

Algorithm Efficiency & Sorting

- Algorithm efficiency
- Big-O notation
- Searching algorithms
- Sorting algorithms

Overview

- Writing programs to solve problem consists of a large number of decisions
 - how to represent aspects of the problem for solution
 - which of several approaches to a given solution component to use
- If several algorithms are available for solving a given problem, the developer must choose among them
- If several ADTs can be used to represent a given set of problem data
 - which ADT should be used?
 - how will ADT choice affect algorithm choice?

Overview – 2

- If a given ADT (i.e. stack or queue) is attractive as part of a solution
- How will the ADT implement affect the program's:
 - correctness and performance?
- Several goals must be balanced by a developer in producing a solution to a problem
 - correctness, clarity, and efficient use of computer resources to produce the best performance
- How is solution performance best measured?
 - time and space

Overview – 3

- The order of importance is, generally,
 - correctness
 - efficiency
 - clarity
- Clarity of expression is qualitative and somewhat dependent on perception by the reader
 - developer salary costs dominate many software projects
 - time efficiency of understanding code written by others can thus have a significant monetary implication
- Focus of this chapter is execution efficiency
 - mostly, run-time (some times, memory space)

Measuring Algorithmic Efficiency

- Analysis of algorithms
 - provides tools for contrasting the efficiency of different methods of solution
- Comparison of algorithms
 - should focus on significant differences in efficiency
 - should not consider reductions in computing costs due to clever coding tricks
- Difficult to compare programs instead of algorithms
 - how are the algorithms coded?
 - what computer should you use?
 - what data should the programs use?

- Viewed abstractly, an algorithm is a sequence of steps
 - Algorithm A { S1; S2; Sm1; Sm }
- The total cost of the algorithm will thus, obviously, be the total cost of the algorithm's *m* steps
 - assume we have a function giving cost of each statement Cost (S_i) = execution cost of S_i , for-all i, $1 \le i \le m$
- Total cost of the algorithm's m steps would thus be:

$$Cost(A) = \sum_{i=1}^{m} Cost(Si)$$

- However, an algorithm can be applied to a wide variety of problems and data sizes
 - so we want a cost function for the algorithm A that takes the data set size n into account

$$Cost(A, n) = \sum_{i=1}^{n} \left(\sum_{i=1}^{m} (Cost(S_i)) \right)$$

- Several factors complicate things
 - conditional statements: cost of evaluating condition and branch taken
 - loops: cost is sum of each of its iterations
 - recursion: may require solving a recurrence equation

- Do not attempt to accumulate a precise prediction for program execution time, because
 - far too many complicating factors: compiler instructions output, variation with specific data sets, target hardware speed
- Provides an approximation, an order of magnitude estimate, that permits fair comparison of one algorithm's behavior against that of another

- Various behavior bounds are of interest
 - best case, average case, worst case
- Worst-case analysis
 - A determination of the maximum amount of time that an algorithm requires to solve problems of size n
- Average-case analysis
 - A determination of the average amount of time that an algorithm requires to solve problems of size n
- Best-case analysis
 - A determination of the minimum amount of time that an algorithm requires to solve problems of size n

- Complexity measures can be calculated in terms of
 - T(n): time complexity and S(n): space complexity
- Basic model of computation used
 - sequential computer (one statement at a time)
 - all data require same amount of storage in memory
 - each datum in memory can be accessed in constant time
 - each basic operation can be executed in constant time
- Note that all of these assumptions are incorrect!
 - good for this purpose
- Calculations we want are order of magnitude

Example - Linked List Traversal

Assumptions
 C₁ = cost of assign.
 C₂ = cost of compare
 C₃ = cost of write

```
Node *cur = head; // assignment op
while (cur != NULL) // comparisons op
cout << cur→item
<< endl; // write op
cur→next; // assignment op
}
```

Consider the number of operations for n items

$$T(n) = (n+1)C_1 + (n+1)C_2 + nC_3$$
$$= (C_1+C_2+C_3)n + (C_1+C_2) = K_1n + K_2$$

- Says, algorithm is of linear complexity
 - work done grows linearly with n but also involves constants

Example – Sequential Search

Number of comparisons

```
T_B(n) = 1 \text{ (or 3?)}

T_w(n) = n

T_A(n) = (n+1)/2
```

- In general, what developers worry about the most is that this is O(n) algorithm
 - more precise analysis is nice but rarely influences algorithmic decision

```
Seq_Search(A: array, key: integer);
    i = 1;
    while i ≤ n and A[i] ≠ key do
        i = i + 1
    endwhile;
    if i ≤ n
        then return(i)
        else return(0)
    endif;
end Sequential_Search;
```


Bounding Functions

- To provide a guaranteed bound on how much work is involved in applying an algorithm A to n items
 - we find a bounding function f(n) such that $T(n) \le f(n), \forall n$
- It is often easier to satisfy a less stringent constraint by finding an elementary function f(n) such that

$$T(n) \le k * f(n)$$
, for sufficiently large n

- This is denoted by the asymptotic big-O notation
- Algorithm A is O(n) says
 - that complexity of A is no worse than k*n as n grows sufficiently large

Asymptotic Upper Bound

- Defn: A function f is positive if f(n) > 0, $\forall n > 0$
- Defn: Given a positive function f(n), then

$$f(n) = O(g(n))$$

iff there exist constants k > 0 and $n_0 > 0$ such that

$$f(n) \le k * g(n), \forall n > n_0$$

- Thus, g(n) is an asymptotic bounding function for the work done by the algorithm
- k and n₀ can be any constants
 - can lead to unsatisfactory conclusions if they are very large and a developer's data set is relatively small

Asymptotic Upper Bound – 2

- Example: show that: $2n^2 3n + 10 = O(n^2)$
- Observe that

$$2n^2 - 3n + 10 \le 2n^2 + 10, n > 1$$

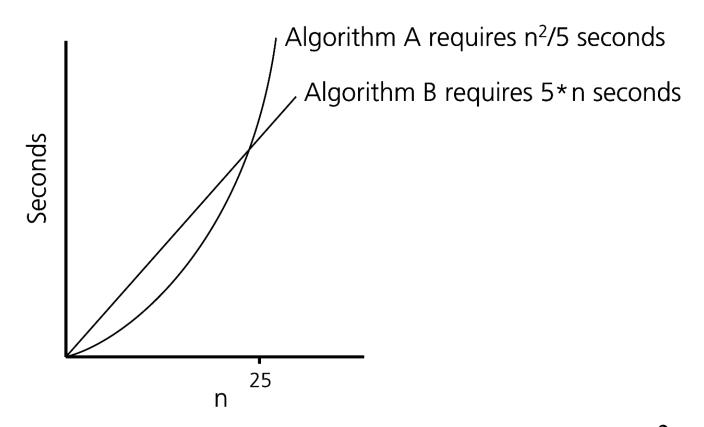
 $2n^2 - 3n + 10 \le 2n^2 + 10, n^2 n > 1$
 $2n^2 - 3n + 10 \le 12n^2, n > 1$

- Thus, expression is $O(n^2)$ for k = 12 and $n_0 > 1$ (also k = 3 and $n_0 > 1$, BTW)
 - algorithm efficiency is typically a concern for large problems only
- Then, O(f(n)) information helps choose a set of final candidates and direct measurement helps final choice

Algorithm Growth Rates

- An algorithm's time requirements can be measured as a function of the problem size
 - Number of nodes in a linked list
 - Size of an array
 - Number of items in a stack
 - Number of disks in the Towers of Hanoi problem

Algorithm Growth Rates – 2



- •Algorithm A requires time proportional to n^2
- •Algorithm B requires time proportional to *n*

Algorithm Growth Rates – 3

 An algorithm's growth rate enables comparison of one algorithm with another

Example

- if, algorithm A requires time proportional to n^{2} , and algorithm B requires time proportional to n
- algorithm B is faster than algorithm A
- $-n^2$ and *n* are growth-rate functions
- Algorithm A is $O(n^2)$ order n^2
- Algorithm B is O(n) order n
- Growth-rate function f(n)
 - mathematical function used to specify an algorithm's order in terms of the size of the problem

Order-of-Magnitude Analysis and Big O Notation

(a)		n								
	Function	10	100	1,000	10,000	100,000	1,000,000			
	1	1	1	1	1	1	1			
	log ₂ n	3	6	9	13	16	19			
	n	10	10 ²	10 ³	104	10 ⁵	10 ⁶			
	$n * \log_2 n$	30	664	9,965	10 ⁵	10 ⁶	10 ⁷			
	n²	10 ²	104	10 ⁶	108	10 10	10 ¹²			
	n³	10³	10 ⁶	10 ⁹	1012	10 ¹⁵	10 ¹⁸			
	2 ⁿ	10³	1030	1030	103,0	¹⁰ 10 ^{30,}	103 10 301,030			

Figure 9-3a A comparison of growth-rate functions: (a) in tabular form

order-of-Magnitude Analysis and Big O Notation

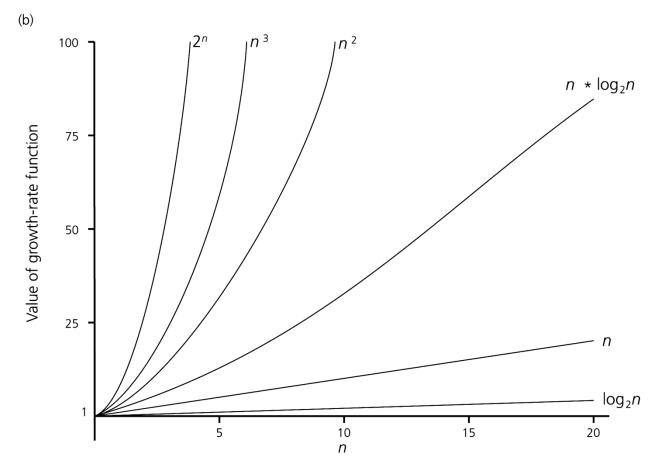


Figure 9-3b A comparison of growth-rate functions: (b) in graphical form

Order-of-Magnitude Analysis and Big O Notation

- Order of growth of some common functions
 - O(C) < O(log(n)) < O(n) < O(n * log(n)) < O(n²) < O(n³) < O(2ⁿ) < O(3ⁿ) < O(n!) < O(nⁿ)
- Properties of growth-rate functions
 - O(n3 + 3n) is O(n3): ignore low-order terms
 - O(5 f(n)) = O(f(n)): ignore multiplicative constant in the high-order term
 - O(f(n)) + O(g(n)) = O(f(n) + g(n))

Keeping Your Perspective

- Only significant differences in efficiency are interesting
- Frequency of operations
 - when choosing an ADT's implementation, consider how frequently particular ADT operations occur in a given application
 - however, some seldom-used but critical operations must be efficient

Keeping Your Perspective

- If the problem size is always small, you can probably ignore an algorithm's efficiency
 - order-of-magnitude analysis focuses on large problems
- Weigh the trade-offs between an algorithm's time requirements and its memory requirements
- Compare algorithms for both style and efficiency

Sequential Search

- Sequential search
 - look at each item in the data collection in turn
 - stop when the desired item is found, or the end of the data is reached

```
int search(const int a[], int number_used, int target) {
    int index = 0; bool found = false;
    while ((!found) && (index < number_used)) {
         if (target == a[index])
             found = true;
         else
              Index++;
    if (found) return index;
    else return 1;
```


Efficiency of Sequential Search

- Worst case: O(n)
 - key value not present, we search the entire list to prove failure
- Average case: O(n)
 - all positions for the key being equally likely
- Best case: O(1)
 - key value happens to be first

he Efficiency of Searching Algorithms

- Binary search of a sorted array
 - Strategy
 - Repeatedly divide the array in half
 - Determine which half could contain the item, and discard the other half
 - Efficiency
 - Worst case: O(log₂n)
 - For large arrays, the binary search has an enormous advantage over a sequential search
 - At most 20 comparisons to search an array of one million items

orting Algorithms and Their Efficiency

Sorting

- A process that organizes a collection of data into either ascending or descending order
- The sort key is the data item that we consider when sorting a data collection

Sorting algorithm types

- comparison based
 - bubble sort, insertion sort, quick sort, etc.
- address calculation
 - radix sort

orting Algorithms and Their Efficiency

- Categories of sorting algorithms
 - An internal sort
 - Requires that the collection of data fit entirely in the computer's main memory
 - An external sort
 - The collection of data will not fit in the computer's main memory all at once, but must reside in secondary storage

Selection Sort

- Strategy
 - Place the largest (or smallest) item in its correct place
 - Place the next largest (or next smallest) item in its correct place, and so on
- Algorithm

```
for index=0 to size-2 {
    select min/max element from among A[index], ..., A[size-1];
    swap(A[index], min);
}
```

- Analysis
 - worst case: O(n2), average case: O(n2)
 - does not depend on the initial arrangement of the data

Selection Sort

Shaded elements are selected; boldface elements are in order.

Initial array:	29	10	14	37	13
After 1 st swap:	29	10	14	13	37
After 2 nd swap:	13	10	14	29	37
After 3 rd swap:	13	10	14	29	37
After 4 th swap:	10	13	14	29	37

Bubble Sort

- Strategy
 - compare adjacent elements and exchange them if they are out of order
 - moves the largest (or smallest) elements to the end of the array
 - repeat this process
 - eventually sorts the array into ascending (or descending) order
- Analysis: worst case: O(n2), best case: O(n)

Bubble Sort – algorithm

```
for i = 1 to size -- 1 do
    for index = 1 to size -- i do
        if A[index] < A[index1]
            swap(A[index], A[index1]);
    endfor;
endfor;</pre>
```


Bubble Sort

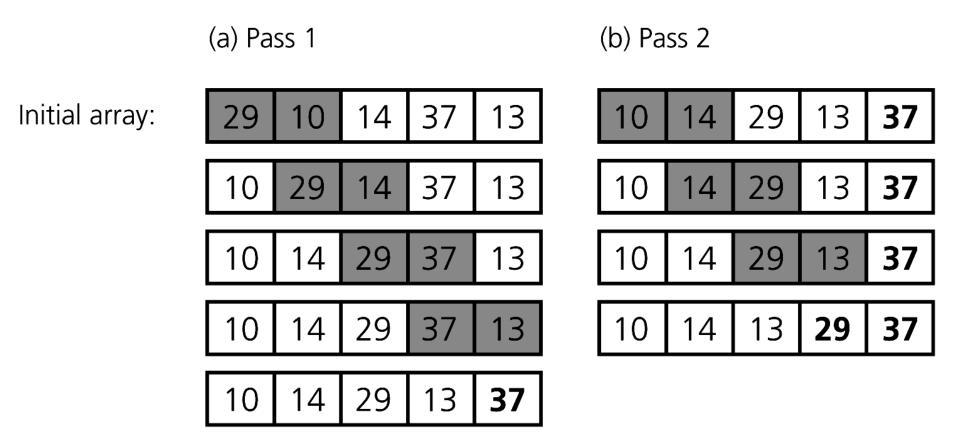


Figure 9-5

The first two passes of a bubble sort of an array of five integers: (a) pass 1; (b) pass 2

Insertion Sort

Strategy

- Partition array in two regions: sorted and unsorted
 - initially, entire array is in unsorted region
 - take each item from the unsorted region and insert it into its correct position in the sorted region
 - each pass shrinks unsorted region by 1 and grows sorted region by 1

Analysis

- Worst case: O(n2)
 - Appropriate for small arrays due to its simplicity
 - Prohibitively inefficient for large arrays

Insertion Sort

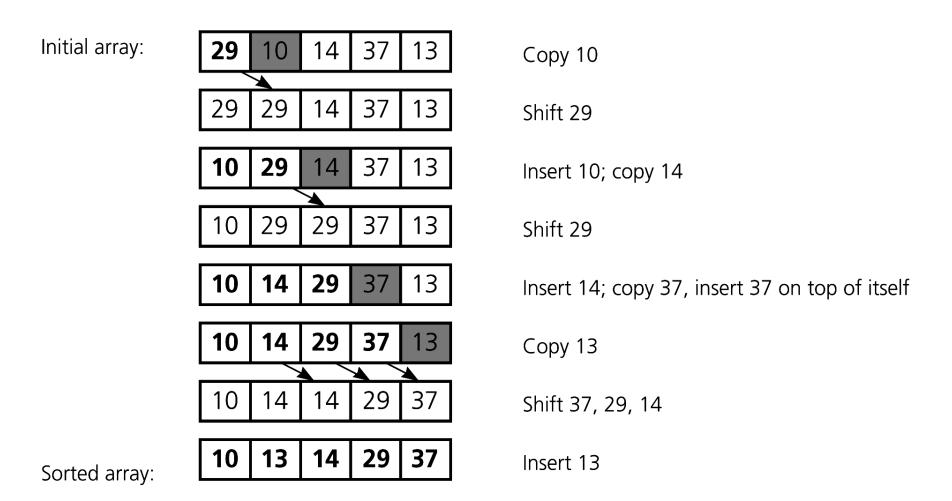


Figure 9-7 An insertion sort of an array of five integers.

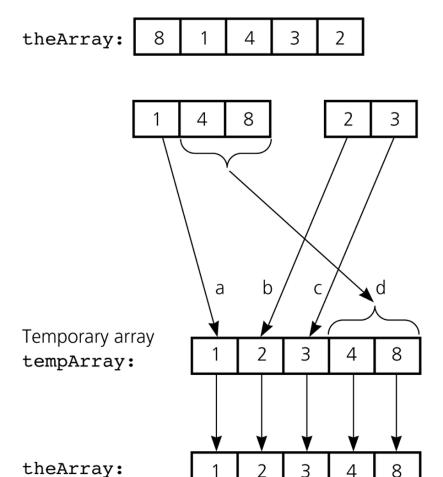
Mergesort

- A recursive sorting algorithm
- Performance is independent of the initial order of the array items
- Strategy
 - divide an array into halves
 - sort each half
 - merge the sorted halves into one sorted array
 - divide-and-conquer approach

Mergesort – Algorithm

```
mergeSort(A,first,last) {
      if (first < last) {</pre>
            mid = (first + last)/2;
            mergeSort(A, first, mid);
            mergeSort(A, mid+1, last);
            merge(A, first, mid, last)
```


Mergesort



Divide the array in half

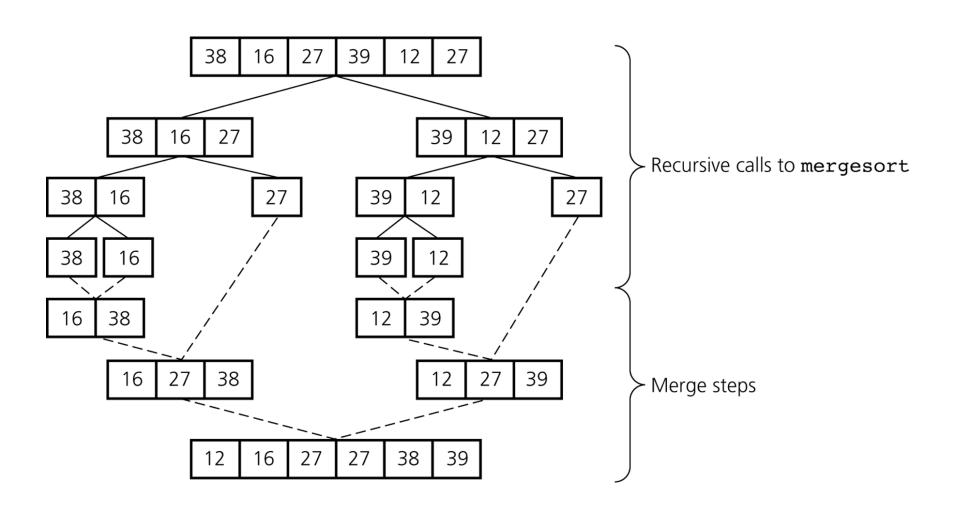
Sort the halves

Merge the halves:

- a. 1 < 2, so move 1 from left half to tempArray
- b. 4 > 2, so move 2 from right half to tempArray
- c. 4 > 3, so move 3 from right half to tempArray
- d. Right half is finished, so move rest of left half to tempArray

Copy temporary array back into original array

Mergesort

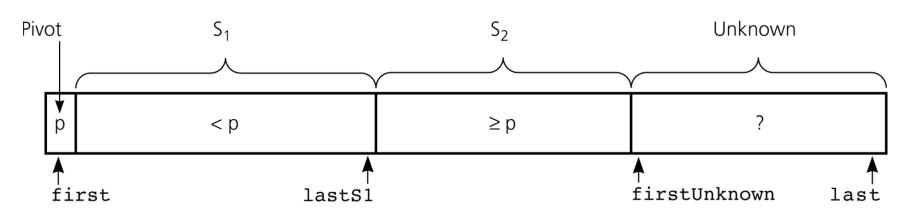


Mergesort – Properties

- Needs a temporary array into which to copy elements during merging
 - doubles space requirement
- Mergesort is stable
 - items with equal key values appear in the same order in the output array as in the input
- Advantage
 - mergesort is an extremely fast algorithm
- Analysis: worst / average case: O(n * log2n)

- A recursive divide-and-conquer algorithm
 - given a linear data structure A with n records
 - divide A into sub-structures S₁ and S₂
 - sort S₁ and S₂ recursively
- Algorithm
 - Base case: if |S|==1, S is already sorted
 - Recursive case:
 - divide A around a pivot value P into S_1 and S_2 , such that all elements of $S_1 \le P$ and all elements of $S_2 \ge P$
 - recursively sort S1 and S2 in place

- Partition()
 - (a) scans array, (b) chooses a pivot, (c) divides A around pivot, (d) returns pivot index
 - Invariant: items in S₁ are all less than pivot, and items in S₂ are all greater than or equal to pivot
- Quicksort()
 - partitions A, sorts S₁ and S₂ recursively



Quicksort – Pivot Partitioning

- Pivot selection and array partition are fundamental work of algorithm
- Pivot selection
 - perfect value: median of A[]
 - sort required to determine median (oops!)
 - approximation: If |A| > N, N==3 or N==5, use median of N
 - Heuristic approaches used instead
 - Choose A[first] OR A[last] OR A[mid] (mid = (first+last)/2) OR Random element
 - heuristics equivalent if contents of A[] randomly arranged

Quicksort – Pivot Partitioning Example

- 1. A[first]: pivot = 5
- 2. A[last]: pivot = 6
- 3. A[mid]: mid =(0+7)/2=3, pivot = 7
- 4. A[random()]: any key might be chosen
- 5. A[medianof3]: median(A[first], A[mid], A[last]) is
- median(5,7,6) = 6
- Note that the median determination is itself a sort,
- but only of a fixed number of items, which is thus
- still O(1)
- Good pivot selection
- Computed in O(1) time and partitions A into
- roughly equal parts S1 and S2

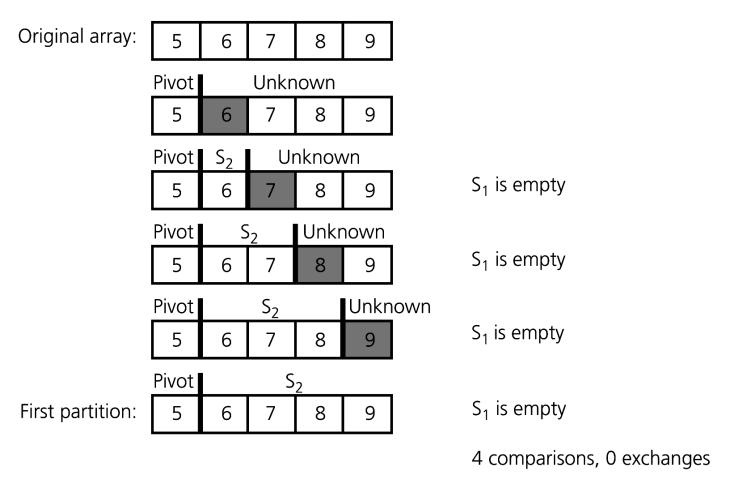


Figure 9-19 A worst-case partitioning with quicksort

- Analysis
 - Average case: O(n * log2n)
 - Worst case: O(n2)
 - When the array is already sorted and the smallest item is chosen as the pivot
 - Quicksort is usually extremely fast in practice
 - Even if the worst case occurs, quicksort's performance is acceptable for moderately large arrays

Radix Sort

- Strategy
 - Treats each data element as a character string
 - Repeatedly organizes the data into groups according to the ith character in each element
- Analysis
 - Radix sort is O(n)

Radix Sort

0123, 2154, 0222, 0004, 0283, 1560, 1061, 2150 Original integers (156**0**, 215**0**) (106**1**) (022**2**) (012**3**, 028**3**) (215**4**, 000**4**) Grouped by fourth digit 1560, 2150, 1061, 0222, 0123, 0283, 2154, 0004 Combined (00**0**4) (02**2**2, 01**2**3) (21**5**0, 21**5**4) (15**6**0, 10**6**1) (02**8**3) Grouped by third digit 0004, 0222, 0123, 2150, 2154, 1560, 1061, 0283 Combined (0**0**04, 1**0**61) (0**1**23, 2**1**50, 2**1**54) (0**2**22, 0**2**83) (1**5**60) Grouped by second digit Combined 0004, 1061, 0123, 2150, 2154, 0222, 0283, 1560 (**0**004, **0**123, **0**222, **0**283) (**1**061, **1**560) (**2**150, **2**154) Grouped by first digit 0004, 0123, 0222, 0283, 1061, 1560, 2150, 2154 Combined (sorted)

Figure 9-21 A radix sort of eight integers

A Comparison of Sorting Algorithms

	Worst case	Average case
Selection sort	$\overline{n^2}$	n^2
Bubble sort	n^2	n^2
Insertion sort	n^2	n^2
Mergesort	n * log n	n * log n
Quicksort	n^2	n * log n
Radix sort	n	n
Treesort rt	n^2	n * log n
	n * log n	n * log n

Figure 9-22 Approximate growth rates of time required for eight sorting algorithms

The STL Sorting Algorithms

- Some sort functions in the STL library header
 <algorithm>
 - sort
 - Sorts a range of elements in ascending order by default
 - stable_sort
 - Sorts as above, but preserves original ordering of equivalent elements

The STL Sorting Algorithms

- partial_sort
 - Sorts a range of elements and places them at the beginning of the range
- nth_element
 - Partitions the elements of a range about the nth element
 - The two subranges are not sorted
- partition
 - Partitions the elements of a range according to a given predicate

Summary

- Order-of-magnitude analysis and Big O notation measure an algorithm's time requirement as a function of the problem size by using a growth-rate function
- To compare the efficiency of algorithms
 - Examine growth-rate functions when problems are large
 - Consider only significant differences in growthrate functions

Summary

- Worst-case and average-case analyses
 - Worst-case analysis considers the maximum amount of work an algorithm will require on a problem of a given size
 - Average-case analysis considers the expected amount of work that an algorithm will require on a problem of a given size

Summary

- Order-of-magnitude analysis can be the basis of your choice of an ADT implementation
- Selection sort, bubble sort, and insertion sort are all O(n²) algorithms
- Quicksort and mergesort are two very fast recursive sorting algorithms