Practical Exhaustive Optimization Phase Order
Exploration and Evaluation

PRASAD A. KULKARNI

University of Kansas, Lawrence, Kansas
DAVID B. WHALLEY, GARY S. TYSON
Florida State University, Tallahassee, Florida
JACK W. DAVIDSON

University of Virginia, Charlottesville, Virginia

Choosing the most appropriate optimization phase ordering has been a long standing problem
in compiler optimizations. Exhaustive evaluation of all possible orderings of optimization phases
for each function is generally dismissed as infeasible for production-quality compilers targeting
accepted benchmarks. In this paper we show that it is possible to exhaustively evaluate the
optimization phase order space for each function in a reasonable amount of time for most of the
functions in our benchmark suite. To achieve this goal we used various techniques to significantly
prune the optimization phase order search space so that it can be inexpensively enumerated in most
cases, and to reduce the number of program simulations required to evaluate program performance
for each distinct phase ordering. The techniques described are applicable to other compilers in
which it is desirable to find the best phase ordering for most functions in a reasonable amount of
time. We also describe some interesting properties of the optimization phase order space, which
will prove useful for further studies of related problems in compilers.

Categories and Subject Descriptors: D.34dgramming Languages]: Processors-eompilers, optimization
D.4.7 [Operating Systems]: Organization and Design+ealtime systems and embedded systems, interactive

Extension of Conference Paper: Preliminary versions of this research appeared ir20@6 International Sym-
posium on Code Generation and Optimization (CG@yler the title “Exhaustive Optimization Phase Order
Exploration”, and in th006 ACM SIGPLAN/SIGBED Conference on Languages, Corapédad Tools for Em-
bedded Systems (LCTHES)der the title “In Search of Near-Optimal Optimization Ph@sderings”.

The current work differs from both of these earlier paperséweral aspects:

(1) We introduce a completely new search algorithm (Sectjoto $nore efficiently find the successive phase
order sequences to evaluate. We also note the trade-off@msing any one algorithm over the other.

(2) We have doubled our benchmark set from 6 to 12 benchmariisnare than doubled the number of studied
functions, from 111 to 244. Many of the newer functions addesignificantly larger, making our switch
to the new search algorithm more critical.

(3) A new section (Section 8) presents interesting restoim fanalyzing the exhaustive phase order space over
the entire set of functions. These results, which are shovfigures 11 through 19, required a significant
amount of time to collect.

(4) Allthe remaining sections in this paper also go into mongtd@bout the issues involved in the development
of the search algorithm, pruning techniques, and other imphéatien issues.

This research was supported in part by NSF grants EIA-00320€R-0208892, CCR-0312493, CCF-0444207,
and CNS-0305144.

Permission to make digital/hard copy of all or part of this miatewithout fee for personal or classroom use
provided that the copies are not made or distributed for ppofibmmercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appead, aotice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on serversto redistribute to lists requires prior specific
permission and/or a fee.

© 2008 ACM 1529-3785/2008/0700-0001 $5.00

ACM Transactions on Architecture and Code Optimization, VoNo. N, September 2008, Pages 1-32.

2 . Prasad Kulkarni et al.

systems
General Terms: Performance, Measurement, Algorithms

Additional Key Words and Phrases: Phase Ordering, Exhaustive Search, Iterative Compilation

1. INTRODUCTION

Current optimizing compilers typically contain severdfelient optimizatiorphasesEach
phase attempts to apply a seriegrahsformationseach of which consists of a sequence
of changes that preserves the semantic behavior of thegroghile typically improving
its efficiency. Many of these optimization phases use ancegiegources (such as machine
registers), and also need specific conditions in the code tpplicable. As a result, opti-
mization phases interact with each other by enabling arabtiey opportunities for other
phases to be applied. Such interactions between optimizatiases have been widely
studied in the context of different compilers (with diffatesets of optimization phases)
and different architectures [Whitfield and Soffa 1997; Alroagt al. 2004; Kisuki et al.
1999; Kulkarni et al. 2006a]. Based on such studies it is nefindively known that phase
interaction often causes different orders of applying roptations phases to produce dif-
ferent output code, with potentially significant perforraarvariation. Therefore, finding
the best order of applying optimization phases is imporfantapplication areas where
developers are willing to wait for longer compilations, Buas in high performance and
embedded domains, so that more efficient code can be gethéwatach application. This
challenge is commonly known as tipdase ordering problenm compilers. Over four
decades of research on the phase ordering problem has shatithé problem is difficult
since a single order of optimization phases will not prodoggmal code for every appli-
cation [Vegdahl 1982; Whitfield and Soffa 1990; Cooper et 889, Kulkarni et al. 2003;
Triantafyllis et al. 2003; Kisuki et al. 1999]. The best ardepends on the program being
optimized, the manner in which the optimizations are immated in the compiler, and
the characteristics of the target machine.

A naive solution to the phase ordering problem is to exhaelstievaluate the perfor-
mance of all possible orderings of optimization phases.s Hpiproach requires the res-
olution of two sub-problems, both of which have always beenstdered infeasible for
production-quality compilers. The first sub-problem is xhaustivelyenumerateall pos-
sible orderings of optimization phases. This enumeratiodifficult since the phase or-
dering space has a tendency to quickly become impracticabtapletely explore in the
face of several different optimization phases that arecglpi present in current compil-
ers, with few restrictions on the ordering of these phasd®w Jecond sub-problem is to
evaluatethe performance of all the enumerated orderings to find tls¢ performance.
To achieve the desired accuracy, performance evaluatinarghy requires execution of
the application, which is typically much more expensiventsamply compiling the code.
Many low-end embedded systems are unable to support a ddijéld compilation en-
vironment, which implies that the software developmentivagtoccurs external to the
embedded device [Barr and Massa 2006]. Development acfivitsuch systems often
proceeds via simulation instead of native execution [EogbR007; Redhat 2004; Vir-
tutech 2008], which is typically orders of magnitude mor@enxsive. Thus, it is hardly
surprising that exhaustive phase order space evaluatienatithe optimization phases in

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

Exhaustive Phase Ordering : 3

a mature compiler has never been successfully accomplished

In this paper we show that by using various pruning techréquis possible to exhaus-
tively evaluate all possible orderings of optimization géafor our compiler targeting the
ARM processor, and determine the besbptimalperforming phase orderings with a very
high degree of probability for most of the functions in ounbkemark suite. Note that a
different compiler, with a different or greater set of opization phases can possibly gen-
erate better code than toptimalinstance produced by our compiler. Thogtimalin the
context of this work refers tohe best code that can be produced by any optimization
phase ordering in our compiler (VPO) that applies optimizations on a per-function
basis, using identical parametersfor all applications of each phase, on the ARM pro-
cessor platform, and on the benchmark and input data set considered in our study,
and is not meant to imply a universally optimal solution. Vésctibe the techniques we
used to prune the phase order search space to generate siblpdsstinct function in-
stanceghat can be produced by changing the optimization phaseiogdi@ our compiler,
for the vast majority of the functions that we studied. Théper also explains our ap-
proach of using simple and fast estimation techniques toaethe number of simulations
and yet determine the optimal performing function instanith a high degree of accuracy.
We have used various correlation techniques to illusttzé dur method of performance
estimation is highly accurate for our purposes. Finalljyaustive evaluation of the phase
order space over a large number of functions has given uga tata set, which we have
analyzed to determine various properties of the optimirasipace. Some of these results
are presented in this paper.

The remainder of this paper is organized as follows. In thd section we review the
previous work related to this topic. In Section 3 we give amrgiew of our compilation
framework. In Section 4 we explain our techniques to expkitundancy in the phase or-
der space, and to reduce the number of simulations requirddtermine the performance
of all distinct phase orderings. Our implementation of theschniques in the context of
our experimental framework is described in Section 5. Oyreeixnental results are pre-
sented in Section 6. In Section 7 we use two methods to denatagihe strong correlation
between our estimates of performance and actual simulajicles. In Section 8 we con-
duct an analysis of the optimization phase order space asgpt some interesting results.
The final two sections present directions for future work andconclusions respectively.

2. RELATED WORK

As mentioned earlier, optimization phase ordering is a Istagding problem in compil-
ers and as such there is a large body of existing researchigmohic. An interesting
study investigating the decidability of the phase ordepngblem in optimizing compila-
tion proved that finding the optimal phase orderingiiglecidablen the general schemes
of iterative compilation and library generation/optimipa [Touati and Barthou 2006].
However, their hypothesis assumes that the set of all pessibgrams generated by dis-
tinct phase orderings is infinite. This hypothesis is ralasince optimizations such as
loop unrolling, and strip mining [Hewlett-Packard 2000hdze applied an arbitrary num-
ber of times, and can generate as many distinct programsattipe, however, compilers
typically impose a restriction on the number of times suchggls can be repeated in a nor-
mal optimization sequence. Additionally, most other ojtations are targeted to remove
some program inefficiency, and/or exploit some architedtigature, which in turn limits

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSKptember 2008.

4 . Prasad Kulkarni et al.

the number of times such phases can be active for any applicat/e explain this pointin
greater detail in Section 3, where we describe the expetiaheattings used for the results
in this paper. Thus, finding the best phase ordering is dbtdda most current compilers,
albeit very hard.

Strategies to address the phase ordering problem generatiyie one of two paths: a
model-driven approach or an empirical approach. A modweiedror analytical approach
attempts to determine the properties of optimization ptaarad then use some of these
properties at compile time to decide what phases to applyhamdto apply each phase.
Such approaches have minimal overhead since additionéileprons of the application
are generally not required. Whitfield and Soffa developedmméwork based on axiomatic
specifications of optimizations [Whitfield and Soffa 199091IR This framework was
employed to theoretically list thenablinganddisablinginteractions between optimiza-
tions, which were then used to derive an application ordettfe optimizations. The main
drawback was that in cases where the interactions were aimig it was not possible to
automatically determine a good ordering without detaitddrimation about the compiler.
Follow-up work on the same topic has seen the use of additemalytical models, in-
cluding code context and resource (such as cache) modealst¢amine and predict other
properties of optimization phases such asithpactof optimizations [Zhao et al. 2003],
and theprofitability of optimizations [Zhao et al. 2005]. Even after substariaigress,
the fact remains that properties of optimization phasesyalkas the relations between
them are, as yet, poorly understood, and model-driven a@gpees find it hard to predict
the best phase ordering in most cases.

With the growth in computation power, researchers have contyradoptecempirical
approaches that use multiple program runs to search fordeepdhase ordering. Exhaus-
tive evaluation of the entire optimization phase order sgaas generally been considered
infeasible, and has never been successfully attempted toriour work. Enumerations
of search spaces over a small subset of available optiraimtiave, however, been at-
tempted [Almagor et al. 2004]. This work exhaustively enwetted a 10-of-5 subspace
(optimization sequences of length 10 from 5 distinct optitions) for some small pro-
grams. Each of these enumerations typically required aépeocessor months even for
small programs. The researchers found the search spacesi@ther smooth nor convex,
making it difficult to predict the best optimization sequems most cases.

Researchers have also investigated the problem of findingffactive optimization
phase sequence by aggressive pruning and/or evaluationlyfigortion of the search
space. This area has seen the application of commonly eexgblnyificial intelligence
search techniques to search the optimization space. liilbelrs [Almagor et al. 2004;
Kisuki et al. 2000], grid-based search algorithms [Bodiraletl998], as well as genetic
algorithms [Cooper et al. 1999; Kulkarni et al. 2003] havereised during iterative
searches to find optimization phase sequences better tbagefault one used in their
compilers. Most of the results report good performance owpments over their fixed
compiler sequence.

In order to tackle the huge optimization phase order segpelees it is important to
find ways to drastically prune these search spaces. A metltetldOptimization-Space
Exploration [Triantafyllis et al. 2003], uses static perfmnce estimators to reduce the
search time. In order to prune the search space they limihtimber of configurations
of optimization-parameter value pairs to those that argyiko contribute to performance

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

Exhaustive Phase Ordering : 5

improvements. In other attempts to reduce the cost of iteraiptimizations, researchers
have used predictive modeling and code context informatidiocus search on the most
fruitful areas of the phase order space for the program beimgpiled for static compil-
ers [Agakov et al. 2006] as well as for dynamic compilers [&zas and O’Boyle 2006].
In our past research, we used genetic algorithms with agiyeegpruning of the search
space [Kulkarni et al. 2004; Kulkarni et al. 2005] to makershas for effective optimiza-
tion phase sequences faster and more efficient. During thik we realized that a sig-
nificant portion of typical phase order search spaces ismdalt because many different
orderings of optimization phases produce the same code. ciiservation was the major
motivation for this research.

Studies of using static performance estimations to avaigjfam executions have also
been done previously [Knijnenburg et al. 2000; Wagner e1@94; Cooper et al. 2005].
Wagner et al. presented a number of static performance a&simtechniques to deter-
mine the relative execution frequency of program regions, measured their accuracy by
comparing them to profiling [Wagner et al. 1994]. They fouhdttin most cases static es-
timators provided sufficient accuracy for their tasks. Kaijburg et al. [2000] used static
models to reduce the number of program executions neede@rayive compilation. Our
approach of static performance estimation is most similahé approach ofirtual exe-
cutionused by Cooper et al. [Cooper et al. 2005] in their ACME systércompilation.
In the ACME system, Cooper et al. strived to execute the agfiin only once (for the
un-optimized code) and then based on the execution coutite basic blocks in that func-
tion instance, and careful analysis of transformationdiagpy their compiler, determine
the dynamic instruction counts for other events, such astiom instances. With this ap-
proach, ACME has to maintain detailed state, which intredtsome amount of additional
complexity in the compiler. In spite of detailed analysisaifew cases ACME is not able
to accurately determine the dynamic instruction count duthé types of optimizations
been applied, occasionally resulting in small errors inrtbemputation.

3. EXPERIMENTAL FRAMEWORK

The research in this paper uses the Very Portable Optimi#e® [Benitez and Davidson
1988], which was a part of the DARPA and NSF co-sponsoredoNatiCompiler Infras-
tructure project. VPO is a compiler back end that performhisabptimizations on a single
low-level intermediate representation called RTLs (RegiJransfer Lists). Since VPO
uses a single representation, it can apply most analysi®ptichization phases repeat-
edly and in an arbitrary order. VPO compiles and optimizes fumction at a time. This
is important for the current study since restricting the gghardering problem to a single
function, instead of the entire file, helps to make the otation phase order space more
manageable. VPO has been targeted to produce code for &yvafridifferent architec-
tures. For this study we used the compiler to generate cadinéoStrongARM SA-100
processor using Linux as its operating system.

Even though native execution of the benchmarks on the ARNesy$o measure dy-
namic runtime performance would be ideal, we were not ablda®o due to resource
constraints. Mainly, we did not have access to an ARM mactiiaé runs Linux, and
which also supports our compilation framework. SecondigRMi\machines are consider-
ably slower than state-of-the-art x86 machines, so peifagrhundreds of long-running
experiments will require a significant number of custom ARMahines, which was infea-

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSRptember 2008.

6 . Prasad Kulkarni et al.

sible for us to arrange. Therefore, we used the SimpleSeselanf functional and cycle-
accurate simulators [Burger and Austin 1997] for the ARM & dynamic performance
measures.

Table | describes each of the @ptionalcode-improving phases that we used during our
exhaustive exploration of the optimization phase orderctespace. In addition, VPO also
employs two compulsory phasasgister assignmerdandfix entry-exit that must be per-
formed.Register assignmeassigns pseudo registers to hardware registdrsour exper-
iments VPO implicitly performs register assignment befibve first code-improving phase
in a sequence that requireskix entry-exitcalculates required stack space, local/argument
offsets, and generates instructions to manage the actimagtcord of the runtime stack. The
compiler appliedix entry-exitafter performing the last optional code-improving phase in
a sequence.

Two other optimizationgnerge basic blockandeliminate empty blocksvere removed
from the optional optimization list used for the exhaustsgarch since these optimiza-
tions only change the internal control-flow representatisrseen by the compiler, do not
touch any instructions, and, thus, do not directly affeet fimal generated code. These
optimizations are now implicitly performed after any tréorsnation that has the potential
of enabling them. Finally, after applyirfix entry-exit the compiler also performs predi-
cation and instruction scheduling before the final asserobtle is produced. These last
two optimizations should be performed late in VPQO's contpila process, and so are not
included in the set of phases used for exhaustive optinoizapace enumeration.

A few dependences between some optimization phases in VR@srtallegal for them
to be performed at certain points in the optimization segaeiThe first restriction is that
evaluation order determinationan only be performed beforegister assignmentEval-
uation order determinatioris meant to reduce the number of temporaries thegtster
assignmentater allocates to registers. VPO also restricts some opitions that ana-
lyze values in registers, such la®p unrolling loop strength reductigrinduction variable
eliminationandrecurrence eliminationto be performed aftaegister allocation Many of
these phases depend on the detection of basic inducticablesiand VPO requires these
to be in registers before they are detected. These phasdsega@rformed in any order
after register allocationis applied. Register allocationtself can only be effective after
instruction selectiorso that candidate load and store instructions can contaiadbresses
of arguments or local scalars. Finally, there are a set oé@hé#hat require the allocation
of registers and must be performed aftegister assignment

VPO is a compiler back end. Many other optimizations not graned by VPO, such
as loop tiling/interchange, inlining, and some other iptecedural optimizations, are typ-
ically performed in a compiler frontend, and so are not pnése VPO. We also do not
perform ILP (frequent path) optimizations since the ARMratecture, our target for this
study, is typically implemented as a single-issue proaessd ILP transformations would
be less beneficial. In addition, frequent path optimizatiteguire a profile-driven compi-
lation process that would complicate this study. In thigigtwe are investigating only the
phase ordering problem and do not vary parameters for howgshshould be applied. For
instance, we do not attempt different configurations of laapolling, but always apply it
with a loop unroll factor of two since we are generating cooleain embedded processor

lin VPO, pseudo registers only represent temporary valuesnahdariables. Before register allocation, all
program variables are assigned space on the stack.

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

Exhaustive Phase Ordering : 7

Optimization Phase [Gene | Description]

branch chaining b Replaces a branch/jump target with the target of the last jumtipa chain.
common subexpres; ¢ Performs global analysis to eliminate fully redundant caltiohs, which
sion elimination also includes global constant and copy propagation.

unreachable code d Removes basic blocks that cannot be reached from the furetiop block.
elimination

loop unrolling g To potentially reduce the number of comparisons and brandhes dime
and to aid scheduling at the cost of code size increase.

dead assignmentelimr h Uses global analysis to remove assignments when the assigluedsnever

ination used.

block reordering i Removes a jump by reordering blocks when the target of the jurahly
a single predecessor.

loop jump minimiza- i Removes a jump associated with a loop by duplicating a porfitimedoop.

tion

register allocation k Uses graph coloring to replace references to a variableiwéHive range
with a register.

loop transformations | Performs loop-invariant code motion, recurrence elimingtioop strength
reduction, and induction variable elimination on each loageced by loop
nesting level.

code abstraction n Performs cross-jumping and code-hoisting to move identicstructions

from basic blocks to their common predecessor or successor.
evaluation order deq o Reorders instructions within a single basic block in anmafteto use fewer
termination registers.

strength reduction q Replaces an expensive instruction with one or more cheages. dfor this
version of the compiler, this means changing a multiply by a @orisnto a
series of shift, adds, and subtracts.

branch reversal r Removes an unconditional jump by reversing a conditional dfravhen it
branches over the jump.

instruction selection s Combines pairs or triples of instructions that are are linkgdset/use de-
pendencies. Also performs constant folding.

useless jump removall u Removes jumps and branches whose target is the followingqaeiblock.

Table |. Candidate Optimization Phases Along with their Beations

where code size can be a significant issue.

It is important to realize that all optimization phases in¥,fexceptoop unrollingcan
be successfullyapplied only a limited number of times. Successful appilicabf each
phase depends on the presence of both the program inefficiargeted by that phase,
as well as the presence of architectural features requiyatédphase. Thus, (Tegister
allocationis limited (in the number of times it can be successfully &l by the number
of live ranges in each function. (2pop invariant code motiois limited by the number of
instructions within loops. (3)oop strength reductiononverts regular induction variables
to basic induction variables, and there are a limited nunobeggular induction variables.
(4) There are a set of phases that eliminate jurbpar(ch chaining, block reordering, loop
jump minimization, branch reversal, useless jump remowaldd these are limited by the
number of jumps in each function. (®lommon subexpression eliminati@nlimited by
the number of calculations in a function. (Bead assignment eliminatide limited by
the number of assignments. ([Astruction selectiorcombines instructions together and
is limited by the number of instructions in a function. (8pluction variable elimination
is limited by the number of induction variables in a functiq@) Recurrence elimination
removes unnecessary loads across loop iterations andiisditny the number of loads in

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSKptember 2008.

8 . Prasad Kulkarni et al.

a function. (10)Code abstractioris limited by the number of instructions in a function.

Loop unrollingis an optimization that can be attempted an arbitrary nurofmes, and
can produce a new function instance every time. We restrigi Linrolling to be attempted
only once for each loop. This is similar to the restrictioaged on loop unrolling in most
compilers. Additionally, optimizations in VPO never undetchanges made by another
phase. Even if they did, our approach could handle this dimedunction instance graph
(explained in Section 4) would no longer be a DAG, and wouldtaim cycles. Thus, for
any function, the number of distinct function instances taa be produced by any possible
phase ordering of any (unbounded) length is finite, and esthausearch to enumerate all
function instances should terminate in every case.

Note that some phases in VPO represent multiple optimizatio many compilers.
However, there exist compilers, such as GCC, that have deggreamber of distinct op-
timization phases. Unlike VPO, most compilers are much mestrictive regarding the
order in which optimizations phases are performed. In &ldithe more obscure a phase
is, the less likely that it will be successfully applied arftket the search space. For ex-
ample, it has been reported that only 15 out of 60 possiblenigdtion phases in GCC
were included in an earlier work determining Pareto optatian levels in GCC [Hoste
and khout 2008]. While one can always claim that additionasgls can be added to a
compiler or that some phases can be applied with differergrpaters (e.qg., different un-
roll factors for loop unrolling), completely enumeratiftgtoptimization phase order space
for the number of phases applied in our compiler has nevesrbdfeen accomplished to
the best of our knowledge.

For these experiments we used a subset of the benchmark#fediBenchbenchmark
suite, which are C applications targeting specific areab®embedded market [Guthaus
et al. 2001]. We selected two benchmarks from each of theategories of applications
in MiBench. Table Il contains descriptions of these progsarhe first two columns in
Figure 1l show the benchmarks we selected from each apjaitaategory in MiBench.
The next column displays the number of lines of C source cadgpgram, and the last
column in Figure Il provides a short description of each ctelé benchmark. VPO com-
piles and optimizes individual functions at a time. The 18dbenarks selected contained
a total of 244 functions, out of which 88 were executed with ithput data provided with
each benchmark.

[Category [Program | #Lines | Description]

auto bitcount 584 | test processor bit manipulation abilities

gsort 45 | sort strings using the quicksort sorting algorithm
network dijkstra 172 | Dijkstra’s shortest path algorithm

patricia 538 | construct patricia trie for IP traffic
telecomm | fft 331 | fast fourier transform

adpcm 281 | compress 16-bit linear PCM samples to 4-bit samples
consumer | jpeg 3575 | image compression and decompression

tiff2bw 401 | convert colottiff image to b&w image
security sha 241 | secure hash algorithm

blowfish 97 | symmetric block cipher with variable length key
office string-search 3037 | searches for given words in phrases

ispell 8088 | fast spelling checker

Table Il. MiBench Benchmarks Used in the Experiments

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

Exhaustive Phase Ordering : 9

4. APPROACH FOR EXHAUSTIVE EVALUATION OF THE PHASE ORDER SPACE

Complete phase order space evaluation to find the optimakptvaering for each function
would require enumeration and performance measuremeheddpplication code gener-
ated by the compiler after applying each possible comlonatif optimization phases.
Both of these taskssnumeratiorand performance evaluatigrhave been generally con-
sidered infeasible over the complete phase order spacéelfoliowing sections we will
explain our approach which makes these tasks possible ewsamable amount of time for
most of the functions that we studied.

4.1 Exploiting Redundancy in the Phase Order Space

In order to achieve high performance current compilersagity employ several different
optimization phases, with few restrictions on the order pplging these phases. Fur-
thermore, interactions between optimization phases caos® phases to be successful
multiple times in the same optimization sequence. The attimeal approach for exhaus-
tive phase order enumeration attempts to fix the optiminasiequence length, and then
compile the program with all possible combinations of ofimtion phases of the selected
length. The complexity of this approach is exponential dedrty intractable for any rea-
sonable sequence length. Itis also important to note thesach attempt to enumerate all
combinations of optimizations is, in principle, limited byr lack of a priori knowledge of
the best sequence length for each function.

Interestingly, another method of viewing the phase ordeproblem is to enumerate
all possiblefunction instanceshat can be produced by any combination of optimization
phases for any possible sequence length. This approach sathe problem clearly makes
the solution much more practical because there are far feigéinct function instances
than there are optimization phase orderings, since diffemalerings can generate the same
code. Thus, the challenge now is to find accurate and effioietihods to detect identical
function instances produced by distinct phase orderings.

Figure 1 illustrates the phase order space for four distiptimization phases. At the
root (level 0) we start with the unoptimized function instan For level 1, we generate
the function instances produced by an optimization sequimgth of 1, by applying each
optimization phase individually to the base unoptimizedction instance. For all other
higher levels, optimization phase sequences are gendrat@opending each optimization
phase to all the sequences at the preceding level. Thusadbrleveln, we in effect gener-
ate all combinations of optimizations of lengthAs can be seen from Figure 1, this space
grows exponentially and would very quickly become infekestb traverse. This exponen-
tially growing search space can often be made tractableowittosing any information by
using three pruning techniques which we describe in the thege sections.

4.1.1 Detecting Dormant Phased he first pruning technique exploits the property
that not all optimization phases are successful at all $eamd in all positions. We call ap-
plied phaseactivewhen they produce changes to the program representatiohageps
said to bedormantif it could not find any opportunities to be successful whepliga. De-
tecting dormant phases eliminates entire branches ofékdnrFigure 1. The search space
taking this factor into account can be envisioned as showkigare 2. The optimization
phases found to be inactive are shown by dotted lines.

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSKptember 2008.

10 . Prasad Kulkarni et al.

Level C

S e e

Fig. 1. Naive Optimization Phase Order Space for Four Dist®ptimizations
c -

Level 1
a
Sy e y oo
Level 2

Fig. 2. Effect of Detecting Dormant Phases on the Search Spdggure 1

Level O
d
d

original code segment original code segment
r{2] =1 r[2]=1;
r[3]=r[4]+r[2]; r[3]=r[4]+r[2];
after instruction selection after constant propagation
r{3]=r[4] +1; r[2]=1;
r[3]=r[4]+1;

after dead assignment elimination
r{3]=r[4] +1;

Fig. 3. Diff. Opts. Having the Same Effect

4.1.2 Detecting Identical Function Instance3he second pruning technique relies on
the assertion that many different optimizations at varieusls produce function instances
that are identical to those already encountered at prevéwess or those generated by pre-
vious sequences at the same level. There are a couple ohsaaky different optimization
sequences would produce the same code. The first reasoh $®tha optimization phases
are inherently independent. For example, the order in whielmch chainingandregis-
ter allocationare performed does not typically affect the final code. Thagsénizations
do not share resources, are mutually complementary, ankl eodifferent aspects of the
code. Secondly, different optimization phases may protluesame code. One example is
illustrated in Figure 3Instruction selectioimerges the effects of instructions and checks
to see if the resulting instruction is valid. In this casee #ame effect can be produced
by constant propagatiofpart of common subexpression eliminationvPO) followed by
dead assignment eliminatioihus, if the current function instance is detected to be-ide
tical to some earlier function instance, then it can be gadéminated from the space of
distinct function instances.

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

Exhaustive Phase Ordering : 11

4.1.3 Detecting Equivalent Function Instancelstom previous studies we have real-
ized that it is possible for different function instancesbi identical except for register
numbers used in the instructions [Kulkarni et al. 2004; kaufk et al. 2005]. This situation
can occur since different optimization phases competedgisters. It is also possible that
a difference in the order of optimizations may create andébete basic blocks in different
orders causing them to have different labels. For examplesider the source code in Fig-
ure 4(a). Figures 4(b) and 4(c) show two possible transiatgiven two different orderings
of optimization phases that consume registers and modéctmtrol flow. To detect this
situation we perform a remapping of hardware registers &mhefunction instance, and
again compare the current instance with all previous ircgarfor a match. Thus, after
remapping, code in Figures 4(b) and 4(c) are both transfdrim¢he code in Figure 4(d).
On most machines, which have identical access time for gitters, these two code se-
guences would have identical performance, and hence tlaidaninstances are termed
equivalent We only need to maintain one instance from each group ofvatgrit function
instances, and the rest can be eliminated from the searck.spa

The effect of different optimization sequences producishgntical or equivalent code
is to transform the tree structure of the search space, asineleigures 1 and 2, to a
directed acyclic graph (DAG) structure, as shown in FigureBy comparing Figures 1,
2 and 5, it is apparent how these three characteristics obpienization search space
help to make exhaustive search feasible. Note that the tgatiion phase order space for
functions processed by our compiler is acyclic since no plia¥PO undoes the effect of
another. However, a cyclic phase order space could alsotmusiively enumerated using
our approach since identical function instances are dsdect

sum = 0;
for (i =0; i < 1000; i++)
sum += a[i];
(a) Source Code
r[10] =0; r[11] =0; r[1] =0;
r[12]=Hi[a]; r[10]=HI[a]; r[2]=H[a];
r[12]=r[12] +L]q a] ; r[10] =r[10] +L(a] ; r[2]=r[2]+L] a];
r{1]=r[12]; r[1]=r[10]; r(3]=r(2];
r[9] =4000+r [12]; r[9] =4000+r [10] ; r[4] =4000+r[2];
L3: L5: LO1:
ri8=Mr[1]]; ri8]=Mr[1]]; r[51=Mr[3]];
r[10]=r[10] +r[8]; r[11]=r[11] +r[8]; r[1]=r[1]+r[5];
r[1]=r[1] +4, r[1]=r[1] +4; r[3]=r[3]+4,
1C=r[1]2r[9]; I1Cr[1]2?r[9]; 1C=r[3]2r[4];
PC=1 C<0, L3; PC=1 C<0, L5 PC=I C<0, LO1
(b) Register Allocation (c) Code Motion before (d) After Mapping
before Code Motion Register Allocation Registers

Fig. 4. Different Functions with Equivalent Code

4.2 Performance Estimation of Each Distinct Function Instance

Finding the dynamic performance of a function instance iregiexecution or simulation of
the application. Executing the program typically takessiderably longer than it takes the
compiler to generate each function instance. Moreovenkition can be orders of mag-
nitude more expensive than native execution, and is oftelotiy resort for evaluating the
performance of applications on embedded processors. Trhomst cases, the enumerated
distinct function instances for each function are stillstalntial enough to make executing

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSRptember 2008.

12 . Prasad Kulkarni et al.

Level C

Level 1

Level 2

Fig. 5. Detecting Identical Code Transforms the Tree in Féguito a DAG

the program for each function instance prohibitively exgie®. Thus, in order to find the
optimal function instance it is necessary to reduce the mrrabprogram executions, but
still be able to accurately estimate dynamic performancalidunction instances. In this
section, we describe our approach to obtain accurate pesafoce estimates.

In order to reduce the number of executions we use a techiitatds based on the
premise that two different function instances with ideaticontrol-flow graphs will ex-
ecute the same basic blocks the same number of times. Ourigeehis related to the
method used by Cooper et al. in their ACME system of adaptorapilation [Cooper
et al. 2005]. However, our adaptations have made the mefhguaes to implement and
more accurate for our tasks. During the exhaustive enumesatve observed that for any
function the compiler only generates a very small numberistirect control-flow paths,
i.e., multiple distinct function instances have the samsdblock control-flow structure.
For each such set of function instances having the sameatdiotrv, we execute/simulate
the application only once to determine the basic block etx@cicounts for that control-
flow structure. For each distinct function instance we thalcwdate the number of cycles
required to execute each basic block. The dynamic perfocmaheach function instance
can then be calculated as the sum of the products of basi& bjates times the block
execution frequency over all basic blocks. We call this penfance estimate oultynamic
frequency measureFor the current study, the basic block cycle count is acstadunt
that takes into account stalls due to pipeline data hazardsesource conflicts, but does
not consider order dependent events, such as branch migpradand memory hierar-
chy effects. Additionally, we reset all computation resmg to be idle at the start of the
static cycles calculation for each basic block. Other mateaaced measures of static
performance, using detailed cache and resource modeldecaonsidered at the cost of
increased estimation time. As we will show later in this pape found our simple esti-
mation method to be sufficiently accurate for our needs ornnfeeder ARM processor.

5. IMPLEMENTATION DETAILS

In this section, we describe some of our implementationildetar the techniques de-
scribed in the previous section to find the optimal functinstance by our measure of
dynamic performance, and with respect to the possible phragzings in our compiler.

The phase order space can be generated/traversed in elittezxdih-first or a depth-first
order. Each traversal algorithm has different advantagesdrawbacks for our experi-
ments. In both cases we start with the unoptimized functistaince representing the root
node of the DAG. Using breadth first search, nodes in Figur@&ldvbe generated in the
order shown in Figure 6(a), while depth-first search wouldagate the nodes in the order
shown in Figure 6(b).

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

Exhaustive Phase Ordering : 13

(a) Breadth—first Traversal (b) Depth-first Traversal

Fig. 6. Breadth-First and Depth-First DAG Traversal altforis

During the search process we have to compile the same funettb thousands of dif-
ferent optimization phase sequences. Generating theidmnicistance for every new op-
timization sequence involves discarding the previous dlanptate (which was produced
by the preceding sequence), reading the unoptimized famdtack from disk, and then
applying all the optimizations in the current sequence. Veglena simple enhancement to
keep a copy of the unoptimized function instance in memomntuid disk accesses for all
optimization sequence evaluations, except the first. Agraghhancement we implemented
to make the searches faster uses the observation that nfargli optimization sequences
share common prefixes. Thus, for the evaluation of each Hepeence, instead of rolling
back to the unoptimized function instance every time, wemine the common prefix be-
tween the current sequence and the previous sequence, lgmdlbipack until after the last
phase in the common prefix. This technique saves the timevihat otherwise have been
required to re-perform the analysis and optimizations smc¢bmmon prefix. The number
of intermediate function instances we need to store is dichity the depth of the DAG, so
this technique does not cause any significant space overhgaadctice, but proves to be
very time efficient.

Table 11l shows the successful sequences during the gémeraft the DAG in Figure
5 during both breadth-first and depth-first traversals. &iplcases in the common prefix
do not need to be reapplied, the highlighted phases in Tébéed the only ones which
are actually attempted. Depth-first search keeps a stackewigus phase orderings, and
is typically able to exploit greater redundancy among ssswe optimization sequences
than breadth-first search. Therefore, to reduce the seimnehduring our experiments we
used the depth-first approach to enumerate the optimizptiase order search space.

1. a 1. a

2. b 2. a ¢
3. c 3. a d
4. a c¢ | 4 b

5. a d| 5. b a
6. b a| 6. b ¢
7. b c |7 b d
8. b d| 8. c

9. c aj|o. c a
10. ¢ d|10. ¢ d
Breadth-First| Depth-First

Traversal Traversal
Table 1ll. Applied Phases during Space Traversal

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSKptember 2008.

14 . Prasad Kulkarni et al.

There is, however, a drawback to the depth-first traversptageh. Although a large
majority of the functions that we encountered can be exhalgievaluated in a reasonable
amount of time, there are a few functions, with extremelgdasearch spaces, which are
intractable even after applying all our pruning methodsvdtld be beneficial if we could
identify such cases before starting the search or early ¢hersearch process so that we
do not spend time and resources unnecessarily. This idextiifin is easier to accomplish
during the breadth-first traversal as we can see the growtteisearch space at each level
(refer Figure 5). If the growth in the first few levels is highéxponential, and difficult
to tame, then we can stop the search on that function andradgsighat function as too
large to exhaustively evaluate. In an earlier study, we bseddth-first search and stopped
the search whenever the number of sequences to evaluatg l@vahgrew to more than
a million [Kulkarni et al. 2006a]. It is hard to find such a aff-point during a depth-
first traversal. For this study, we stop the exhaustive $earcany function if the time
required exceeded an approximate limit of 2 weeks. Please that exhaustive phase
order evaluation for most of the functions requires a fewutes or a few hours, with only
the largest enumerated functions requiring a few days.

Figure 7 illustrates the steps followed during the exh&egphase order evaluation for
each function. We will now briefly describe the implemerdatdetails for each step.

last phase | Y identical | N equivalent |
oo function function
active * instance? instance?
generate
next N Y Y
optimization
sequence
using
depth—first
approach
;:alculate simulate seelnﬂ
unction licati control flow
performance application structure?

Fig. 7. Steps followed during an exhaustive evaluation efthase order space for each function

5.1 Detecting Dormant Phases

There is no phase in our compiler that can be successfulljeabmore than once consec-
utively. Therefore, an active phase at one level is not ettemgpted at the next level. For
all other attempted phases, we get feedback from the comperting if the phase was
active or dormant. Since dormant phases keep the functiohanged, we do not need to
further generate that branch of the search space.

5.2 Detecting Identical Function Instances

A naive comparison of each newly generated function ingamith all previous func-

tion instances will be slow and require prohibitive memapace. Therefore, to make the
comparisons efficient, we calculate multiple hash valuesérh function instance and
compare the hash values for a match. For each function icstar store three numbers:
a count of the number of instructions, byte-sum of all instians, and the CRC (cyclic-
redundancy code) checksum on the bytes of the RTLs in thatitm This approach was

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

Exhaustive Phase Ordering : 15

also used in our previous studies to detect redundant segsi@hen applying a genetic al-
gorithm to search for effective phase sequences [Kulkamdi 2004; Kulkarni et al. 2005].
CRCs are commonly used to check the validity of data traethdver a network and have
an advantage over conventional checksums in that the ofdtlee bytes of data does affect
the result [Peterson and Brown 1961]. CRCs are useful in@asg since function instances
that are identical except for different order of instruasowill be detected to be distinct.
We have verified that when using all the three checks in coatigin it is extremely rare
(we have never encountered an instance) that distinctibmictstances would be detected
as identical.

5.3 Detecting Equivalent Function Instances

To detect equivalent function instances we map each registkblock label-number to a
different number depending on when it is encountered in trerol flow. Note that this
mapping is only performed for the checksum calculation anaoit used when additional
phases are applied. We start scanning the function fromofnéasic block. Each time a
register is first encountered we map it to a distinct numbentisg from 1. This register
would keep the same mapping throughout the function. Faamm®, if registetr [10] is
mapped tar [1], then each time [10] is encountered it would be changed#f1]. If
r[1] is later found in some RTL, then it would be mapped to the remapber exist-
ing at that position during the scan. Note that this is difeérfrom register remapping of
live ranges [Kulkarni et al. 2004; Kulkarni et al. 2005], aisdn fact much more naive.
Although a complete live range register remapping mighédetore instances as being
equivalent, we recognize that a live range remapping atrireédiate points in an optimiza-
tion phase sequence would be unsafe as it changes the regestsure which might affect
other optimizations applied later. During this functioaversal we simultaneously remap
block labels as well, which also involves mapping the lalisksd in the actual RTLs. The
algorithm for detecting equivalent function instancesitpeoceeds similarly to the earlier
approach of detecting identical function instances.

5.4 Obtaining Dynamic Performance Measures

As explained in Section 4.2, to determine dynamic perforreame only need to simulate
the application for new control flows. Thus, after genegach new function instance
we compare its control-flow structure with all previouslycenntered control flows. This
check compares the number of basic blocks, the positionedbliicks in the control-flow
graph, the positions of the predecessors and successoasloibéock, and the relational
operator and arguments of each conditional branch insbructoop unrollingpresents a
complication when dealing with loops of single basic blocksis possible for loop un-
rolling to unroll such a loop and change the loop exit conditiLater if some optimization
coalesces the unrolled blocks, then the control flow lookstidal to that before unrolling,
but due to different loop exit conditions, the block frequieis are actually different. We
handle such cases by verifying the loop exit conditions aatking unrolled blocks differ-
ently from non-unrolled code. We are unaware of any othetrobflow changes caused
by our set of optimization phases that would be incorrectifedted by our algorithm.

If the check reveals that the control flow of the new functiesténce has not as yet been
encountered, then before producing assembly code, theirimstruments the function
with additional instructions using EASE [Davidson and Wegl1991]. Upon simulation,
these added instructions count the number of times eaclk bésik is executed. The

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSRptember 2008.

16 . Prasad Kulkarni et al.

functional simulatorsim-uop present in the SimpleScalar simulator toolset [Burger and
Austin 1997] is used for the simulations. The dynamic perfance for each function
instance is estimated by multiplying the number of statidey calculated for each block
with the corresponding block execution counts.

6. EXPERIMENTAL RESULTS

In this study we have been able to exhaustively evaluate hlasgporder space for 234
out of a total of 244 functions over 12 applications seledteth the MiBench benchmark
suite [Guthaus et al. 2001]. Only 88 out of the 244 total fiord were executed when
using the input data sets provided with the MiBench benchmabut of the 88 executed
functions, we were able to evaluate 79 functions exhaugtit#@r space reasons, we only
present the results for the executed functions in this segiom version of the paper. Ta-
ble IV presents the results for the executed enumeratedifunsc The functions in the table
are sorted in descending order by the number of instruciiitise un-optimized function
instance. The table presents the results only for the topa€tibns in each category, along
with the average numbers for the remaining functions.

The first three columns in Table IV, namely the number of ingions (nst), branches
(Br), and loops(p) in the unoptimized function instance, present some of thiécschar-
acteristics for each function. These humbers provide a mmeasd the complexity of each
function. As expected, more complex functions tend to haveer search spaces. The
next two columns, number of distinct function instances_{nst) and the maximum ac-
tive sequence lengtt.én), reveal the sizes of thectualandattemptedohase order spaces
for each function. A maximum optimization sequence lendth gives us an attempted
search space of 15where 15 is the number of optimizations present in VPO. Timan
bers indicate that the median function has an optimizatioasp order search space of
1516, Moreover, the search space can grow t6*1(or the functionpfx list_chkin ispell)
in the worst case for the compiler and benchmarks used irstbidy. Thus, we can see
that although the attempted search space is extremely, ldmgenumber of distinct func-
tion instances is only a tiny fraction of this number. A mamgpbrtant observation is that
unlike the attempted space, the number of distinct fundiistances does not typically
increase exponentially as the sequence length increabésisTprecisely the redundancy
that we are able to exploit in order to make our approach ofestive phase order space
enumeration feasible.

The number of distinct control flows, presented in the coldabeledCF, is more sig-
nificant for the performance evaluation of the executed tions in our benchmarks. We
only need to simulate the application once for each disthocitrol flow. The relatively
small number of distinct control flows as compared to thel tmtianber of unique function
instances makes it possible to obtain the dynamic perfocafthe entire search space
with only a relatively insignificant compile time overheathe column labele€T in Ta-
ble IV gives an estimate of the compile time required for thleagistive evaluation of each
function on a 64-bit Intel Pentium-D 3.0Ghz processor. Odragistive experiments were
conducted on five different machines of varying strengths, o we only provide an es-
timate of the compile time on the granularity of several nésuM), hours (H), days (D),
or weeks (W). As expected, the compile time is directly prédpoal to the number of in-
structions, complexity of the control-flow, and the phas#geoispace size of each function.
Additionally, for the executed functions, the compile tim@lso dependent on the number

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

Exhaustive Phase Ordering : 17

Function Inst Br [Lp Frinst [Len CF [CT Leaf [within? % ofopt. [% perfdif.
opt | 2% | 5% [Batch [Worst |

main(t) 1275 110 6 2882021 29 389 W 15164 1.1 26.3 41.1 0.0 84.3
parsesw...(j) 1228 | 144 1 180762 20 53 D 2057 0.4 19 41 6.7 64.8
askmode(i) 942 84 3 232453 24 | 108 D 475 1.7 2.9 4.6 8.4 56.2
skiptoword(i) 901 144 3 439994 22 103 D 2834 0.5 5.6 29.6 6.1 49.6
startin...(j) 795 50 1 8521 16 45 H 80 20.0 60.0 60.0 1.7 28.4
treeinit(i) 666 59 0 8940 15 22 H 240 3.3 40.0 | 100.0 0.0 3.4
pfxlist... (i) 640 59 2 1269638 44 | 136 D 4660 0.3 0.3 2.1 4.3 78.6
main(f) 624 35 5 2789903 33| 122 | w 4214 0.0 0.0 0.0 75 46.1
shatran...(h) 541 25 6 548812 32 98 H 5262 0.0 9.4 30.2 9.6 133.4
initckch(i) 536 48 2 1075278 32 32 D 4988 | 24.1 91.1 91.1 0.0 108.4
main(p) 483 26 1 14510 15 10 H 178 1.7 21.9 32.0 7.7 13.1
patinsert(p) 469 41 4 1088108 25 71 D 3021 1.4 46.6 47.3 0.0 | 126.4
main(j) 465 28 1 25495 21 12 H 134 0.0 0.0 0.0 5.6 6.0
main(l) 464 51 4 1896446 25 920 W 5364 0.0 25.0 25.0 0.9 89.3
adpcmco...(a) 385 35 1 28013 23 24 H 230 1.3 2.6 12.6 1.8 48.9
dijkstra(d) 354 22 3 92973 22 18 H 1356 0.3 22.1 26.8 0.0 51.1
good(i) 313 29 1 87206 22 32 H 370 4.3 17.3 48.9 0.0 14.6
chk aff(i) 304 30 1 179431 21 160 H 2434 1.6 10.8 39.8 0.1 58.7
cpTag(t) 303 40 0 522 11 9 M 16 0.0 | 100.0 | 100.0 1.6 1.6
makeposs...(i) 280 33 1 70368 24 119 H 498 2.4 30.5 33.7 0.0 | 130.1
xgets(i) 273 37 1 37960 19 | 103 H 284 4.2 324 324 0.0 | 129.7
missings...(i) 262 28 2 23477 26 30 H 513 8.2 8.2 14.4 4.0 86.8
missingl...(i) 252 31 3 11524 16 40 H 180 0.6 0.6 3.3 129 79.2
chk_suf(i) 243 21 1 75628 21 29 H 2835 0.8 4.4 11.7 0.8 62.4
compound...(i) 222 30 1 78429 20 49 H 448 3.6 3.6 3.6 11.1 100.0
main(b) 220 15 2 182246 23 84 H 508 0.8 16.9 16.9 8.3 | 250.0
skipover...(i) 212 30 1 105353 29 | 110 H 413 0.5 7.3 47.0 7.7 75.4
lookup(i) 195 22 2 37396 20 38 H 114 0.0 0.0 0.0 7.7 75.9
wronglet...(i) 194 25 2 22065 17 25 H 430 0.5 0.5 4.2 15.0 89.8
ichartostr(i) 186 26 3 40524 21 40 H 304 1.6 27.3 52.6 0.0 236.0
main(s) 175 12 3 30980 23 10 M 163 4.9 7.4 8.6 0.0 67.4
main(d) 175 15 3 9206 20 22 M 85 2.4 35 49.4 4.3 75.3
main(q) 174 14 2 38759 23 121 H 160 2.5 25.0 25.0 0.0 214.3
treelookup(i) 167 23 2 67507 17 65 H 1992 | 15.3 15.3 15.3 0.0 66.7
insertR(p) 161 15 0 2462 14 6 M 22 18.2 36.4 72.7 0.5 97.9
shafinal(h) 155 4 0 2472 13 3 M 68 | 20.6 20.6 41.2 0.0 21.7
selectf...(j) 149 21 0 510 10 10 M 16 25.0 25.0 75.0 0.0 7.1
byterev...(h) 146 5 1 2715 19 13 M 54 7.4 61.1 74.1 0.4 42.4
main(a) 140 10 1 1676 16 8 M 12 0.0 66.7 66.7 0.0 16.9
strtoichar(i) 140 18 1 10721 19 17 H 109 7.3 11.0 26.6 0.0 | 100.5
ntbl_bit...(b) 138 1 0 48 7 1 M 8 | 25.0 25.0 75.0 0.0 10.7
readpbm...(j) 134 21 2 4182 15 18 H 60 6.7 16.7 20.0 6.7 69.3
bitcount(b) 133 1 0 44 8 1 M 7 14.3 14.3 28.6 0.0 64.3
strsearch(s) 128 17 2 32550 17 48 H 972 0.3 0.9 5.2 15 | 1352
enqueue(d) 124 10 1 488 13 4 M 12 | 16.7 75.0 | 100.0 0.2 4.5
shaupdate(h) 118 7 1 5990 18 50 H 49 0.0 81.6 81.6 0.1 82.0
transpos...(i) 117 10 1 5310 16 19 H 44 4.5 13.6 25.0 4.5 98.7
patsearch(p) 110 14 1 5052 15 33 H 98 4.1 16.3 16.3 0.6 66.8
init_sea...(s) 103 9 2 1430 15 11 M 30 3.3 53.3 53.3 0.4 | 459.3
main(h) 101 11 1 22476 20 | 129 H 320 0.0 0.0 0.0 7.1 | 100.0
remaining(29) 51.5 4.1 | 0.3 442.6 9.1 4.4 - 13.0 | 418 47.8 52.8 7.8 34.0
average(79) 2343 | 21.7 | 1.2 1745748 | 16.1 | 47.4 - 813.4 | 18.7 32.6 41.8 4.8 65.4

(Function- function name followed by benchmark indicator [(a)-adpcm, (b)ehitd, (d)-dijkstra,
(N-fft, (h)-sha, (i)-ispell, (j)-jpeg, (I)-blowfish, (q)-gsort, (fPatricia, (t)-tiff, (s)-stringsearch]), (Inst
- number of instructions in unoptimized function), (Br - number of condiioand unconditional
transfers of control), (Lp - number of loops), (kmst - number of distinct control-flow instances),
(Len - largest active optimization phase sequence length), (CF - nuphldéstinct control flows),
(CT - compile time [M-minutes, H-hours, D-days, W-weeks]), (Leaflumber of leaf function
instances), (within ? % of optimal - what percentage of leaf function ies®are within "?"% from
optimal), (% perf dif. - % performance difference betwdatchandWorstleaf from Optimal).

Table IV. Optimization Phase Order Evaluation Results ferExecuted Functions in the MiBench Benchmarks

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSKptember 2008.

18 . Prasad Kulkarni et al.

of distinct control-flow paths of the function, since thestéeimine the number of applica-
tion simulations required to evaluate the performanceldfiattion instances. Please note
that the compile time for the undisplayed functions varieshf several seconds in most
cases to a few minutes.

The next column, labeledeaf gives a count of théeaf function instances. These are
function instances for which no additional phase is able &kenany further changes to
the program representation. The small number of leaf fondtstances imply that even
though the enumeration DAG may grow out to be very wide, itagalty starts converging
towards the end. Leaf instances are an interesting and targosub-class of possible
function instances. They are the only instances that canchergted by an aggressive
compiler like VPO that repetitively apply optimizationstilthere are no more that can be
applied. At the same time, leaf instances generally prodocel performance. Itis easy to
imagine why this is the case, since all optimizations arégthes! to improve performance,
and leaf instances apply all that are possible in some péatiordering. For most of our
benchmark functions, at least one leaf function instanable to reach optimal. Note
again that we are defining optimal in this context to be thefion instance that results
in the best dynamic frequency measures. The set of the ned ttolumns in Table IV,
labeledwithin ?% of opt, reveal that over 18% of all leaf instances, on average heshc
optimal, with over 40% of them within 5% of optimal. Additialty, we calculated that for
86% of the functions in our test suite at least one leaf fumcinstance reached optimal.

We analyzed the few cases for which none of the leaf functistances achieved op-
timal performance. The most frequent reason we observaccthesed such behavior is
illustrated in Figure 8. Figure 8(a) shows a code snippettviields the best performance
and 8(b) shows the same part of the code after applgiag-invariant code motionr 0]
andr[1] are passed as arguments to both of the called functions,, Tloas be seen from
Figure 8(b) thatoop-invariant code motiomoves the invariant calculatiorf4]+28 , out
of the loop, replacing it with a register to register moveijtas designed to do. But later,
the compiler is not able to collapse the referencedbyy propagatiorbecause it is passed
as an argument to a function. The implementatiofoop-invariant code motiom VPO
is not robust enough to detect that the code will not be furitim@roved. In most cases,
this situation will not have a big impact, unless this loogslmot typically execute many
iterations. Itis also possible thitop-invariant code motiomay move an invariant calcu-
lation out of a loop that is never entered during executionsuch cases, no leaf function
instance is able to achieve the best dynamic performanoéses

The last two columns in Table IV compare the performance efciinventional (batch)
compiler and the worst performing leaf function instancthwiie function instance(s) hav-
ing the optimal ordering. The conventional VPO compileratevely applies optimization
phases until there are no additional changes made to thegonday any phase. As a result,
the fixed (batch) sequence in VPO always results in a leaftisminstance. In contrast,
many other compilers (including GCC) cannot do this effedti since it is difficult to
re-order optimization phases in these compilers. The fixadtboptimization sequence
in VPO has been tuned over several years. The maturity of \&@sponsible for the
batch sequence finding the optimal function instance forf3Be 79 executed functions.
However, in spite of this aggressive baseline, the batchpdemproduces code that is
4.8% worse than optimal, on average. The worst performiaf fienction instance can
potentially be over 65% worse than optimal on average.

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

Exhaustive Phase Ordering : 19

r[7] =r[4] +28;
PC = L1;

L2:

r[0] =r[4] +28; r[o]=r[7];

r[1] =64; r[1] =64;

call reverse; call reverse;
r[0]=r[4] +28; r[o]=r[7];
r{1]=r[s]; r{1]=r[5];

call nmencpy; cal | nmencpy;

Y \

L1: L1:
c[0] =r[6] 2191; c[0] =r[6] ?191;
PC=c[0] <0, L2; PC=c[0] <0, L2;

(a) Before Code Motion (b) After Code Motion

Fig. 8. Case When No Leaf Function Instance Yields OptimaldPerénce

Function Insts | Blk Trans. of Cntr. Loops

Cond. | Uncond. | Depthl | Depth2 | Depth3
main(i) 3335 | 369 93 142 3 1 0
linit(i) 1842 | 180 51 98 5 3 0
checkline(i) | 1387 | 203 69 96 5 2 0
saveroot..(i) | 1140 | 133 38 73 4 4 0
sufllist..(i) 823 | 102 33 48 1 1 0
fft_float(d) 680 | 45 11 21 3 1 1
treeoutput(i) | 767 | 114 29 60 7 3 3
flagpr(i) 581 | 86 21 46 8 0 0
cap.ok(i) 521 | 95 24 54 1 5 0
prr_pre..(i) 470 | 65 17 33 3 0 0

(Function - function name followed by benchmark indicator [(d)-dijkstijaispell]), (Inst - number
of instructions in unoptimized function), (BIk - number of basic blocks imptimized function),
(Trans. of Cntr. - number of conditional and unconditional transééiontrol), (Loops - number of
loops at nesting depths 1, 2, and 3),

Table V. Static Features of Functions which We Could Not Estizely Evaluate

Table V displays the static features of the functions thatweee unable to exhaustively
enumerate according to our stopping criteria. As explaieadier, we terminate the ex-
haustive evaluation for any function when the time requfdhe algorithm exceeds two
weeks. Out of the 244 possible functions, we were unablehiagstively evaluate only 10
of those functions. It is difficult to identify one propertf@ach function that leads to such
uncontrollable growth in the phase order space. Insteadhalveve that some combination
of the high number of loops, greater loop nesting depthsidivas, number of instructions,
as well as the instruction mix are responsible for the grgatase order space size.

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

20 . Prasad Kulkarni et al.

7. CORRELATION BETWEEN DYNAMIC FREQUENCY MEASURES AND PRO-
CESSOR CYCLES

Even after pruning the optimization phase order searchespa@luating the performance
of all distinct function instances usirggmulationis prohibitively expensive. Therefore, we
used a measure of estimated performance based partly anfatattion properties. Our
performance estimate accounts for stalls resulting frgmelpie data hazards, but does not
consider other penalties encountered during executiah as branch misprediction and
cache miss penalties. In spite of the potential loss in @aogiwve expect our measure of
performance to be sufficient for achieving our goal of findthg optimal phase ordering
with only a handful of program simulations. Our expectai®especially true for embed-
ded applications. Unlike general-purpose processorg\bles obtained from a simulator
can often be very close to executed cycles on an embeddedssarcsince these proces-
sors may have simpler hardware and no operating system.ifdarsreasons, dynamic
frequency measures on embedded processors will also hawela ctoser correlation to
simulated cycles, than for general-purpose processateelt in the next section, we per-
form some studies to show that there is a strong correlatxvwéden dynamic frequencies
and simulator cycles. Even though our measure of dynamguéecies do not exactly
match the simulator cycles we believe that this issue isdegsisal. An exact match is
less important since we are mainly interested in sortingftinetion instances according
to their performance, and in particular in determining tlestfunction instance. A strong
correlation between dynamic frequencies and simulatolesyallows us to achieve that
objective.

7.1 Complete Function Correlation

The SimpleScalar simulator toolset [Burger and Austin 1%®3udes many different sim-
ulators intended for different tasks. For these experisarg used SimpleScalar’s cycle-
accurate simulatosim-outorder modified to measure cycles only for the function of in-
terest. This enhancement makes the simulations fastege smost of the application is
simulated using the fastéunctionalsimulation mode. We have verified that our modifica-
tion did not cause any noticeable performance deviationkgmi et al. 2006b].

Clearly, simulating the application for all function inates in every function is very
time-consuming as compared to simulating the program amgrountering new control-
flows. Therefore, we have simulated all instances of onlynglsifunction completely to
provide an illustration of the close correlation betweemgassor cycles and our estimate of
dynamic frequency counts. Figure 9 shows this correlatiormll the function instances for
theinit_searchfunction in the benchmarktringsearch This function was chosen mainly
because it is relatively small, but still has a sufficient tuemof distinct function instances
to provide a good example.

All the performance numbers in Figure 9 are sorted on theshafsilynamic frequency
counts. Thus, we can see that our estimate of dynamic fregussunts closely follows
the processor cycles most of the time. It is also seen thatdhrelation gets better as the
function is better optimized. We believe that this improegrin correlation may be due
to the reduction in memory accesses after optimizationk asregister allocationin turn
reducing the number of cache misses, the penalty for whicllidbenot consider during
our performance estimates. The improved correlation fdimgped function instances
is important since the best function instance will gengradiside in this portion of the

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

Exhaustive Phase Ordering : 21

20

simulator cycles
186 — frequency counts

12

Dynamic Counts {in millions
<]
L

1 178 355 532 709 886 1063 1240 1417

Function Instances

Fig. 9. Correlation between Processor Cycles and Frequénants forinit_search

phase ordering space. The excellent correlation betweaardic frequency estimates
and simulator cycles for the optimized function instand&ses us to predict the function
instances with good/optimal cycle counts with a high leedanfidence.

7.2 Correlation for Leaf Function Instances

Figure 10 shows the distribution of the dynamic frequenaynts as compared to the op-
timal counts for all distinct function instances, averageer all 79 executed functions.
From this figure we can see that the performance of the leatifuminstances is typically

very close to the optimal performance, and that leaf ingamomprise a significant por-
tion of optimal function instances as determined by the dyindrequency counts. From

the discussion in Section 6 we know that for more than 86%fuhctions in our bench-

mark suite there was at least one leaf function instanceatttaeved the optimal dynamic
frequency counts.

Since the leaf function instances achieve good performacoaess all our functions,
it is worthwhile to concentrate our correlation study onflaanction instances. These
experiments require hundreds of program simulations, hie very time consuming.
So, we have restricted this study to only one applicatiomfemach of the six categories of
MiBench benchmarks. For all the executed function from tkesslected benchmarks we
get simulator cycle counts for only the leaf function inst@mand compare these values to
our dynamic frequency counts. In this section we show theetation between dynamic
frequency counts and simulator cycle counts for only thé feaction instances for all
executed functions over six different applications in oenthmark suite.

The correlation between dynamic frequency counts and pemecycles can be illus-
trated by various techniques. A common method of showing¢hetionships between
variables (data sets) is by calculating Pearson’s coroglatoefficient for the two vari-
ables [Weisstein 2006]. The Pearson’s correlation coefficcan be calculated by using
the formula:

Sxy— 2

2 2
\/(ZXz_ (202, (s y2— (57)
In Equation 1x andy correspond to the two variables, which in our case are thamyn

Pcorr =

(1)

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSKptember 2008.

22 . Prasad Kulkarni et al.

90

854
80 I (eaf instance
10 = [non-leaf instance

% function instances
(-]

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09>=1.1
perf.Joptimal perf.

Fig. 10. Average Distribution of Dynamic Frequency Counts

frequency counts and simulator cycles, respectively. $eaes coefficient measures the
strength and direction of a linear relationship between wanables. Positive values of
Pcorr in Equation 1 indicate a relationship betweeandy such that as values forin-
crease, values of also increase. The closer the valueRaorr is to 1, the stronger is the
linear correlation between the two variables.

It is also worthwhile to study how close the processor cydent for the function in-
stance that achieves the best dynamic measure is to the\watl @ycle count over all
the leaf function instances. To calculate this measure, geffnd the best performing
function instance(s) for dynamic frequency counts andiolitee corresponding simulator
cycle count for that instance. In cases where multiple fiondnstances provide the same
best dynamic frequency count, we obtain the cycle countgedoh of these function in-
stances and only keep the best cycle count amongst them. aifeotitain the simulator
cycle counts for all leaf function instances and find the bgske count in this set. We then
calculate the following ratio for each function:

best overall cycle count
cycle count for best dynamic freq count

Lcorr = (2)
The closer the value of Equation 2 comes to 1, the closer iestimate of optimal by
dynamic frequency counts to the optimal by simulator cycles

Table VI lists our correlation results for the leaf functimstances over all studied func-
tions in our benchmarks. The column, labeRdorr provides the Pearson’s correlation
coefficient according to Equation 1. An average correlatioafficient value of 0.96 im-
plies that there is excellent correspondence between dgrfeequency counts and cycles.
The next column shows the value loforr calculated by Equation 2. The following col-
umn gives the number of distinct leaf function instancesciviiave the same best dynamic
frequency counts. These two numbers in combination inditzt an average simulator
cycle performance dfcorr can be reached by simulating omlif number of the best leaf
function instances as determined by our estimate of dyn&mériency measure. Thus,
it can be seen that an average performance within 2% of thmapsimulator cycle per-
formance can be reached by simulating, on average, lessbtigaind function instances
having the best dynamic frequency measure. The next tworocwshow the same mea-
sure ofLcorr by Equation 2, but instead of considering only the best Iasfainces for
dynamic frequency counts, they consider all leaf instandg@sh come within 1% of the

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

Exhaustive Phase Ordering 23
Function Pcorr Lcorr 0% Lcorr 1% Function Pcorr Lcorr 0% Lcorr 1%
Diff | nLf Diff | nLf Diff | nLf [Diff [nLf
AR_btblb... 1.00 | 1.00 1 1.00 1 || BW.Lbbtblb... | 1.00 | 1.00 2| 1.00 2
bit_count 1.00 | 1.00 2 1.00 2 || bitshifter 1.00 | 1.00 2 | 1.00 2
bitcount 0.89 | 0.92 1 0.92 1 || main 1.00 | 1.00 6 | 1.00 | 23
ntbl_bitc... 0.99 | 0.95 2 0.95 2 || ntbl_bitcnt 1.00 | 1.00 2 | 1.00 2
dequeue 0.99 | 1.00 6 1.00 6 || dijkstra 1.00 | 0.97 4 | 1.00 | 269
enqueue 1.00 | 1.00 2 1.00 4 || main 0.98 | 1.00 4 | 1.00 4
print_path 1.00 | 1.00 2 1.00 2 || gcount 1.00 | 1.00 1| 1.00 1
CheckPoin... 0.95 | 1.00 2 1.00 5 || IsPowerOf...| 0.93 | 0.98 31100 | 24
NumberOfB...| 0.84 | 1.00 1 1.00 | 20 || ReverseBits | 1.00 | 1.00 2| 1.00 2
bytereve... 0.89 | 1.00 1 1.00 3 || main 0.71| 1.00 | 25| 1.00 74
shafinal 0.72 | 0.82 26 1.00 | 50 || shainit 0.98 | 1.00 4 | 1.00 9
shaprint 0.95 | 0.88 1 1.00 6 || shastream 1.00 | 1.00 1| 1.00 8
shatrans... 0.97 | 1.00 2 1.00 | 35 || shaupdate 098 | 1.00| 14 | 1.00| 32
finishiin... 1.00 | 1.00 1 1.00 1 || getraw.row 1.00 | 1.00 7 | 1.00 7
jinit_rea... 1.00 | 1.00 2 1.00 2 || main 1.00 | 0.99 2 | 1.00 | 153
parseswi... 0.95 | 1.00 8 1.00 | 16 || pbmgetc 0.99 | 1.00 2 | 1.00 2
readpbm.... 0.73 | 0.98 2 0.98 2 || selectfi... 0.97 | 0.90 3]11.00| 12
startinp... 0.95 | 0.99 12 0.99 | 15 || write_std... 1.00 | 1.00 1| 1.00 1
init_search 1.00 | 1.00 1 1.00 | 14 || main 1.00 | 1.00 8 | 1.00| 12
strsearch 1.00 | 1.00 3 1.00 3
[average [096[098]438]0.99] 21]]

Pcorr - Pearson'’s correlation coefficient, Lcorr - ratio g€les for dynamic frequency to best overall cycles (0%

- optimal, 1% - within 1 percent of optimal frequency countsjff Bratio for Lcorr, nLf - number of leaves
achieving the specified dynamic performance

Table VI. Correlation Between Dynamic Frequency Counts antufator Cycles for Leaf Function Instances

best dynamic frequency estimate. This allows us to readhimf.4% of the optimal per-
formance, on average, by performing only 21 program siniatper function. In effect,
we can use our dynamic frequency measure to prune most ohgltenices that are very
unlikely to achieve the fewest simulated cycles.
The conclusions of this study are limited since we only coesed leaf function in-
stances. It would not be feasible to get cycle counts forwaikcfion instances over all

functions. In spite of this restriction, the results aresiesting and noteworthy since they

show that a combination of static and dynamic estimates dbpeance can predict pure
dynamic performance with a high degree of accuracy. Thiglredso leads to the ob-
servation that we should typically need to simulate only ey \snall percentage of the
best performing function instances as indicated by dyndireguency counts to obtain the
optimal function instance by simulator cycles. As a finalrppit should be noted that
although our simple estimation technique is seen to workevebur simple ARM proces-

sor, it may not perform as well on more complicated architeeg, and in such cases other
more detailed estimation techniques should be explored.

8. ANALYSIS OF THE PHASE ORDER SPACE

Exhaustive evaluation of the phase order space for a langdauof functions has provided
us with a huge data-set which we have analyzed to determime gteresting properties

of the optimization phase order space. In this section wid&dcribe some of the charac-

teristics of the optimization phase order space.

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSKptember 2008.

24 . Prasad Kulkarni et al.

1.0E+07

1.0E+04 | LWJ[\M”‘“M\NWU“
1.0E+03 . HMMWW“ ! | VUI ‘
1.0E+02 HMWHW]VN UV v
1.0E+01 Aﬁ'M\\N V
I —

1.0E+00

Distinct Function Instances

1 1 1 3 4 10 10 12 14 16 24 31 38 43 56 77 204
Function Complexity Weights

Fig. 11. Function Complexity Distribution

8.1 Statically Predicting Optimization Phase Order Space Size

Out of the 244 functions from the MiBench benchmark suite veeenable to completely
enumerate the phase order space for 234 of these functioltisoufyh we were unable
to exhaustively enumerate the space for the remaining 1€titurs, we still had to spend
considerable time and resources for their partial searaelespvaluation before realizing
that their function complexity was greater that the capighdf our current space pruning
techniques to contain the space growth. For such casesjitwe very helpful if we could
a priori determine the complexity of the function and estierthie size of the search space
statically. This estimation is, however, very hard to aehiel he growth in the phase order
space is dependent on various factors such as the numbenmdifioaal and unconditional
transfers of control, loops, and loop nesting depths, atagathe number of instructions
and instruction mix in the function.

We attempted to quantify the function complexity based aticfunction features such
as branches, loops, and number of instructions. All trassfécontrol are assigned a unit
value. Loops at the outermost level are assigned a weightuoitS. All successive loop
nesting levels are weighted two times the weight of the phiexeloop level. Functions
with the same weight are sorted based on the number of inistingcin the unoptimized
function instance. The 10 unevaluated functions are assumbave 3,000,000 distinct
function instances, which is more than the number of ingtarfier any function in our set
of evaluated functions. Figure 11 shows the distributiothefnumber of distinct function
instances for each function as compared to its assignedlegitypwveight.

Figure 11 shows a marked increase in the number of distimattion instances with
increase in the assigned complexity weights. A significastilation of values in the
graph reconfirms the fact that it is difficult to accuratelggict function phase order space
size based on static function features. It is, howeverrasteng to note that out of the
10 unevaluated functions, five are detected to have the stigimnplexity, with eight of
them within the top 13 complexity values. Thus, a static clexify measure can often aid
the compiler in effectively prioritizing the functions fexhaustively evaluating the phase
order space.

8.2 Redundancy Found by Each Space Pruning Technique

As described in Section 4.1 we employ three techniques ti#xpdundancy in the op-
timization phase order space: detecting dormant phasésgtoy identical function in-

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

Exhaustive Phase Ordering : 25

1000 1E+16
T 2L 0001 @
28 1e0g 8 e
5 e 1E-15 »
E § Ei; § 1E+08
-0 [
$ o 1E33 @
) 2 10000
g § B3 3
L@ 1E45 <
1E-51 e e e e o o s o e B e e e e 8 L e e e s
2 B 10 14 18 22 26 32 44 2 4 8 8 10 12 14 16 18 20 22 24 26 30 32 34 44
Sequence Length Sequence Length
Fig. 12. Ratio of the Active to Attempted Phase Or- Fig. 13. Active Search Space for Different Se-
der Search Space for Different Sequence Lengths quence Lengths

stances, and detecting equivalent function instances.afthmpted search spader any
function in our compiler with 15 optimization phases is"1&heren is the maximum
active sequence length for that function. The length of tiregést active sequence for
various executed functions is listed in Table IV. As expdairearlier, phases that are un-
successful in changing the function when applied are caltechantphases. Eliminating
the dormant phases from the attempted space results acthe search spacerhus, the
active search space only consists of phases thataies i.e., successful in changing the
program representation when attempted. Figure 12 showsatleeof the active search
space to the attempted search space sorted by differergrsegjlengths. The comparison
of the active space to the attempted space, plotted on aitlugér scale in Figure 12,
shows that the ratio is extremely small, particularly fondtions with larger sequence
lengths. Figure 13 shows the average number of functiomafests in the active space
for each maximum active sequence length. These two figuies 8ie drastic reduction
in attempted search space that is typically obtained byctlateand eliminating dormant
phases from the search space.

The remaining pruning techniques find even more redundamityeiactive search space.
These pruning techniques detect identical and equivalgmtion instances, which causes
different branches of the active search space tree to meggétter. Thus, the active search
space tree is converted into a DAG. Figure 14 shows the ageedip of the number of dis-
tinct function instances to the number of nodes in the acdarch space tree. Thus, this
figure illustrates the redundancy eliminated by detectitemtical and equivalent function
instances. The fraction of the tree of function instances ithdistinct and represented as
a DAG decreases as the active sequence length increasegrdperty of exponential in-
crease in the amount of redundancy detected by our prunthgigues as sequence lengths
are increased is critical for exhaustively exploring tharsh spaces for larger functions.

8.3 Performance Comparison with Optimal

Figure 15(a) shows the distribution of the dynamic freqyecount performances of all
function instances as compared to the optimal performarkigure 15(b) illustrates a
similar distribution over only the leaf function instanceBor both of these graphs, the
numbers have been averaged over all the 79 executed fugsdtiaur benchmark suite.
Function instances that are over 100% worse than optimahair@lotted. On average,
22.27% of total function instances, and 4.70% of leaf instarfall in this category.

Figure 15(a) rates the performances of all function instaneven the un-optimized and
partially optimized instances. As a result very few insescompare well with optimal.

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSRptember 2008.

26 . Prasad Kulkarni et al.

1 LN e e e e s L
01 ﬁ}E\w 12 14 16 18 20 22 24 26 30 32 34 44

0.01

0.001

0.0001

0.00001 /\

Actlve DAG Space /
Active Tree Space

0.000001
0.0000001 \\\/ \
0.00000001

Sequence Length

Fig. 14. Ratio of Distinct Function Instances in Active Spac

=]
=1

g 3
g25 I 815
ST g
]

A L P "
T 1 U t J"»\)- E
S 05 M_f‘”lw\vn Ao =5
go szl B LN
= 0 0

0 7 1421283542 4956 6370 77 84 91 98 0 7 14 2128 35 42 49 56 63 70 77 84 91 98

% from optimal % from optimal

(@ (b)

Fig. 15. Distribution of Performance Compared to Optimal

We expect leaf instances to perform better since these #lyedptimized function in-
stances that cannot be improved upon by any additional argtions. Accordingly, over
18% of leaf instances on average yield optimal performardso, a significant number
of leaf function instances are seen to perform very closeptor@l. This is an important
result, which can be used to seed heuristic algorithms, asgenetic algorithms, with leaf
function instances to induce them to find better phase orgeffaster.

8.4 Optimization Phase Repetition

Figure 16 illustrates the maximum number of times each pisasgtive during the exhaus-
tive phase order evaluation over all studied functions. ditder of the boxes in the legend
in Figure 16 corresponds to the order of the phases plott#teigraph, which is also the
order in which the phases are described in Table I. Functigtisthe same maximum

sequence length are grouped together, and the maximum péettion number of the

entire group is plotted. The functions in the figure are sbde the basis of the maximum
sequence length for that function. The optimization phas&sgure 16 are labeled by the
codesassigned to each phase in Table I.

Common subexpression eliminatfopandinstruction selectio(s) are the phases that
are typically active most often in each sequence. Theseephasan up the code after
many other optimizations, and hence are frequently endbjeather phases. For exam-
ple, instruction selectio(s) is required to be performed beforegister allocatiortk) so
that candidate load and store instructions can containddesases of arguments or local
scalars. However, after allocating locals to registezgjster allocatiorfk) creates many
additional opportunities foinstruction selectiofs) to combine instructions. For functions
with loops,loop transformationd) may also be active several times due to freeing up of

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

Exhaustive Phase Ordering : 27

Obranch chaining B commaon subexpr. elimination O remove unreachable code
Hloop unrolling W dead assignment elimination O block reordering
Erinimize loop jurmps H| register allocation loop transformations
Ocode abstraction @ eval. order determination @ strength reduction
B reverse branches Dinstruction selection & remove useless jurmps
G0
B
a0 i
40 4
w
o
n
©
£
& 30
%
s
E
20
10
a

max. sequence length

Fig. 16. Repetition Rate of Active Phases

registers, or suitable changes to the instruction patteynether intertwining optimiza-
tions. Most of the branch optimizations, suchbmanch chainingb), branch reversdt),
block reorderingji), and useless jump removal), are not typically enabled by any other
optimizations, and so are active at most once or twice dwamh optimization sequence.
As mentioned|oop unrollingwas restricted to be active at most once in each sequence.

8.5 Analyzing the Best Optimization Sequences

A big motivation for this research is to analyze the optinimasequences resulting in good
performance to determine recurring patterns of optimiaragpphases in such sequences.
Such analysis can help compiler writers to come up with gdoalsp orderings for con-
ventional compilers. However, any such analysis is madicdif by the sheer number
of good optimization sequences. Figure 17 shows the number ofeaptiase orderings
achieving optimal performance for all #xecutedunctions. Note that thaumber of best
active phase orderings plotted on a logarithmic scale along the Y-axis in Figure The
functions in this figure are sorted from left to right in theder of decreasing number of
instructions in the unoptimized version of the function.

Figure 18 plots the percentage of optimal phase orderingmgst all possible active

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSRptember 2008.

28 . Prasad Kulkarni et al.

1E+12

1.E+10

1.E+08

1.E+06

1.E+04

. LT o

1 4 7 1013 1619 22 26 28 31 34 37 40 43 46 40 52 55 58 61 64 67 70 73 768 79
Functions

Number of Best
Active Phase Sequences

Fig. 17. Number of Optimal Phase Orderings Among All Orderings

100.000000

10.000000

1.000000

0.100000

quences)

0.010000

all_se

0.001000

0.000100

Log of %{best_sequences |

14 7 10131716 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 B4 67 70 73 76 79
Functions

Fig. 18. Ratio of Optimal to All Possible Phase Orderings

phase orderings for the functions shown in Figure 17. Théphralso uses a logarith-
mic scale to plot the percentages along the Y-axis. This digigain reiterates that the
total number of active phase orderings for each functiontEamany orders of magnitude
greater than the number of distinct function instances.s€quently, the number of active
phase orderings resulting in the best performance is esiyelarge as well. An interesting

trend that can be easily noticed is that this ratio tends teeog small for the larger func-

tions, while a significant percentage of active phase andsrior the smaller functions are
in fact optimal.

Figure 19 displays the number attive sequences that generated an optimal function
instance for multiple functions. For each phase orderirag ¢fenerated an optimal func-
tion instance for one function, we applied that ordering bi7& other executed functions
and compared the resulting performance with the best pagnce for the corresponding
function.? Thus, we can see that no single phase ordering produced shedréormance
for more than 33 (out of 79) distinct executed functions. Aentioned earlier, the batch
VPO compiler also reaches optimal performance for 33 famsti However, note that the

2Due to an exceptional number of active phase sequences (3@3)4in the functioninitckchin ispell, we were
unable to complete our analysis of this function for Figure 19

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

Exhaustive Phase Ordering : 29

1.E+19
1.E+HIE
1.EHY
1.E+1&
1.E+05
1.E+14
1.E+13
1.E+02
1.E+01
1.E+10

Number of Sequences

2 65 8 1M 1417 20 23 26 29 32 35 38 41 44 47 50 53 56 59 B2 BS BB A1 74 7Y
Number of Functions

Fig. 19. Number of Active Sequences that Produced an Optimatin Instance for Multiple Functions

sequence applied by the current batch compiler is much nggeeasive. By applying

optimization phases in a loop until there are no more progchanges allows the batch
compiler to generate different phase sequences for diffétanctions depending on cor-
respondingly different active phases. More detailed asislyf the characteristics of good
phase orderings is very interesting future work that we péapursue.

8.6 Effectiveness of Heuristic Approaches to Address Phase Ordering

In some earlier work we performed a study to determine thexéffeness of popular heuris-
tic approaches, in particular genetic algorithms, in filgdiood per-function optimization
sequences efficiently [Kulkarni et al. 2006b]. Since we naww the optimal function
instance for each function, our study was the first to deteenfiow close the solutions
provided by heuristic algorithms come to the performancwvigled by the optimal func-
tion instance in each case. We found that a basic geneticithigois able to quickly
converge to its solution in only a few generations in mosesasAt the same time, the
performance of the delivered function instance is oftery whose to our optimal solution,
with a performance difference of only 0.51% on average. Bvere interesting, we were
able to extract information regarding tle@ablingand disablinginteraction between op-
timization phases from the data provided by our exhausthase order exploration runs.
We used the phase enable/disable interaction informationddify the baseline genetic
algorithm so that it is now able to find the optimal performingction instance in all but
one cases, resulting in a performance difference of onl2%.0n average.

We, along with some other researchers, have also compagepettiormance and ef-
ficiency of several different heuristic approaches to aslreptimization phase order-
ing [Kulkarni et al. 2007; Almagor et al. 2004]. The concluss suggest that most heuristic
approaches yield comparable performance and efficiend, more mature approaches
based on genetic algorithms, simulated annealing, or liililting generally performing
much better than a random sampling of the optimization pluader space. We have
avoided furnishing detailed analysis of such comparatdiss in the current paper, since
the earlier publications provide good references.

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSKptember 2008.

30 . Prasad Kulkarni et al.

9. FUTURE WORK

To our knowledge, this work is the first successful attempkatustive optimization phase
order space evaluation over all the optimization phasesnmatre compiler, and as such
has opened up many interesting avenues for future reseslyehhave planned a variety
of enhancements to this work. First, we would like to examimethods to speed up the
enumeration algorithm. The phase order space can be redycedanging the imple-
mentation of some compiler analysis and optimizationshab false dependences due to
incomplete analysis are no longer present. Phase intenaictformation can be used to
merge phases into mutually independent groups, to redecaumber of effective opti-
mizations during the enumeration process. Remapping é$texgnumbers can also be
employed to detect greater equivalence between functistarices. Second, we plan to
develop additional techniques to further reduce the nurabsimulations required during
exhaustive evaluations. Such reductions can be achievathémbiguous and accurate
prediction of block execution frequencies. We would alsechto develop very different
techniques to estimate performance for architectures evber measure of dynamic fre-
guency counts does not correlate well with processor cyclédrd, we plan to work on
parallelizing our exhaustive enumeration algorithm to m#iks approach more practical.

We have shown that exhaustive information regarding thierapation phase order space
and phase interaction can be used to improve non-exhasgtarehes of the phase order
space. We plan to continue our work in this area to make h@udpproaches to address
optimization phase ordering more widely acceptable. A Bepaim of this work is to gain
additional insight into the phase ordering problem in ottdeimprove conventional com-
pilation in general. We believe that a priori generation adgram specific optimization
phase sequences, achieving optimal or near optimal pesfacey may be possible after
a more thorough knowledge of the phase interactions withémiselves, as well as with
features of the program such as loops and branches.

10. CONCLUSIONS

The compiler phase ordering problem has been a difficuleissisystematically address,
and has found widespread attention by the compiler communier the past several
decades. Until now it was assumed that the optimizationgbeader space is too large
to exhaustively enumerate on acceptable benchmarks, aflinige phases in a mature
compiler. In this paper we have effectively solved the phaskering problem for VPO
on the ARM platform, and for the benchmark and input data tselied in this work. The
problem required solutions to two related sub-problemse flilst sub-problem is enumer-
ating the phase order space for each function. This enuiberatas made possible by
detecting which phases were active and whether or not thergtad code was unique,
making the actual optimization phase order space ordersaghitude smaller than the at-
tempted space. The other sub-problem is to determine thaendigrperformance of all the
enumerated function instances for each function, in orlént the optimal solution. We
have demonstrated how we can use properties of the phagespede to drastically reduce
the number of simulations required to efficiently and actlyaestimate performance for
all distinct function instances. We further showed that estimate of performance bears
excellent correlation with simulator cycles in our expegimal environment. Our results
show that we have been able to completely evaluate the phdsespace for 234 out of
the 244 functions in our benchmark suite. Our correlatiombers further show that we

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

Exhaustive Phase Ordering : 31

can obtain performance very close to optimal by performivgiy small number of sim-
ulations per function. We have also analyzed the phase spare to identify interesting
properties, which may prove helpful for many other relatsiies in compilers.

11. ADDITIONAL INFORMATION

Instructions regarding downloading the proper versiorhef¥PO compiler to reproduce
these results, links to download the MiBench benchmarldptimer relevant information is
provided at the following web-page: http://www.ittc.kdwg~kulkarni/research/taco08/taco08.html

REFERENCES

AGAKov, F., BONILLA, E., CAvAZOS, J., RRANKE, B., FURSIN, G., O’'BoYLE, M. F. P., THOMSON, J.,
TOUSSAINT, M., AND WiLLIAMS, C. K. |. 2006. Using machine learning to focus iterative myation. In
CGO '06: Proceedings of the International Symposium on G@daeration and OptimizatiolEEE Com-
puter Society, Washington, DC, USA, 295-305.

ALMAGOR, L., COOPER K. D., GROSUL, A., HARVEY, T. J., REEVES, S. W., SJBRAMANIAN, D., TORC-
ZON, L., AND WATERMAN, T. 2004. Finding effective compilation sequenced.GTES '04: Proceedings of
the 2004 ACM SIGPLAN/SIGBED Conference on Languages, Gasymnd Tools for Embedded Systems
ACM Press, New York, NY, USA, 231-239.

BARR, M. AND MASSA, A. 2006. Programming Embedded Systems: With C and GNU Developmels To
Second ed. O'Reilly Media, Inc.

BENITEZ, M. E. AND DAVIDSON, J. W. 1988. A portable global optimizer and linker. Pmoceedings of the
SIGPLAN'88 Conference on Programming Language Design anpdementationACM Press, 329-338.

BoDIN, F., Kisukl, T., KNIINENBURG, P., O’'BOYLE, M., AND ROHOU, E. 1998. Iterative compilation in a
non-linear optimisation space. Proceedings of the Worksimoprofile and Feedback Directed Compilation.

BURGER, D. AND AUSTIN, T. M. 1997. The SimpleScalar tool set, version Z0GARCH Computer Architec-
ture News 253, 13-25.

CavAzos, J.AND O’BOYLE, M. F. P. 2006. Method-specific dynamic compilation usingstigiregression.
In OOPSLA '06: Proceedings of the 21st annual ACM SIGPLAN eenée on Object-oriented programming
systems, languages, and applicatiop29—-240.

CoOPER K., GROSUL, A., HARVEY, T., REEVES, S., SJBRAMANIAN, D., TORCZON, L., AND WATERMAN,

T. 2005. ACME: Adaptive compilation made efficient. Pmoceedings of the ACM SIGPLAN/SIGBED Con-
ference on Languages, Compilers, and Tools for Embeddedry§9—78.

CoOPER K. D., SCHIELKE, P. J.,AND SUBRAMANIAN, D. 1999. Optimizing for reduced code space using
genetic algorithms. IWorkshop on Languages, Compilers, and Tools for Embeddstdr8y1-9.

DAVIDSON, J. W.AND WHALLEY, D. B. 1991. A design environment for addressing architecamd compiler
interactions.Microprocessors and Microsystems B5(November), 459-472.

ENnGBLOM, J. 2007. Using simulation tools for embedded systems softwdeselopment.
http://www.embedded.com/columns/technicalinsights/098802requestid=111267.

GUTHAUS, M. R., RNGENBERG, J. S., RNST, D., AUSTIN, T. M., MUDGE, T., AND BROWN, R. B. 2001.
MiBench: A free, commercially representative embedded bendhmate. IEEE 4th Annual Workshop on
Workload Characterization

HEWLETT-PACKARD. 2000. Parallel programming guide for hp-ux systems. httpcgchp.com/en/B3909-
90003/B3909-90003.pdf (page 74).

HOSTE, K. AND KHOUT, L. E. 2008. Cole: compiler optimization level exploration.GGO '08: Proceedings
of the sixth annual IEEE/ACM international symposium on €gdneration and optimizatioMCM, New
York, NY, USA, 165-174.

Kisukl, T., KNIINENBURG, P.,AND O’BOYLE, M. 2000. Combined selection of tile sizes and unroll factors
using iterative compilation. IProceedings of the International Conference on Parallethtectures and
Compilation Technique®37-246.

KiIsukl, T., KNIINENBURG, P., O’'BoYLE, M., BODIN, F., AND WIJSHOFR H. 1999. A feasibility study in
iterative compilation. IrProceedings of International Symposium of High Perfornea@omputing, volume
1615 of Lecture Notes in Computer Scierc21-132.

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

32 . Prasad Kulkarni et al.

KNIINENBURG, P., Kisukl, T., GALLIVAN , K., AND O’'BoYLE, M. 2000. The effect of cache models on
iterative compilation for combined tiling and unrolling. Rroceedings of 3rd ACM Workshop on Feedback-
Directed and Dynamic Optimizatio81—-40.

KULKARNI, P., HNES, S., HSER, J., WHALLEY, D., DAVIDSON, J.,AND JONES, D. 2004. Fast searches for
effective optimization phase sequencesPceedings of the ACM SIGPLAN '04 Conference on Program-
ming Language Design and Implementati®id1-182.

KULKARNI, P., WHALLEY, D., TysoN, G., AND DAVIDSON, J. 2006a. Exhaustive optimization phase or-
der space exploration. IRroceedings of the Fourth Annual IEEE/ACM Internationaim®psium on Code
Generation and Optimizatior306—318.

KULKARNI, P., WHALLEY, D., TYSoN, G.,AND DAVIDSON, J. 2006b. In search of near-optimal optimization
phase orderings. IhCTES '06: Proceedings of the 2006 ACM SIGPLAN/SIGBED cenée on Language,
compilers and tool support for embedded systeh@M Press, New York, NY, USA, 83-92.

KULKARNI, P., WHALLEY, D., TYsoN, G.,AND DAVIDSON, J. 2007. Evaluating heuristic optimization phase
order search algorithms. fo appear in the IEEE/ACM International Symposium on Codeegation and
Optimization

KULKARNI, P., ZHAO, W., MOON, H., CHO, K., WHALLEY, D., DAVIDSON, J., BAILEY, M., PAEK, Y., AND
GALLIVAN , K. 2003. Finding effective optimization phase sequencesPrbceedings of the 2003 ACM
SIGPLAN Conference on Languages, Compilers, and Toolsrfdrelded System&CM Press, 12-23.

KULKARNI, P. A., HNES, S. R., WHALLEY, D. B., HISER, J. D., DaviDSON, J. W.,AND JONES, D. L. 2005.
Fast and efficient searches for effective optimization-plsagjuenceACM Transactions on Architecture and
Code Optimization 22, 165-198.

PETERSON W. AND BROWN, D. 1961. Cyclic codes for error detection.fmoceedings of the Institute of Radio
EngineersVol. 49. 228-235.

REDHAT. 2004. Gnupro 04r1 tools for embedded systems developmept/Wivw.redhat.com/f/pdf/GNUPro-
04r1-Embedded-AnnouncementLetter.pdf.

TOUATI, S.-A.-A. AND BARTHOU, D. 2006. On the decidability of phase ordering problem itirozing
compilation. InCF '06: Proceedings of the 3rd conference on Computing fesatACM Press, New York,
NY, USA, 147-156.

TRIANTAFYLLIS, S., VACHHARAJANI, M., VACHHARAJANI, N., AND AUGUST, D. I. 2003. Compiler
optimization-space exploration. IRroceedings of the International Symposium on Code Geineraind
Optimization IEEE Computer Society, 204-215.

VEGDAHL, S. R. 1982. Phase coupling and constant generation in amipisig microcode compiler. In
Proceedings of the 15th Annual Workshop on MicroprogramgmBEE Press, 125-133.

VIRTUTECH. 2008. Virtualized software development white paper.
http://www.virtutech.com/files/whitepapers/vgimics.pdf.

WAGNER, T. A., MAVERICK, V., GRAHAM, S. L.,AND HARRISON, M. A. 1994. Accurate static estimators
for program optimizationSIGPLAN Notices 2%, 85-96.

WEISSTEIN, E. W. 2006. Correlation coefficient. from MathWorld - A W@ Web Resource.
http://mathworld.wolfram.com/CorrelationCoefficient.html

WHITFIELD, D. L. AND SOFFA, M. L. 1990. An approach to ordering optimizing transformaso In Pro-
ceedings of the second ACM SIGPLAN symposium on PrincipRsétice of Parallel ProgrammingACM
Press, 137-146.

WHITFIELD, D. L. AND SOFFA, M. L. 1997. An approach for exploring code improving transfiations. ACM
Transactions on Programming Languages and System@, 1953-1084.

ZHAO, M., CHILDERS, B., AND SOFFA, M. L. 2003. Predicting the impact of optimizations for embedide
systems. INLCTES '03: Proceedings of the 2003 ACM SIGPLAN Conferenceamguage, compiler, and
tool for embedded systen®CM Press, New York, NY, USA, 1-11.

ZHAO, M., CHILDERS, B., AND SOFFA, M. L. 2005. A model-based framework: An approach for profit-
driven optimization. IrProceedings of the International Symposium on Code Geinerand Optimization
Washington, DC, USA, 317-327.

ACM Transactions on Architecture and Code Optimization, Vol. V, NoSEptember 2008.

