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Abstract: Accurate type recovery from stripped binaries is important. Reconstructed types help improve the capability
of binary analysis, which can aid reverse engineers to gain a better understanding of source semantics and
syntax, and establish a foundational contrivance to support many security applications such as control-flow
integrity (CFI), binary similarity, malware analysis, software forensics, vulnerability assessment, etc. In this
work, we propose a novel architecture agnostic type recovery technique called YĀLI (”Yet Another Language
model for type Inference”) to predict function parameter and callsite argument type information from stripped
and optimized binaries. Our approach is a two stage process - firstly, in the static analysis and data collection
phase we leverage the Ghidra binary analysis tool, to lift low-level binary executables to Ghidra’s intermediate
representation called P-Code, and recover P-Code slices for both function parameters and callsite arguments.
Secondly, in the training stage, we utilize a light-weight BERT based Transformer model called DistilBERT
to capture P-Code semantics and understand data-flow patterns to accurately perform the task of type classifi-
cation. To assess our technique, we use a corpora of around 33k binaries compiled on different architectures,
using various compilers and optimization levels. YĀLI achieves on average around 94% and 92% accuracy
for function parameter and callsite argument recovery tasks respectively, significantly surpassing conventional
type recovery techniques.

1 INTRODUCTION

Binary analysis is an important area of research that
aims to recognize the structural properties of the com-
piled binary, in order to understand its functional be-
havior without having access to the source code. Dur-
ing compilation, when high-level code gets converted
into its binary counterpart, useful high-level features
such as function and variable names, types, control-
flow constructs, function boundaries, etc. get lost,
making binary analysis difficult. Additionally, debug-
ging symbols are usually stripped from production-
level binaries to reduce the size, improve performance
and to maintain the security and confidentiality of the
product. Debug information assists binary analysis
frameworks in program analysis and thus the absence
of such high-level symbol information hinders their
analysis capabilities.

An important artifact that is missing in stripped bi-
naries is source-level type indication. Program vari-
ables are represented either as registers or as mem-
ory locations at low-level after compilation, without

any indication of explicit source-level types. Function
and callsite type knowledge is important to accurately
construct the program call-graph and apply tech-
niques such as CFI (control-flow integrity) (Muntean
et al., 2018; Lin and Gao, 2021), vulnerability detec-
tion (Mantovani et al., 2022; Han et al., 2023), binary
rewriting/ hardening (Lu and Hu, 2019; Williams-
King et al., 2020), decompilation (Brumley et al.,
2013; Burk et al., 2022), etc. However, type recovery
from binary programs is challenging and inherently
speculative as type recuperation is affected due to a
loss of source-level semantics during compilation.

The type recovery problem has been traditionally
tackled using rule-based as well as machine learning
based techniques. Manually defined rule based tech-
niques (Lin et al., 2010; Lee et al., 2011; Slowinska
et al., 2011; Caballero et al., 2012; Katz et al., 2016;
Noonan et al., 2016; Zhang et al., 2021) tend to be
tedious and fragile (Caballero and Lin, 2016). More-
over, architecture and compiler specific knowledge is
required to support and augment such techniques with
domain information (Bao et al., 2014), making them



harder to maintain. Such binary-level algorithms of-
ten use abstract interpretation and data-flow analysis
to recognize variables and types, and their static anal-
ysis often depends on Value Set Analysis (VSA) (Bal-
akrishnan and Reps, 2004). VSA is known to produce
inaccurate results, due to conservative analysis, over-
approximation and inaccuracy in pointer arithmetic.
Many existing reverse engineering frameworks such
as Ghidra (National Security Agency ghidra, 2023)
and IDA pro (hexrays, 2023), offer sophisticated al-
gorithms to recover type information using traditional
rule based techniques.

In this work, we focus on recovering function
and callsite type information from binary executa-
bles using transformer based Large Language Mod-
els (LLMs). This problem has a variety of appli-
cations in control-flow recovery and binary harden-
ing (Abadi et al., 2005; van der Veen et al., 2016;
Burow et al., 2017; Muntean et al., 2018), data de-
pendency analysis (Saxena et al., 2008), etc. Ours is a
novel technique that leverages Ghidra’s P-Code slices
to teach our “DistilBERT” (Sanh et al., 2019) based
transformer models to learn the inherent characteris-
tics of Ghidra’s P-Code intermediate representation in
the first stage, and fine tune the model for type clas-
sification task in the second stage to recover advance
variable types.

Ghidra converts the generated disassembly into
an intermediate representation called P-Code (Naus
et al., 2023) (before transforming it into C-like
pseudo-code representation during the process of de-
compilation). The P-Code is an intermediate rep-
resentation used by Ghidra. It consists of two lev-
els of abstractions - low-level and high-level P-Code.
The low-level P-Code is created by mapping assem-
bly instructions to P-Codes in a one-to-many fash-
ion. The low-level P-Code representation is closer to
the underlying processor architecture. The high-level
P-Code is a result of many transformations on low-
level P-Code during the decompilation process. The
high P-Code obscures away the underlying architec-
ture and consequently it is more suitable for archi-
tecture agnostic applications. We refer to high-level
P-Code as P-Code in the rest of this paper.

We use Transformer based Large Language Mod-
els (LLMs) to learn P-Code attributes and variable
data-flow patterns, and later use it for our type clas-
sification task. BERT-like (Devlin et al., 2018) Large
Language Models have adeptly outperformed RNNs,
CNNs and LSTMs in many domains by leverag-
ing transformer architecture and incorporating large-
scale pre-training to learn comprehensive context and
language intricacies. Additionally, their impressive
transfer learning capabilities and ability to support di-

verse Natural Language Processing (NLP) tasks have
made them the preferred choice over earlier neural
network (NN) architectures.

For this work, we use the DistilBERT model to fit
in our resource constraint experimental setup. Distil-
BERT (Sanh et al., 2019) is a transformer based Large
Language Model introduced by Hugging Face1. Dis-
tilBERT is a smaller version of Bert (Devlin et al.,
2018) and has 6 transformer layers (compared to 12
in Bert) and fewer parameters (66 Million) compared
to the original Bert model (110 Million). The Distil-
BERT model is trained using the process of language
distillation and hence it is computationally more effi-
cient than the Bert model, while maintaining compet-
itive performance.

We propose an architecture agnostic technique
called YĀLI 2 (”Yet Another Language model for type
Inference”) to recuperate type indications in stripped
and optimized binaries using natural language pro-
cessing techniques employed on Ghidra’s P-Code.
We leverage pre-trained large language model ”Distil-
BERT” and fine-tune it for type classification task on
raw P-Code instructions of recovered parameter and
argument slices. We focus primarily on two impor-
tant type inference tasks. In the first task, we focus on
the type recovery of function parameters and the sec-
ond task centers around finding the correct argument
types at both direct and indirect callsites.

The primary motivation behind using the Ghidra
framework is to leverage its analysis capabilities of
static rule-based approach to find variable data-flow
and augment the analysis to recover types using deep
learning techniques, consequently benefiting from
the best of both worlds. Additionally, Ghidra’s P-
Code representation and P-Code based architecture-
agnostic algorithms allow us to significantly reduce
the programming effort across multiple architectures
and enhance the portability of our implementation.

We compare the accuracy of our technique with
four state-of-the-art type recovery techniques having
a combination of heuristic and deep learning based
frameworks. Our model achieves around 94% for
function parameter and around 92% for callsite ar-
gument type recovery, averaging over four different
architectures.

Our primary contributions of this work are:

1. We create a novel technique that leverages static
binary analysis and large language models to re-
cover types from optimized and stripped binaries.

2. We develop a design that uses Ghidra and P-Code
to enable our technique to support multiple archi-

1https://huggingface.co/
2Named after a legendary creature from South Asia



tectures and compilers.

3. We thoroughly evaluate our technique by first
training our model on a large corpora of binaries,
and comparing the results with existing state-of-
the-art. We show that, our technique significantly
improves on existing techniques.

4. We plan to open source our framework and trained
models to support academic research.

2 BACKGROUND

In this section we explain the primary concepts and
techniques that we use to develop our novel approach.

2.1 Transformer Architecture

Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) models were introduced to tackle
the problem of vanishing gradient descent that was
limiting RNNs to capture the long-term information.
Consequently, LSTMs quickly became popular in the
area of natural language processing (NLP) and other
sequential tasks. LSTMs incorporate cell state and
gate layers to carefully ‘forget’ and ‘remember’ in-
formation context over time. However, LSTMs de-
mand sequential processing of input sequences, thus
significantly hindering the GPU parallelization sup-
port. In addition to that, LSTMs struggle with main-
taining long term dependencies, as the gradients of the
loss function could become extremely small in longer
sequences, inadvertently due to repeated multiplica-
tions during back-propagation.

In more recent years, Transformer architec-
ture (Vaswani et al., 2017) initiated a groundbreak-
ing revolution in the field of NLP. Primarily, the in-
troduction of ‘Self Attention’ mechanism helps un-
derstanding the context better and provides the model
an ability to remember the long-term dependencies.
Additionally, positional encoding allows the model to
keep sequential context and simultaneously provides
the ability to support parallel computations. Trans-
formers are comprised of multiple encoder-decoders
with numerous multi-headed attention and feed for-
ward NN layers. Transformer-based architectures are
shown to be scalable and exhibit outstanding per-
formance compared to the older NNs (Brown et al.,
2020). Accordingly, transformers (especially the en-
coder layers) are well-suited for our sentence-based
data-type classification task.

2.2 Knowledge Distillation

Knowledge distillation (Hinton et al., 2015) is a tech-
nique of transferring the knowledge of an intricate
larger (teacher) model to a less intricate smaller (stu-
dent) model. The fundamental goal is to adapt the
knowledge and generalizability of the teacher model
into a compact and computationally less intensive stu-
dent model that can be deployed in resource con-
strained environment. DistilBERT (Sanh et al., 2019)
is one of many models that implement distilled ver-
sion of the original BERT model. The loss function of
DistilBERT is a combination of three loss functions -
Knowledge Distillation loss (LKD), Masked Language
Modelling loss (LMLM) and Cosine embedding loss
(LCosine), with γ, α and β being hyperparameters.

LTotal = γ.LKD +α.LMLM +β.LCosine

DistilBERT attains about 97% of BERT model’s ac-
curacy despite being 40% smaller. It aims to incur
minimum loss during the knowledge transfer process,
while achieving comparable accuracy as the teacher
model. Considering the availability of limited re-
sources, in this work we use pre-trained DistilBERT
model and fine-tune it for the downstream task of type
classification.

2.3 Ghidra’s P-Code Intermediate
Representation

Ghidra (National Security Agency ghidra, 2023) is a
Software Reverse Engineering (SRE) framework de-
veloped by the National Security Agency (NSA) and
made open source in recent years. Ghidra consti-
tutes two important components called disassembler
and decompiler. The former converts low-level ma-
chine code to assembly and the later transforms it
into a pseudo-code or C-like high-level representation.
Ghidra elevates the reversed assembly to an interme-
diate level representation called P-Code, before trans-
forming into a use-friendly decompiled code. Knowl-
edge of Source-level type information, such as func-
tion parameters and callsite arguments, is essential
for accurately constructing a high-level representation
of program binary. Ghidra implements its heuristic-
based algorithms on its P-Code intermediate repre-
sentation for the task of type recovery.

Figure 1 demonstrates a running example that il-
lustrates a high-level overview of Ghidra’s decompi-
lation process. Firstly, Figure 1(a) shows the high-
level ‘C’ source code (function indirect version)
used in this example. The corresponding binary code
is input to Ghidra. Figure 1(b) shows the correspond-
ing disassembly that is generated by the Ghidra dis-
assembler. Then, Ghidra transforms the disassembly



Figure 1: High-level Overview of Ghidra’s Decompilation Process

into P-Code representation, shown in the format of
abstract syntax tree (AST) in Figure 1(c). Finally,
the corresponding high-level decompiled code gener-
ated by utilizing the P-Code produced in the previ-
ous stage, after performing multiple analysis passes is
shown in Figure 1(d). P-Code is architecture agnostic
and beneficial in discovering the program attributes
using high-level binary analysis. Consequently, we
use the P-Code format for the type recovery task in
this work. At the same time, we believe that our ap-
proach is extensible and can be implemented on other
intermediate formats such as IDA Pro’s Microcode.

3 RELATED WORK

In this section we present and contrast our work with
other binary-level type recovery approaches.

3.1 Rule-based Type Recovery

Rule-based type recovery techniques are those that
employ rules and heuristics manually crafted by ex-
pert humans to identify and assign high-level lan-
guage types to data objects in a binary program. Re-
searchers have designed many rule-based type recov-
ery techniques (Lin et al., 2010; Lee et al., 2011;
Slowinska et al., 2011; Caballero et al., 2012; Noonan
et al., 2016; Zhang et al., 2021). While some of these
techniques use a dynamic approach (Lin et al., 2010;
Slowinska et al., 2011; Caballero et al., 2012), others
use static heuristics-based methodologies to recover
types (Lee et al., 2011; Noonan et al., 2016; Zhang
et al., 2021). Dynamic analysis techniques usually
use run-time taint tracking to determine the flow of
data through the program, which in turn is used to de-
duce variable types. Such techniques generally suffer
from coverage issues, time constraints and infeasibil-
ity of execution for programs that require specialized
hardware and operating conditions.

The Retypd (Noonan et al., 2016) type system

uses constraint-based solving with static type infer-
ence that supports polymorphism, sub-typing and re-
cursive types. OSPREY (Zhang et al., 2021) is a
recently published technique that uses probabilistic
approach that surpasses state-of-the-art reverse engi-
neering frameworks such as Ghidra, IDA Pro, etc in
terms of variable and structure type accuracy. How-
ever, OSPREY doesn’t recover register allocated vari-
ables and only recovers variables allocated on the
stack and heap. Many frameworks that are popular
in the reverse engineering community, such as IDA
Pro (hexrays, 2023) and Ghidra (National Security
Agency ghidra, 2023), employ static rule-based tech-
niques to enhance decompilation, however are very
limited in their capabilities. Static analysis techniques
do not rely on run-time program behaviour but suffer
from incompleteness due to lack of execution context.

Rule-based techniques exclusively rely on pro-
gram analysis, are generally limited to small set of
syntactic types, use handwritten rules which tend to
be fragile and tedious to develop, and are difficult to
extend across different architectures.

3.2 Type Recovery Using ML

Automated machine learning based approaches have
also been employed to resolve the type recovery
problem in binary software and alleviate some of
the issues with the manual rule-based techniques.
EKLAVYA (Chua et al., 2017) is one such tech-
nique that focuses on recovering the count and types
of function parameters and callsite arguments. In
EKLAVYA, the task of type inference for each argu-
ment is considered as a distinct classification task.
In the first stage, they leverage word2vec to gener-
ate instruction embeddings, and then in the second
stage these embeddings are provided to the down-
stream multi-layer Gated Recurrent Unit (GRU) net-
work model for the type inference task. DEBIN (He
et al., 2018) uses probabilistic machine learning mod-
els to recover name and type pairs and variable loca-
tions to essentially reconstruct missing debug infor-



mation from stripped binaries. However, EKLAVYA
supports a very limited set (seven) of argument types
and DEBIN does not support floating point types.

TypeMiner (Maier et al., 2019) is a simple ma-
chine learning based technique that employs multi-
stage classification on object data-flow traces to recu-
perate preliminary types. Their technique is evaluated
on a fairly small-scale dataset. STATEFORMER (Pei
et al., 2021) leverages micro-execution traces and em-
ploys transformers to acquire the instruction seman-
tics and bypasses the challenge of feature selection,
in turn producing pre-trained models. Subsequently,
these pre-trained models are then leveraged for con-
ducting type prediction. None of these techniques
make use of decompiler output to revamp their re-
sults. DIRTY (Chen et al., 2022) on the other hand
concentrates on recovering type and name informa-
tion by using decompiler output, significantly invig-
orating the final outcome. DIRTY trains transformer-
based encoder-decoder models using an extensive col-
lection of binaries using their corresponding ground
truth symbol information. Subsequently, this trained
model is employed to generate variable names and
types for binary programs decompiled using IDA Pro.
DIRTY is also capable of capturing 48,888 syntactic
and non-syntactic types.

In this work we are the first to explore type re-
covery using transformer-based classification of in-
termediate instruction slices that capture function and
callsite argument data-flow. Although YĀLI does
not recover as many types as DIRTY, we believe that
YĀLI’s type system is extensive and practical enough
to identify sufficient range of types.

Rather than doing pure type recovery, researchers
have also developed related techniques that exclu-
sively focus on improving the Binary Code Embed-
ding (BCE) task using numerical features learned
from binary code (Li et al., 2021; Zhu et al., 2023;
Wang et al., 2022). Such work can result in improv-
ing the accuracy of downstream binary analysis tasks,
including type recovery. Likewise, there are related
techniques, such as (Nitin et al., 2021; ?; ?), that fo-
cus on recovering variable names to improve readabil-
ity of the decompiled code, while others (Wong et al.,
2023) that focus on improving its overall explainabil-
ity. However, ours is orthogonal to these works as
we exclusively focus on recovering types of function
parameters and callsite arguments.

4 DESIGN

The problem of recovering function and callsite sig-
natures from a binary requires identifying the number

of parameters/ arguments and their data types. In this
work, we focus on the later part, i.e. identification
of function and callsite parameter/ argument types.
Function and callsite signatures are monumental in
constructing accurate function call-graphs, improv-
ing data-flow analysis, and producing readable and
understandable decompilation output, which in turn
can help the evaluator in accurate program compre-
hension, symbolic analysis, malware and vulnerabil-
ity detection, control-flow integrity (CFI), etc.

Traditionally, function-callsite arguments and
their type recovery is achieved by identifying vari-
ous rules and conventions that manifest function and
callsite signatures in the assembly. First, the binary
gets disassembled, to capture an understanding of the
high-level assembly. Second, function calling con-
ventions and parameter/argument passing patterns are
analyzed. Expert knowledge of compilers and ma-
chine architecture is required to perform such analy-
sis, as such patterns differ according to different ar-
chitectures, compilers, optimization levels, etc. For
example, in the x86-64 architecture, the GCC com-
piler typically uses the register rbp to track the frame
pointer in unoptimized binaries, while in highly opti-
mized binaries it tends to use the register rsp to man-
age the stack frame. Rule-based argument recovery
techniques are difficult to implement as they are error
prone and are harder to scale.

To address the problem of function parameter and
callsite argument type recovery, we introduce YĀLI
(Yet Another Language model for type Inference).
YĀLI treats the problem of argument type recovery
as a natural language processing (NLP) based text
classification problem. The Large language models
(LLMs) have shown to be better for text classification
task due to better contextual understanding, scalabil-
ity and faster inference, and thus are well suitable for
the task like this. YĀLI employs DistilBERT trans-
former model along with an additional classification
head as the uppermost layer to implement type classi-
fication. Ghidra P-Code slices are used as input to
the model and labels are the types recovered from
DWARF symbol information. We treat the task of
type classification as two sub-tasks:
1. Task-1: Function parameter type recovery.

2. Task-2: Argument type recovery at callsites.

4.1 Technical Overview

Figure 2 gives the high-level overview of the archi-
tecture of YĀLI. The execution of YĀLI’s type clas-
sification routine broadly consists of following key
phases. In the first phase, our framework employs bi-
nary analysis techniques to the extract P-Code slices



Figure 2: Overview of YĀLI’s Architecture. It takes program binaries as input, disassembles them, extracts argument P-Code
slices and related metadata and performs preprocessing on extracted slices. Then, it uses Transformer model to learn the
P-Code slice intricacies and finally performs type classification for function and callsite parameter/argument recovery tasks.

and corresponding source-level data types per argu-
ment. In the second phase, this recovered information
serves as the training input to the BERT-based Large
Language Model (LLM). The predictive capabilities
of LLM capture the intricate patterns from the P-Code
sentences. This fine-tuned model is then harnessed
for text classification task to effectively enhance the
predicted information that can then be used to aug-
ment the decompilation result in the final phase. The
seamless integration of program analysis information
recovered using SRE frameworks and machine learn-
ing based methodology for type classification, sets out
as the foundation of our framework. Now, we explain
the fundamental stages involved in running YĀLI’s
training routine for the type classification task.

4.1.1 Disassembling the binaries.

Initiating the workflow, we employ Ghidra binary an-
alyzer to disassemble input binaries as shown in Fig-
ures 2 (A-B). We disable any effect of DWARF sym-
bols on Ghidra analysis, so that the Ghidra output
remain uninfluenced by such symbols. At the same
time, DWARF debugging symbol information from
the binaries is analyzed using a popular ELF and
DWARF analysis tool pyelftools. The integration of
pyelftools significantly facilitates the parsing of Type-

DIEs from the DWARF debugging symbols, that in
turn allows us to collect index and original source-
level type information for each parameter of the func-
tion. Subsequently, this acquired information is uti-
lized to create mappings to the types recovered using
Ghidra to establish the ground truth, as elaborated in
the following section.

4.1.2 Sentence collection.

Next, our framework decompiles the the generated as-
sembly on a per-function basis using Ghidra’s decom-
piler API. At this stage, two sets of essential program
information are extracted. The first set encompasses
the address-taken functions in binaries, their parame-
ters, parameter indexes along with the forward slice of
P-Code instructions. The mapping between the func-
tion parameters recovered using Ghidra and their cor-
responding source-level types is then achieved using
the parameter types recovered using DWARF in the
previous stage. Correct mapping is facilitated by the
utilization of parameter indexes. The forward slice
allows us to collect the P-Code instructions that are
influenced by a particular parameter.

The second set of program information comprised
of callsite arguments, argument indexes and an addi-
tional combination of forward and backward P-Code



instruction slice per argument is also recovered using
Ghidra. We employ a combination of backward and
forward slices to expand the context. Note that we
do not consider the indirect program callsites at this
stage. Only the direct callsite arguments are used to
correlate with the corresponding target function. In
this way we can establish the ground truth types for
the callsite signature and align them with Ghidra call-
site arguments. P-Code is architecture agnostic, and
thus it allows us to reproduce all the steps without ar-
chitectural constraints. This streamlines the integra-
tion of YĀLI by making it adaptable across various
architectures.

Figure 2 (C) shows the collected sentences and
mapped labels. The sentences are sanitized to re-
move addresses and literal values. For example,
P-Code instruction ”(register, 0x30, 8) PIECE
(register, 0x34, 4)” is cleaned so that the
sentence becomes ”register8 PIECE register4”.
Note that the register and memory sizes are preserved
to insure that the model can do precise predictions
about type sizes. Let Fw be the forward slice and and
Bw be the backward slice of an argument, and let Pi
be the ith P-Code instruction in the slice. The forward
and backward slices with ”N” P-Code instructions are
depicted as follows:

Fw(Forward Slice) := {P1,P2, . . .PN}
Bw(Backward Slice) := {P1,P2, . . .PN}

The sentence utilized for the function parameter pre-
diction consists of only forward slice (Sp =Fw), while
the sentence utilized for the callsite argument pre-
diction consists of a combination of forward and the
backward P-Code slices (Sa = Fw ∪ Bw). Conse-
quently, we train two separate models - one for func-
tion parameter type detection and the other for callsite
argument type detection.

4.1.3 Tokenization

Tokenization serves as an important preprocessing
step for Natural Language Processing (NLP) tasks
that helps extracts features for model training. It
involves breaking down the text into smaller units
called tokens. We use the pretrained ”DistilBertTo-
kenizerFast” tokenizer for ”distilbert-base-uncased”
that uses WordPiece subword tokenization algorithm
to achieve high training efficiency. For instance, given
the sentence like ”ram8 MULTIEQUAL ram8”, the to-
kenizer converts it into subword tokens ”ram”, ”##8”,
”multi”, ”##e”, ”##qual”, ”ram” and ”##8”. The sen-
tences are tokenized (Figure 2 (D)) and are then fed
to the model.

4.1.4 Training the DistilBERT Model

The ”input ids”, i.e. numerical representation of to-
kenized sentences (Sa/Sp) along with the associated
attention mask are then provided to the DistilBERT
model for representation learning (Figure 2 (E)). For
training, we use the ”DistilBertForSequenceClassifi-
cation” model architecture adapted by incorporating
”distilbert-base-uncased” from Hugging Face Trans-
formers library. The model is specifically designed
for sequence classification task and comprised of the
base DistilBERT model along with a classification
layer on top that maps the output of the DistilBERT
model to the output labels (types). Apart from in-
put sentences, true type labels are also passed to the
model for the sentence classification task.

4.1.5 Prediction generation

The final stage of our framework involves generat-
ing predictions from the models trained in the pre-
vious stage to collect type characteristics. Figure 2
(F) shows ”True labels” and ”Predicted Labels” for
each argument. The predicted types are gathered and
mapped to the corresponding function parameters or
callsite arguments. At this stage the evaluator can
compare the type recovery results over different ar-
chitectures. The results can then be re-introduced in
Ghidra’s analysis routine to improve the types recov-
ered by Ghidra. Note that the recovered types can be
easily integrated in other SRE tools such as IDA Pro.

5 TRAINING/TESTING SETUP

In this section we explain the specifications and pro-
cess for training and testing our model to predict func-
tion and callsite parameter/argument types.

Table 1: Benchmark Statistics show total number of param-
eters/arguments used during training of our primary models

x64 x86 MIPS ARM
#Total Binaries 8460 8460 8460 8460
#Function Pars 922,720 800,640 996,640 1,126,144
#Callsite Args 1,862,016 1,482,912 2,006,016 2,149,216

5.1 Dataset

We use a part of BINKIT dataset introduced by (Kim
et al., 2022). The dataset consists of 51 projects from
GNU software such as binutils, coreutils, gzip, etc.
The binaries from the dataset contain DWARF debug
symbols information, which is essential in establish-
ing the ground truth. We collect 33840 binaries in to-



tal (8460 binaries per architecture) that are compiled
using different version of GCC and LLVM compilers
for a combination four different architectures (x86-
64, x86-32, ARM-64 and MIPS-64), and are com-
piled using four optimization levels (O0-3). Table 1
shows the number of function parameters and callsite
arguments leveraged from our primary benchmark set
for training our models. As there is a lack of stan-
dard dataset to test industry standard binary analysis
techniques, to compare with previous techniques, we
either use their own dataset or we train and run their
models on our dataset for the evaluation.

5.2 Model Hyperparameters

We incorporate distilbert-base-uncased, the most
popular version of DistilBERT transformer architec-
ture to train our model. It uses a 6-layer transformer
encoder with the default sequence length of 512 to-
kens. The number of attention heads are set to 12 and
the hidden size is set to 768. We use GELU activation
function according to the standard DistilBertConfig.
The model is trained using 32 batch size and learn-
ing rate of 2×10−5, and trained by employing mixed
precision training. All the models are trained for 20
epochs. AdamW optimizer is used with the default
weight decay of 0.01. Dropout of 0.2 is used for se-
quence classification head.

5.3 Experimental Setup

Our experiments are performed on 4GHz i7-6850K
Linux servers with 64 GB memory and two NVIDIA
TITAN Xp GPUs and took around 91 hours and 188
hours to run on average for Task-1 and Task-2 respec-
tively for 20 epochs.

6 EVALUATION

We explain our evaluation methodology, results and
observations in this section. We answer following re-
search questions (RQs) during our evaluation.

1. RQ1. How does our technique perform in terms
of Accuracy, Precision and Recall for Task-1 and
Task-2.

2. RQ2. How does the technique perform with re-
gard to the recovery of each type.

3. RQ3. How does the technique perform compared
to state-of-the-art rule based techniques.

4. RQ4. How does the technique perform compared
to the state-of-the-art deep learning techniques.

6.1 RQ1. Overall Accuracy of YĀLI

We assess the accuracy of our technique with 80-
10-10 train, validation and test split on the complete
dataset for each selected architecture. Given the set of
classes (types) C = {c1,c2,c3, ...,ci}, we calculate the
Precision, Recall and F1 scores to measure the perfor-
mance of YĀLI for each type as shown below:
Precisionci =

T Pci
T Pci+FPci

,Recallci =
T Pci

T Pci+FNci
,F1 Scoreci =

2∗(Precisionci∗Recallci )

Precisionci+Recallci

Where T Pci , FPci and FNci are ”True Positives”,
”False Positives” and ”False Negatives” respectively
for class ci. Table 2 shows the weighted average of
Precision, Recall and F1 score for each type assessed
over four different computer architectures and for four
optimization levels for Task-1 and Task-2. Task-1 de-
picts function parameter type recovery and Task-2 de-
picts argument type recovery at callsite, as described
previously.

The overall F1 scores noted for architectures x86-
64, x86, MIPS and ARM are around 97%, 93%, 94%
and 95% respectively for Task-1 and 93%, 90%, 92%
and 94% respectively for Task-2. Note that the num-
ber of sentences (arguments and parameters) recov-
ered (indicated by the Support rows in Table 2) are
higher at low optimization levels. In some cases, the
difference in the number of recovered sentences is
twice as high for optimization O0 than at optimization
O3. These discrepancies may arise due to compiler
optimizations such as function inlining, dead code
elimination, etc. However, this difference has a mini-
mal impact on the overall F1 scores. In general, the F1
scores are only slightly higher for binaries with low
optimization levels. Even this trend is not always fol-
lowed, as seen with the ARM model for Task-2. Thus,
we find that our models achieve high precision and ef-
fectiveness for binary-level type detection across var-
ious architectures and optimization levels.

6.2 RQ2. On the Accuracy of YĀLI for
the Recovery of Each Type

We employ YĀLI’s type system, as outlined in Fig-
ure 5, to implement YĀLI’s prediction scheme. We
consider preliminary types such as boolean, charac-
ter, integer and floating point types; and complex
types such as arrays, structs, enums and unions. In
addition to that we also consider multi-level pointer
types. Thus, we design our models to employ more
fine-grained types than most of the previous machine
learning based type recovery techniques. For exam-
ple, DEBIN (He et al., 2018) does not consider float-
ing point types, and signedness of integral types is ex-
cluded by EKLAVYA (Chua et al., 2017), while Type-
Miner (Maier et al., 2019) does not consider precise



Figure 3: Heatmap for Metrics (Precision, Recall and F1 Score) collected over Top 10 types for Task-1 considering all 4
architectures - x86-64, x86, MIPS and ARM

Figure 4: Heatmap for Metrics (Precision, Recall and F1 Score) collected over Top 10 types for Task-2 considering all 4
architectures - x86-64, x86, MIPS and ARM



Table 2: Evaluation results display the weighted Precision, Recall and F1 Score considering each type and computed over
x86-64, x86, MIPS and ARM architectures for Task-1 and Task-2

Architectures
x64 x86 MIPS ARM

Metrics Task O0 O1 O2 O3 O0 O1 O2 O3 O0 O1 O2 O3 O0 O1 O2 O3

Precision Task-1 96.89 97.14 97.00 96.17 94.50 93.21 92.48 92.29 95.26 93.55 92.87 92.53 95.82 95.78 95.58 94.33
Task-2 94.08 93.37 93.05 93.46 91.37 90.08 89.28 89.93 93.40 91.30 91.75 92.72 93.77 93.56 94.08 94.49

Recall Task-1 96.88 97.12 96.97 96.17 94.49 93.23 92.49 92.32 95.29 93.67 93.06 92.60 95.88 95.84 95.71 94.59
Task-2 94.08 93.37 93.06 93.43 91.34 90.07 89.24 89.84 93.38 91.26 91.76 92.71 93.81 93.59 94.10 94.51

F1 Score Task-1 96.87 97.12 96.98 96.16 94.46 93.19 92.45 92.27 95.25 93.58 92.93 92.53 95.84 95.79 95.62 94.43
Task-2 94.06 93.34 93.01 93.43 91.29 90.04 89.21 89.83 93.36 91.25 91.73 92.69 93.77 93.56 94.07 94.49

Support Task-1 37898 35216 21213 21017 41955 24387 17065 16676 38665 33572 26411 25933 49344 37939 27398 26089
Task-2 79865 64075 43984 44832 72111 42950 34308 35996 89169 62479 48591 50517 101169 65878 50466 51143

Figure 5: YĀLI Type System

array types such as ”array<char*>*”. Our technique
also recovers multi-level pointers unlike most previ-
ous techniques (Chua et al., 2017; He et al., 2018; Pei
et al., 2021). However, we do not distinguish between
const and non-const types, and unlike DIRTY do not
recover structure member types.

In order to understand how YĀLI behaves, it is
important to dissect the individual type recovery re-
sults. Figures 3 and 4 depict the Precision, Recall
and F1 score of each type over our four tested archi-
tectures. The technique shows high accuracy across
all the architectures for both the tasks and across
most types. The type ”struct*” is the most fre-
quently observed type across all architectures, occur-
ring more than four times as frequently as the second
most common type ”char*” for Task-1. Addition-
ally, ”struct*” is the most common type for Task-2
as well. All the heatmaps reveal darker colors for the
types with higher support, which indicates superior
Precision, Recall and F1 scores for the most common
types. This in turn shows that increased support leads
to higher F1 scores. The varying support numbers
for different types result from a random sampling of
dataset used during the training. The F1 scores for the
types in Task-2 across all architectures are in general
slightly lower than the F1 scores in Task-1.

6.3 RQ3. Comparison with Prior Rule
Based Techniques

In this section, we compare YĀLI with rule-based
type recovery techniques. Although there are mul-
tiple prominent previously published type recov-
ery techniques such as TIE (Lee et al., 2011),
Howard (Slowinska et al., 2011), ARTISTE (Caballero
et al., 2012), OSPREY (Zhang et al., 2021) etc. none
of these techniques are available in open source. Au-
thors of OSPREY (Zhang et al., 2021) generously
provided us their dataset consisting of binaries from
coreutils package with O0 optimization level (100 bi-
naries in total). OSPREY uses a probabilistic con-
straint solving technique for type recovery. How-
ever, OSPREY only considers stack and heap allo-
cated variables, and cannot recover register allocated
variables. Therefore, OSPREY cannot be used to re-
cover function parameters and callsite arguments that
are typically passed in registers. We also reviewed
SRE frameworks such as IDA Pro (hexrays, 2023)
and Ghidra (National Security Agency ghidra, 2023)
as they perform type recovery to facilitate decompi-
lation. However, we do not have access to multi-
architecture support for IDA Pro’s Hex-Rays decom-
piler. Ultimately, we compare the accuracy of our
technique with two open-source rule-based type de-
tection mechanisms, the Ghidra Decompiler and Re-
typd (Noonan et al., 2016).

We use the open source version of Retypd 3 and
use their Ghidra plugin GhidraRetypd 4 by convert-
ing it into headless mode to integrate recovered types
back into Ghidra analysis. None of the previous tech-
niques analyzes Ghidra in terms of function and call-
site argument type recovery. We found that the ex-
ecution and inference time of Retypd is excessively
long, that is why for brevity, we test accuracy of Re-
typd and Ghidra on ”coreutils” binaries (total 3748)
for our x86-64 dataset. We take out 32 binaries on
which Retypd failed to work. To assess and compare
the performance of YĀLI, we train a new model (de-

3https://github.com/GrammaTech/retypd
4https://github.com/GrammaTech/retypd-ghidra-plugin



noted as YĀLIγ) by removing all ”coreutils” binaries
from our original dataset. This also allows us to sys-
tematically assess the effectiveness and competence
of our model on a dataset completely orthogonal from
the train set.
Table 3: Accuracy of YĀLIγ, Ghidra and Retypd is shown
for Task-1 for and x86-64 binaries with four optimization
levels

O0 O1 O2 O3
YĀLIγ % 73.00% 74.74% 77.92% 80.64%
Retypd % 28.52% 27.57% 26.01% 28.24%
Ghidra % 31.14% 38.17% 36.96% 41.92%

Table 4: Accuracy of YĀLIγ, Ghidra and Retypd is shown
for Task-2 for and x86-64 binaries with four optimization
levels

O0 O1 O2 O3
YĀLIγ % 69.47% 71.86% 73.12% 81.10%
Retypd % 33.92% 33.72% 27.02% 41.67%
Ghidra % 24.42% 25.33% 23.55% 24.47%

To accurately compute the accuracy, we convert
Ghidra and Retypd types in post-hoc manner to make
them compatible with the source types. For e.g.
”struct 100*” is replace with ”struct*”. And
complex types such as ”array[10]” are converted to
their simplistic form such as ”array”. Tables 3 and 4
shows the accuracy of YĀLIγ, over four optimiza-
tion levels for Task-1 and Task-2. Overall, YĀLIγ

achieves 75.48% accuracy for Task-1 and 73.58% ac-
curacy for Task-2. Note again that the YĀLIγ model
achieves lower accuracy than the YĀLI model seen
earlier in Table 2 because we evaluate YĀLIγ on an
orthogonal benchmark set that was not at all repre-
sented in the training dataset. Thus, we find that our
LLM based model achieves high effectiveness even in
considerably adverse situations.

Retypd achieves 27.74% accuracy for the Task-1
and Ghidra shows 35.82% accuracy for the same task,
beating Retypd by around 8%. On the contrary, for
Task-2, Retypd and Ghidra’s overall accuracy scores
are 35.81% and 24.50% respectively. Thus, YĀLIγ

achieves significantly higher overall accuracy than the
other two techniques. We also found that Retypd
beats Ghidra for ”Struct” type recovery. Specifi-
cally, Retypd achieves 22% for Task-1 and 24% Task-
2, while Ghidra achives 18% and 12% for Task-1 and
Task-2 respectively. YĀLIγ attains improved accu-
racy for ”Struct” type recovery as well, reaching
87% for Task-1 and 72% for task-2.

In terms of inference speed, we observe Retypd
plugin takes 2 minutes 52 seconds on one of the
”coreutils” binaries (md5sum), while Ghidra takes
around 27 seconds to compute results on the same bi-

nary. YĀLI’s primary model takes around 11 seconds
to finish inference on complete ”coreutils” dataset
demonstrating greater speed scalability. We notice
that Retypd sometimes takes unusually long time for
certain binaries in our dataset, occasionally taking
several hours to analyze.

6.4 RQ4. Comparison with Deep
Learning Techniques

We now compare YĀLI with two state-of-the-art deep
learning techniques - EKLAVYA and DIRTY.

6.4.1 Comparison with EKLAVYA

To compare with EKLAVYA we leverage EKLAVYA’s
publically available dataset. We train our model di-
rectly on their dataset. The dataset consists of bi-
naries from 8 projects - binutils, coreutils, findu-
tils, sg3utils, utillinux, inetutils, diffutils, and usbu-
tils compiled for x86 and x86-64 architectures. The
performance evaluation on the EKLAVYA benchmark
set shows the reliability of our model on the rel-
atively smaller training dataset. We refer to this
model YĀLIε. To evaluate the performance of YĀLIε

against EKLAVYA, we consider seven type categories
identified in EKLAVYA. The EKLAVYA technique
considers each function argument’s type inference
as a distinct classification task. They report accu-
racy numbers, rather than F1 scores. Consequently,
to gauge the accuracy of YĀLIε, we divide the to-
tal number of accurately predicted types by the total
number of tokens. EKLAVYA considers seven differ-
ent C-style types from the following type lattice.

τ := {int|char| f loat|void ∗ |enum|union|struct}
EKLAVYA focuses on acquiring function types based
on callee and caller instructions i.e. at the callsite. As
EKLAVYA’s pre-trained model is not released, we use
their datasets for training our model and for equiv-
alent comparison. The accuracy is reported for first
three arguments in EKLAVYA paper due to prevalence
and better support, and we do the same for fair com-
parison. We train our models for 10 epochs and dis-
play the results in Figure 6. Overall our technique has
achieved 20% and 15% improvement over EKLAVYA
for x86 and x86-64 binaries respectively for Task-1.
And we observed improvement of 15% for x86 bina-
ries and 13% for x86-64 when compared YĀLIε to
EKLAVYA for Task-2.

6.4.2 Comparison with DIRTY

DIRTY is a deep learning technique based on trans-
former based NN model that enhances the quality of



(a) (b)
Figure 6: Accuracy of EKLAVYA and YĀLIε is shown for Task-1 (subfigure (a)) and Task-2 (subfigure (b)) for x86 and x86-64
binaries over four optimization levels

decompiler output by accurately predicting variable
names and types. The primary DIRTY model pre-
sented in the paper is focused on recovering variable
type-name pairs, resulting in reduced type associated
data. Accordingly, we use DIRTYLight model cus-
tomized for type recovery task. Original DIRTY paper
aims to support x86-64 architecture, thus we directly
train DIRTYLight on our x86-64 dataset (total 8460 bi-
naries) and collect the results. We refer to this model
as DIRTY in the rest of the paper. DIRTY considers
all types rather than function or callsite arguments.
Therefore, we only collect function parameters statis-
tics from generated test results from the DIRTYLight to
calculate accuracy for comparison, and compare the
data for Task-1.

DIRTY can predict up to 48,888 syntactic and non-
syntactic types. Consequently, we adapt DIRTY types
and convert them into YĀLI types in post-hoc manner
to make them compatible to YĀLI types that are syn-
onymous to the DWARF Debug information. It is im-
portant to achieve this conversion with attention and
accuracy, otherwise the results would suffer. Firstly,
we declass the composite types such as ”union
WAIT STATUS {wait* uptr;int* iptr;}” to

its primordial form ”union” as YĀLI doesn’t detect
union or structure member hierarchy. DIRTY contem-
plates the types recovered from IDA pro’s Hex-Rays
decompiler for ground truth comparison, rather than
the actual syntactic types intended by the program-
mer. The types are imported using IDA pro to estab-
lish the baseline. Thus, it may not accurately identify
the user-defined types. For e.g. types such as BYTE
are defined by IDA and do not represent actual types
declared in the source code. Secondly, we also con-
vert types such gl list impl* to struct* as it obvi-
ously signifies structure type in the program. Lastly,

we observe numerous parameters marked with ”dis-
appear” label - ”disappear” are the types that signify
lost types during the process of decompilation. To
confirm this tendency, we also trained another DIRTY
model by replacing IDA Pro by Ghidra decompiler,
yet we still continued to notice the missing types. We
decided to remove such types when we calculate and
compare DIRTY’s overall accuracy, which comes with
at a cost of lesser number of samples.

Table 5: Accuracy of DIRTY and YĀLI is shown for Task-1
for x86-64 binaries over four optimization levels

O0 O1 O2 O3
DIRTY % 83.36% 58.40% 61.61% 64.53%
YĀLI % 96.87% 97.12% 96.97% 96.17%

Table 5 compares YĀLI with DIRTY using x86-
64 binaries compiled over four optimization levels
and presents the percentage accuracy for Task-1. The
overall accuracy of DIRTY’s type recovery technique
for function parameter types is 83.36% (highest) for
opt. O0 and 58.40% (lowest) for opt. O1. YĀLI
outperforms DIRTY in all optimization levels having
96.17% accuracy for opt. O2 (lowest) to 97.12% for
opt. O1 and shows optimal performance. We would
like to note that the effectiveness of DIRTY model de-
pends on the dataset utilized during its training. The
dataset we use to train DIRTY’s model is smaller -
8460 binaries compared to 4,346,134 compiled bina-
ries in actual the dataset used in original work. And,
therefore it may affect the overall accuracy, since the
model is exposed to fewer samples during training.
However, this showcases a compelling evidence that
our model shows strong performance, despite having
trained on a comparatively smaller dataset.



7 CONCLUSION

Function and callsite parameter/argument type recov-
ery is important as it lays a foundation for numerous
binary analysis and security tasks. We develop a novel
framework, called YĀLI, that approaches this binary
type recovery problem as a NLP problem, and helps
achieve this task using a transformer based LLM. We
conduct a thorough evaluation that shows that our
technique is portable across multiple processor archi-
tectures, and significantly outperforms many existing
state-of-the-art mechanisms for binary-level type re-
covery. We anticipate that our technique will provide
a novel perspective on understanding and addressing
the task of type recovery, and assist researchers that
rely on accurate type recovery for their analysis and
security tasks.
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