
Algorithm Efficiency & Sorting

• Algorithm efficiency

• Big-O notation

• Searching algorithms

• Sorting algorithms

Overview

• Writing programs to solve problem consists of a large
number of decisions
– how to represent aspects of the problem for solution

– which of several approaches to a given solution
component to use

• If several algorithms are available for solving a given
problem, the developer must choose among them

• If several ADTs can be used to represent a given set of
problem data
– which ADT should be used?

– how will ADT choice affect algorithm choice?

2

Overview – 2

• If a given ADT (i.e. stack or queue) is attractive as
part of a solution

• How will the ADT implement affect the
program's:
– correctness and performance?

• Several goals must be balanced by a developer in
producing a solution to a problem
– correctness, clarity, and efficient use of computer

resources to produce the best performance

• How is solution performance best measured?
– time and space

3

Overview – 3

• The order of importance is, generally,
– correctness

– efficiency

– clarity

• Clarity of expression is qualitative and somewhat
dependent on perception by the reader
– developer salary costs dominate many software projects

– time efficiency of understanding code written by others
can thus have a significant monetary implication

• Focus of this chapter is execution efficiency
– mostly, run-time (some times, memory space)

4

Measuring Algorithmic Efficiency

• Analysis of algorithms
– provides tools for contrasting the efficiency of different

methods of solution

• Comparison of algorithms
– should focus on significant differences in efficiency

– should not consider reductions in computing costs due to
clever coding tricks

• Difficult to compare programs instead of algorithms
– how are the algorithms coded?

– what computer should you use?

– what data should the programs use?

5

Analyzing Algorithmic Cost

• Viewed abstractly, an algorithm is a sequence of steps
– Algorithm A { S1; S2; Sm1; Sm }

• The total cost of the algorithm will thus, obviously, be
the total cost of the algorithm's m steps
– assume we have a function giving cost of each statement

 Cost (Si) = execution cost of Si, for-all i, 1 ≤ i ≤ m

• Total cost of the algorithm's m steps would thus be:

 Cost (A) = 𝐶𝑜𝑠𝑡 (𝑆𝑖)𝑚
𝑖=1

6

Analyzing Algorithmic Cost – 2

• However, an algorithm can be applied to a wide
variety of problems and data sizes
– so we want a cost function for the algorithm A that

takes the data set size n into account

 Cost 𝐴, 𝑛 = 𝐶𝑜𝑠𝑡 (𝑆𝑖)
𝑚
1

𝑛
1

• Several factors complicate things
– conditional statements: cost of evaluating condition

and branch taken

– loops: cost is sum of each of its iterations

– recursion: may require solving a recurrence equation

7

Analyzing Algorithmic Cost – 3

• Do not attempt to accumulate a precise
prediction for program execution time,
because
– far too many complicating factors: compiler

instructions output, variation with specific data
sets, target hardware speed

• Provides an approximation, an order of
magnitude estimate, that permits fair
comparison of one algorithm's behavior
against that of another

8

Analyzing Algorithmic Cost – 4

• Various behavior bounds are of interest
– best case, average case, worst case

• Worst-case analysis
– A determination of the maximum amount of time that

an algorithm requires to solve problems of size n

• Average-case analysis
– A determination of the average amount of time that

an algorithm requires to solve problems of size n

• Best-case analysis
– A determination of the minimum amount of time that

an algorithm requires to solve problems of size n

9

Analyzing Algorithmic Cost – 5

• Complexity measures can be calculated in terms of
– T(n): time complexity and S(n): space complexity

• Basic model of computation used
– sequential computer (one statement at a time)

– all data require same amount of storage in memory

– each datum in memory can be accessed in constant time

– each basic operation can be executed in constant time

• Note that all of these assumptions are incorrect!
– good for this purpose

• Calculations we want are order of magnitude

10

Example – Linked List Traversal

• Assumptions
 C1 = cost of assign.
 C2 = cost of compare
 C3 = cost of write
• Consider the number of operations for n items
 T(n) = (n+1)C1 + (n+1)C2 + nC3

 = (C1+C2+C3)n + (C1+C2) = K1n + K2

• Says, algorithm is of linear complexity
– work done grows linearly with n but also involves

constants

11

Node *cur = head; // assignment op

 while (cur != NULL) // comparisons op

 cout << cur→item

 << endl; // write op

 cur→next; // assignment op

}

Example – Sequential Search

• Number of comparisons

 TB(n) = 1 (or 3?)

 Tw(n) = n

 TA(n) = (n+1)/2

• In general, what
developers worry about
the most is that this is
O(n) algorithm
– more precise analysis is

nice but rarely influences
algorithmic decision

12

 Seq_Search(A: array, key: integer);

 i = 1;

 while i ≤ n and A[i] ≠ key do

 i = i + 1

 endwhile;

 if i ≤ n

 then return(i)

 else return(0)

 endif;

 end Sequential_Search;

Bounding Functions

• To provide a guaranteed bound on how much work is
involved in applying an algorithm A to n items
– we find a bounding function f(n) such that

 𝑇 𝑛 ≤ 𝑓 𝑛 , ∀ 𝑛

• It is often easier to satisfy a less stringent constraint by
finding an elementary function f(n) such that

 𝑇 𝑛 ≤ 𝑘 ∗ 𝑓 𝑛 , 𝑓𝑜𝑟 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑙𝑎𝑟𝑔𝑒 𝑛

• This is denoted by the asymptotic big-O notation

• Algorithm A is O(n) says
– that complexity of A is no worse than k*n as n grows

sufficiently large

13

Asymptotic Upper Bound

• Defn: A function f is positive if 𝑓 𝑛 > 0, ∀ 𝑛 > 0

• Defn: Given a positive function f(n), then

 𝑓 𝑛 = 𝑂 𝑔 𝑛

 iff there exist constants k > 0 and n0 > 0 such that

 𝑓 𝑛 ≤ 𝑘 ∗ 𝑔 𝑛 , ∀ 𝑛 > 𝑛0

• Thus, g(n) is an asymptotic bounding function for the
work done by the algorithm

• k and n0 can be any constants
– can lead to unsatisfactory conclusions if they are very large

and a developer's data set is relatively small

14

Asymptotic Upper Bound – 2

• Example: show that: 2𝑛2 − 3𝑛 + 10 = 𝑂(𝑛2)
• Observe that
 2𝑛2 − 3𝑛 + 10 ≤ 2𝑛2+ 10, 𝑛 > 1
 2𝑛2 − 3𝑛 + 10 ≤ 2𝑛2+ 10, 𝑛2 𝑛 > 1
 2𝑛2 − 3𝑛 + 10 ≤ 12𝑛2, 𝑛 > 1
• Thus, expression is O(n2) for k = 12 and n0 > 1 (also k =

3 and n0 > 1, BTW)
– algorithm efficiency is typically a concern for large

problems only

• Then, O(f(n)) information helps choose a set of final
candidates and direct measurement helps final choice

15

Algorithm Growth Rates

• An algorithm’s time requirements can be
measured as a function of the problem size

– Number of nodes in a linked list

– Size of an array

– Number of items in a stack

– Number of disks in the Towers of Hanoi problem

16

Algorithm Growth Rates – 2

17

•Algorithm A requires time proportional to n
2

•Algorithm B requires time proportional to n

Algorithm Growth Rates – 3

• An algorithm’s growth rate enables comparison of one
algorithm with another

• Example
– if, algorithm A requires time proportional to n2, and

algorithm B requires time proportional to n

– algorithm B is faster than algorithm A
– n2 and n are growth-rate functions
– Algorithm A is O(n2) - order n2
– Algorithm B is O(n) - order n

• Growth-rate function f(n)
– mathematical function used to specify an algorithm’s

order in terms of the size of the problem

18

Order-of-Magnitude Analysis and Big
O Notation

19

Figure 9-3a A comparison of growth-rate functions: (a) in tabular form

Order-of-Magnitude Analysis and Big
O Notation

20

Figure 9-3b A comparison of growth-rate functions: (b) in graphical form

Order-of-Magnitude Analysis and Big
O Notation

• Order of growth of some common functions

– O(C) < O(log(n)) < O(n) < O(n * log(n)) < O(n2) <
O(n3) < O(2n) < O(3n) < O(n!) < O(nn)

• Properties of growth-rate functions

– O(n3 + 3n) is O(n3): ignore low-order terms

– O(5 f(n)) = O(f(n)): ignore multiplicative constant
in the high-order term

– O(f(n)) + O(g(n)) = O(f(n) + g(n))

21

Keeping Your Perspective

• Only significant differences in efficiency are
interesting

• Frequency of operations

– when choosing an ADT’s implementation, consider
how frequently particular ADT operations occur in
a given application

– however, some seldom-used but critical
operations must be efficient

22

Keeping Your Perspective

• If the problem size is always small, you can
probably ignore an algorithm’s efficiency
– order-of-magnitude analysis focuses on large

problems

• Weigh the trade-offs between an algorithm’s
time requirements and its memory
requirements

• Compare algorithms for both style and
efficiency

23

Sequential Search

• Sequential search
– look at each item in the data collection in turn
– stop when the desired item is found, or the end of the

data is reached

24

int search(const int a[], int number_used, int target) {

 int index = 0; bool found = false;

 while ((!found) && (index < number_used)) {

 if (target == a[index])

 found = true;

 else

 Index++;

 }

 if (found) return index;

 else return 1;

}

Efficiency of Sequential Search

• Worst case: O(n)

– key value not present, we search the entire list to
prove failure

• Average case: O(n)

– all positions for the key being equally likely

• Best case: O(1)

– key value happens to be first

25

The Efficiency of Searching Algorithms

• Binary search of a sorted array
– Strategy

• Repeatedly divide the array in half

• Determine which half could contain the item, and
discard the other half

– Efficiency
• Worst case: O(log2n)

• For large arrays, the binary search has an enormous
advantage over a sequential search

– At most 20 comparisons to search an array of one million
items

26

Sorting Algorithms and Their Efficiency

• Sorting
– A process that organizes a collection of data into

either ascending or descending order

– The sort key is the data item that we consider when
sorting a data collection

• Sorting algorithm types
– comparison based

• bubble sort, insertion sort, quick sort, etc.

– address calculation
• radix sort

27

Sorting Algorithms and Their Efficiency

• Categories of sorting algorithms

– An internal sort

• Requires that the collection of data fit entirely in the
computer’s main memory

– An external sort

• The collection of data will not fit in the computer’s
main memory all at once, but must reside in secondary
storage

28

for index=0 to size-2 {

 select min/max element from among A[index], …, A[size-1];

 swap(A[index], min);

}

Selection Sort

• Strategy
– Place the largest (or smallest) item in its correct place
– Place the next largest (or next smallest) item in its correct

place, and so on

• Algorithm

• Analysis

– worst case: O(n2), average case: O(n2)
– does not depend on the initial arrangement of the data

29

Selection Sort

30

Figure 9-4 A selection sort of an array of five integers

Bubble Sort

• Strategy

– compare adjacent elements and exchange them if
they are out of order

• moves the largest (or smallest) elements to the end of
the array

– repeat this process

• eventually sorts the array into ascending (or
descending) order

• Analysis: worst case: O(n2), best case: O(n)

31

Bubble Sort – algorithm

for i = 1 to size -- 1 do

 for index = 1 to size -- i do

 if A[index] < A[index1]

 swap(A[index], A[index1]);

 endfor;

endfor;

32

Bubble Sort

33

Figure 9-5

The first two passes of a bubble sort of an array of five integers: (a) pass 1; (b) pass 2

Insertion Sort

• Strategy
– Partition array in two regions: sorted and unsorted

• initially, entire array is in unsorted region

• take each item from the unsorted region and insert it into its
correct position in the sorted region

• each pass shrinks unsorted region by 1 and grows sorted
region by 1

• Analysis
– Worst case: O(n2)

• Appropriate for small arrays due to its simplicity

• Prohibitively inefficient for large arrays

34

Insertion Sort

35

Figure 9-7 An insertion sort of an array of five integers.

Mergesort

• A recursive sorting algorithm

• Performance is independent of the initial
order of the array items

• Strategy

– divide an array into halves

– sort each half

– merge the sorted halves into one sorted array

– divide-and-conquer approach

36

Mergesort – Algorithm

mergeSort(A,first,last) {

 if (first < last) {

 mid = (first + last)/2;

 mergeSort(A, first, mid);

 mergeSort(A, mid+1, last);

 merge(A, first, mid, last)

 }

}

37

Mergesort

38

Mergesort

39

Mergesort – Properties

• Needs a temporary array into which to copy
elements during merging
– doubles space requirement

• Mergesort is stable
– items with equal key values appear in the same

order in the output array as in the input

• Advantage
– mergesort is an extremely fast algorithm

• Analysis: worst / average case: O(n * log2n)

40

Quicksort

• A recursive divide-and-conquer algorithm
– given a linear data structure A with n records

– divide A into sub-structures S1 and S2

– sort S1 and S2 recursively

• Algorithm
– Base case: if |S|==1, S is already sorted

– Recursive case:
• divide A around a pivot value P into S1 and S2 , such that

all elements of S1<=P and all elements of S2>=P

• recursively sort S1 and S2 in place

41

Quicksort

• Partition()
– (a) scans array, (b) chooses a pivot, (c) divides A

around pivot, (d) returns pivot index
– Invariant: items in S1 are all less than pivot, and items

in S2 are all greater than or equal to pivot

• Quicksort()
– partitions A, sorts S1 and S2 recursively

42

Quicksort – Pivot Partitioning

• Pivot selection and array partition are
fundamental work of algorithm

• Pivot selection

– perfect value: median of A[]

• sort required to determine median (oops!)

• approximation: If |A| > N, N==3 or N==5, use median of N

– Heuristic approaches used instead

• Choose A[first] OR A[last] OR A[mid] (mid = (first+last)/2) OR
Random element

• heuristics equivalent if contents of A[] randomly arranged

43

Quicksort – Pivot Partitioning Example

 A= [5,8,3,7,4,2,1,6], first =0, last =7
• 1. A[first]: pivot = 5
• 2. A[last]: pivot = 6
• 3. A[mid]: mid =(0+7)/2=3, pivot = 7
• 4. A[random()]: any key might be chosen
• 5. A[medianof3]: median(A[first], A[mid], A[last]) is
• median(5,7,6) = 6
• ● Note that the median determination is itself a sort,
• but only of a fixed number of items, which is thus
• still O(1)
• ● Good pivot selection
• ● Computed in O(1) time and partitions A into
• roughly equal parts S1 and S2

44

Quicksort

45

Figure 9-19 A worst-case partitioning with quicksort

Quicksort

• Analysis

– Average case: O(n * log2n)

– Worst case: O(n2)

• When the array is already sorted and the smallest item
is chosen as the pivot

– Quicksort is usually extremely fast in practice

– Even if the worst case occurs, quicksort’s
performance is acceptable for moderately large
arrays

46

Radix Sort

• Strategy

– Treats each data element as a character string

– Repeatedly organizes the data into groups
according to the ith character in each element

• Analysis

– Radix sort is O(n)

47

Radix Sort

48

Figure 9-21 A radix sort of eight integers

A Comparison of Sorting Algorithms

49

Figure 9-22 Approximate growth rates of time required for eight sorting algorithms

The STL Sorting Algorithms

• Some sort functions in the STL library header
<algorithm>

– sort

• Sorts a range of elements in ascending order by default

– stable_sort

• Sorts as above, but preserves original ordering of
equivalent elements

50

The STL Sorting Algorithms

– partial_sort

• Sorts a range of elements and places them at the
beginning of the range

– nth_element

• Partitions the elements of a range about the nth
element

• The two subranges are not sorted

– partition

• Partitions the elements of a range according to a given
predicate

51

Summary

• Order-of-magnitude analysis and Big O
notation measure an algorithm’s time
requirement as a function of the problem size
by using a growth-rate function

• To compare the efficiency of algorithms

– Examine growth-rate functions when problems
are large

– Consider only significant differences in growth-
rate functions

52

Summary

• Worst-case and average-case analyses

– Worst-case analysis considers the maximum
amount of work an algorithm will require on a
problem of a given size

– Average-case analysis considers the expected
amount of work that an algorithm will require on
a problem of a given size

53

Summary

• Order-of-magnitude analysis can be the basis
of your choice of an ADT implementation

• Selection sort, bubble sort, and insertion sort
are all O(n2) algorithms

• Quicksort and mergesort are two very fast
recursive sorting algorithms

54

