hybrid

22 24 26 28 30 32 34 36 38 40 42
10

15

20

25

30

35

40

45

50

55

60
world192

Compression [%]

T
im

e
[u

s]

FM−Adaptive
RLCSA
FM−RRR
FM−Hybrid

20 25 30 35 40 45
10

20

30

40

50

60

70
sources

Compression [%]

T
im

e
[u

s]

FM−Adaptive
RLCSA
FM−RRR
FM−Hybrid

21 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

02
/2

8/
21

 to
 7

0.
17

1.
98

.5
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

40 50 60 70 80 90 100 110 120
10

20

30

40

50

60

70
paper1

Compression [%]

T
im

e
[u

s]

FM−Adaptive
RLCSA
FM−RRR
FM−Hybrid

12 14 16 18 20 22 24 26 28 30 32
15

20

25

30

35

40

45

50

55
dblp.xml

Compression [%]

T
im

e
[u

s]

FM−Adaptive
RLCSA
FM−RRR
FM−Hybrid

Figure 4: Compression ratio vs. counting query time on the standard Canterbury corpus (left) and Pizza&Chili
Corpus (right) for the indexing methods described in §4.2.

14 16 18 20 22 24 26 28
5

10

15

20

25

30

35

para

Compression [%]

T
im

e
[u

s]

FM−Adaptive
RLCSA
FM−RRR
FM−Hybrid

2 4 6 8 10 12
5

10

15

20

25

30
influenza

Compression [%]

T
im

e
[u

s]

FM−Adaptive
RLCSA
FM−RRR
FM−Hybrid

2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30
world−leaders

Compression [%]

T
im

e
[u

s]

FM−Adaptive
RLCSA
FM−RRR
FM−Hybrid

5 10 15 20 25 30
15

20

25

30

35

40

45

50

55

kernel

Compression [%]

T
im

e
[u

s]

FM−Adaptive
RLCSA
FM−RRR
FM−Hybrid

Figure 6: Compression ratio vs. counting query time on the Pizza&Chili highly repetitive corpus for the indexing
methods described in §4.2.

22 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

02
/2

8/
21

 to
 7

0.
17

1.
98

.5
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Transactions on Algorithms, 2 (2006), pp. 611–639.
[7] S. Gog and M. Petri, Optimized succinct data struc-

tures for massive data, Software: Practice and Experi-
ence, 2013.

[8] R. Grossi, A. Gupta, and J. S. Vitter, High-order
entropy-compressed text indexes, In Proceedings of the
fourteenth annual ACM-SIAM symposium on Discrete
algorithms, 2003, pp. 841–850.

[9] R. Grossi and J. S. Vitter, Compressed suffix arrays
and suffix trees with applications to text indexing and
string matching, In Proceedings of the thirty-second
annual ACM symposium on Theory of computing,
2000, pp. 397–406.

[10] R. Grossi and J. S. Vitter, Compressed suffix arrays
and suffix trees with applications to text indexing and
string matching, SIAM Journal on Computing, 35
(2005), pp. 378–407.

[11] R. Grossi, J. S. Vitter, and B. Xu, Wavelet trees: From
theory to practice, In International Conference on Data
Compression, Communications and Processing, 2011,
pp. 210–221.

[12] W.-K. Hon, R. Shah, and J. S. Vitter, Compression,
indexing, and retrieval for massive string data, In
Combinatorial Pattern Matching, 2010, pp. 260–274.

[13] H. Huo, L. Chen, J. S. Vitter, and Y. Nekrich, A
Practical Implementation of Compressed Suffix Arrays
with Applications to Self-Indexing, In Data Compres-
sion Conference, 2014, pp. 292–301.

[14] J. Kärkkäinen, D. Kempa, and S. J. Puglisi, Hybrid
Compression of Bitvectors for the FM-Index, In Data
Compression Conference, 2014, pp. 302–311.

[15] V. Mäkinen and G. Navarro, Implicit compression
boosting with applications to self-indexing, In String
Processing and Information Retrieval, 2007, pp. 229–
241.

[16] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki,
Storage and retrieval of highly repetitive sequence col-
lections, Journal of Computational Biology, 17 (2010),
pp. 281–308.

[17] U. Manber and G. Myers, Suffix arrays: a new method
for on-line string searches, SIAM Journal on Comput-
ing, 22 (1993), pp. 935–948.

[18] E. M McCreight, A space-economical suffix tree con-
struction algorithm, Journal of the ACM, 23 (1976),
pp. 262–272.

[19] G. Navarro and V. Mäkinen, Compressed full-text in-
dexes, ACM Computing Surveys, 39 (2007), Article 2.

[20] G. Navarro and E. Providel, Fast, small, simple
rank/select on bitmaps, In Experimental Algorithms,
2012, pp. 295–306.

[21] R. Raman V. Raman and S. S. Rao, Succinct indexable
dictionaries with applications to encoding k-ary trees
and multisets, In Proceedings of the thirteenth annual
ACM-SIAM symposium on Discrete algorithms, 2002,
pp. 233–242.

[22] S. S. Rao, Time-space trade-offs for compressed suf-
fix arrays, Information Processing Letters, 82 (2002),
pp. 307–311.

[23] K. Sadakane, Compressed text databases with efficient
query algorithms based on the compressed suffix array,
In Algorithms and Computation, 2000, pp. 410–421.

[24] K. Sadakane, New text indexing functionalities of the
compressed suffix arrays, Journal of Algorithms, 48
(2003), pp. 294–313.

[25] E. Ukkonen, On-line construction of suffix trees, Algo-
rithmica, 14 (1995), pp. 249–260.

[26] S. Vigna, Broadword implementation of rank/select
queries, In Experimental Algorithms, 2008, pp. 154–
168.

[27] D. Zhou, D. G. Andersen, and M. Kaminsky, Space-
Efficient, High-Performance Rank and Select Struc-
tures on Uncompressed Bit Sequences, In Experimental
Algorithms, 2013, pp. 151–163.

23 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

02
/2

8/
21

 to
 7

0.
17

1.
98

.5
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

