
Algorithm Efficiency & Sorting 

• Algorithm efficiency 

• Big-O notation 

• Searching algorithms 

• Sorting algorithms 

 



Overview 

• Writing programs to solve problem consists of a large  
number of decisions  
– how to represent aspects of the problem for solution 

– which of several approaches to a given solution 
component to use 

• If several algorithms are available for solving a given 
problem, the developer must choose among them 

• If several ADTs can be used to represent a given set of 
problem data 
– which ADT should be used? 

– how will ADT choice affect algorithm choice? 
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Overview – 2 

• If a given ADT (i.e. stack or queue) is attractive as 
part of a solution 

• How will the ADT implement affect the 
program's: 
– correctness and performance? 

• Several goals must be balanced by a developer in 
producing a solution to a problem 
– correctness, clarity, and efficient use of computer 

resources to produce the best performance 

• How is solution performance best measured? 
– time and space 
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Overview – 3 

• The order of importance is, generally, 
– correctness 

– efficiency 

– clarity 

• Clarity of expression is qualitative and somewhat 
dependent on perception by the reader 
– developer salary costs dominate many software projects 

– time efficiency of understanding code written by others 
can thus have a significant monetary implication 

•  Focus of this chapter is execution efficiency 
– mostly, run-time (some times, memory space) 
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Measuring Algorithmic Efficiency 

• Analysis of algorithms  
– provides tools for contrasting the efficiency of different 

methods of solution 

• Comparison of algorithms 
– should focus on significant differences in efficiency 

– should not consider reductions in computing costs due to 
clever coding tricks 

• Difficult  to compare programs instead of algorithms 
– how are the algorithms coded? 

– what computer should you use? 

– what data should the programs use? 
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Analyzing Algorithmic Cost 

• Viewed abstractly, an algorithm is a sequence of steps 
– Algorithm A { S1; S2; .... Sm1; Sm } 

• The total cost of the algorithm will thus, obviously, be 
the total cost of the algorithm's m steps 
– assume we have a function giving  cost of each statement 

 Cost (Si) = execution cost of Si, for-all i, 1 ≤ i ≤ m 

• Total cost of the algorithm's m steps would thus be: 

 Cost (A) =  𝐶𝑜𝑠𝑡 (𝑆𝑖)𝑚
𝑖=1  
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Analyzing Algorithmic Cost – 2 

• However, an algorithm can be applied to a wide 
variety of problems and data sizes 
– so we want a cost function for the algorithm A that 

takes the data set size n into account 

 Cost 𝐴, 𝑛 =    𝐶𝑜𝑠𝑡 (𝑆𝑖)
𝑚
1

𝑛
1  

• Several factors complicate things 
– conditional statements: cost of evaluating condition 

and branch taken 

– loops: cost is sum of each of its iterations 

– recursion: may require solving a recurrence equation 
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Analyzing Algorithmic Cost – 3 

• Do not attempt to accumulate a precise 
prediction for program execution time, 
because 
– far too many complicating factors: compiler 

instructions output, variation with specific data 
sets, target hardware speed 

• Provides an approximation, an order of 
magnitude estimate, that permits fair 
comparison of one algorithm's behavior 
against that of another 
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Analyzing Algorithmic Cost – 4 

• Various behavior bounds are of interest 
– best case, average case, worst case 

• Worst-case analysis 
– A determination of the maximum amount of time that 

an algorithm requires to solve problems of size n 

• Average-case analysis 
– A determination of the average amount of time that 

an algorithm requires to solve problems of size n 

• Best-case analysis 
– A determination of the minimum amount of time that 

an algorithm requires to solve problems of size n 

9 



Analyzing Algorithmic Cost – 5 

• Complexity measures can be calculated in terms of 
– T(n): time complexity and S(n): space complexity 

• Basic model of computation used  
– sequential computer (one statement at a time) 

– all data require same amount of storage in memory 

– each datum in memory can be accessed in constant time 

– each basic operation can be executed in constant time 

• Note that all of these assumptions are incorrect! 
– good for this purpose 

• Calculations we want are order of magnitude 
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Example – Linked List Traversal 

• Assumptions 
     C1 = cost of assign. 
     C2 = cost of compare 
     C3 = cost of write 
• Consider the number of operations for n items 
 T(n) = (n+1)C1 + (n+1)C2 + nC3 

         = (C1+C2+C3)n + (C1+C2) = K1n + K2 

• Says, algorithm is of linear complexity 
– work done grows linearly with n but also involves 

constants 
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Node *cur = head;       // assignment op 

    while (cur != NULL) // comparisons op 

    cout << cur→item  

            << endl;           // write op 

    cur→next;                // assignment op 

} 



Example – Sequential Search 

• Number of comparisons 

      TB(n) = 1 (or 3?) 

      Tw(n) = n 

      TA(n) = (n+1)/2 

• In general, what 
developers worry about 
the most is that this is 
O(n) algorithm 
– more precise analysis is 

nice but rarely influences 
algorithmic decision  

12 

 Seq_Search(A: array, key: integer); 

     i = 1; 

        while i ≤ n and A[i] ≠ key do 

               i = i + 1 

        endwhile; 

        if i ≤ n 

               then return(i) 

               else return(0) 

        endif; 

 end Sequential_Search; 



Bounding Functions 

• To provide a guaranteed bound on how much work is 
involved in applying an algorithm A to n items   
– we find a bounding function f(n) such that  

  𝑇 𝑛 ≤ 𝑓 𝑛 , ∀ 𝑛 

•  It is often easier to satisfy a less stringent constraint by 
finding an elementary function f(n) such that 

               𝑇 𝑛 ≤ 𝑘 ∗  𝑓 𝑛 , 𝑓𝑜𝑟 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑙𝑎𝑟𝑔𝑒 𝑛 

• This is denoted by the asymptotic big-O notation 

• Algorithm A is O(n)  says 
– that complexity of A is no worse than k*n as n grows 

sufficiently large 
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Asymptotic Upper Bound 

• Defn: A function f is positive if 𝑓 𝑛 > 0, ∀ 𝑛 > 0 

• Defn: Given a positive function f(n), then  

  𝑓 𝑛 = 𝑂 𝑔 𝑛  

        iff there exist constants k > 0 and n0 > 0 such that 

  𝑓 𝑛 ≤ 𝑘 ∗ 𝑔 𝑛 , ∀ 𝑛 > 𝑛0 

• Thus, g(n) is an asymptotic bounding function for the 
work done by the algorithm 

• k and n0 can be any constants 
– can lead to unsatisfactory conclusions if they are very large 

and a developer's data set is relatively small 
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Asymptotic Upper Bound – 2 

• Example: show that: 2𝑛2 − 3𝑛 + 10 = 𝑂(𝑛2) 
• Observe that  
 2𝑛2 − 3𝑛 + 10 ≤ 2𝑛2+ 10, 𝑛 > 1 
 2𝑛2 − 3𝑛 + 10 ≤ 2𝑛2+ 10, 𝑛2 𝑛 > 1 
 2𝑛2 − 3𝑛 + 10 ≤ 12𝑛2, 𝑛 > 1 
• Thus, expression is O(n2) for k = 12 and n0 > 1 (also k = 

3 and n0 > 1, BTW) 
– algorithm efficiency is typically a concern for large 

problems only 

• Then, O(f(n)) information helps choose a set of final 
candidates and direct measurement helps final choice 
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Algorithm Growth Rates 

• An algorithm’s time requirements can be 
measured as a function of the problem size 

– Number of nodes in a linked list 

– Size of an array 

– Number of items in a stack 

– Number of disks in the Towers of Hanoi problem 
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Algorithm Growth Rates – 2 
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•Algorithm A requires time proportional to n
2
 

•Algorithm B requires time proportional to n 



Algorithm Growth Rates – 3 

• An algorithm’s growth rate enables comparison of one 
algorithm with another 

• Example 
– if, algorithm A requires time proportional to n2, and 

algorithm B requires time proportional to n 

– algorithm B is faster than algorithm A  
– n2 and n are growth-rate functions 
– Algorithm A is O(n2) - order n2 
– Algorithm B is O(n) - order n 

• Growth-rate function f(n) 
– mathematical function used to specify an algorithm’s 

order in terms of the size of the problem 
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Order-of-Magnitude Analysis and Big 
O Notation 
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Figure 9-3a  A comparison of growth-rate functions: (a) in tabular form 



Order-of-Magnitude Analysis and Big 
O Notation 
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Figure 9-3b  A comparison of growth-rate functions: (b) in graphical form 



Order-of-Magnitude Analysis and Big 
O Notation 

• Order of growth of some common functions 

– O(C) < O(log(n)) < O(n) < O(n * log(n)) < O(n2) < 
O(n3) < O(2n) < O(3n) < O(n!) < O(nn) 

• Properties of growth-rate functions 

– O(n3 + 3n) is O(n3): ignore low-order terms 

– O(5 f(n)) = O(f(n)): ignore multiplicative constant 
in the high-order term 

– O(f(n)) + O(g(n)) = O(f(n) + g(n)) 
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Keeping Your Perspective 

• Only significant differences in efficiency are 
interesting 

• Frequency of operations 

– when choosing an ADT’s implementation, consider 
how frequently particular ADT operations occur in 
a given application 

– however, some seldom-used but critical 
operations must be efficient 
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Keeping Your Perspective 

• If the problem size is always small, you can 
probably ignore an algorithm’s efficiency 
– order-of-magnitude analysis focuses on large 

problems 

• Weigh the trade-offs between an algorithm’s 
time requirements and its memory 
requirements 

• Compare algorithms for both style and 
efficiency 
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Sequential Search 

• Sequential search 
– look at each item in the data collection in turn 
– stop when the desired item is found, or the end of the 

data is reached 
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int search(const int a[ ], int number_used, int target) { 

       int index = 0; bool found = false; 

       while ((!found) && (index < number_used)) { 

              if (target == a[index]) 

                     found = true; 

              else 

                      Index++; 

        } 

       if (found)   return index; 

       else    return 1; 

} 



Efficiency of Sequential Search 

• Worst case: O(n) 

– key value not present, we search the entire list to 
prove failure 

• Average case: O(n) 

– all positions for the key being equally likely 

• Best case: O(1) 

– key value happens to be first 

 

25 



The Efficiency of Searching Algorithms 

• Binary search of a sorted array 
– Strategy 

• Repeatedly divide the array in half 

• Determine which half could contain the item, and 
discard the other half 

– Efficiency 
• Worst case: O(log2n) 

• For large arrays, the binary search has an enormous 
advantage over a sequential search 

– At most 20 comparisons to search an array of one million 
items 
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Sorting Algorithms and Their Efficiency 

• Sorting 
– A process that organizes a collection of data into 

either ascending or descending order 

– The sort key is the data item that we consider when 
sorting a data collection 

• Sorting algorithm types 
– comparison based 

• bubble sort, insertion sort, quick sort, etc. 

– address calculation 
• radix sort 
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Sorting Algorithms and Their Efficiency 

• Categories of sorting algorithms 

– An internal sort  

• Requires that the collection of data fit entirely in the 
computer’s main memory 

– An external sort 

• The collection of data will not fit in the computer’s 
main memory all at once, but must reside in secondary 
storage 

28 



for index=0 to size-2 { 

    select min/max element from among A[index], …, A[size-1]; 

    swap(A[index], min); 

} 

Selection Sort 

• Strategy 
– Place the largest (or smallest) item in its correct place 
– Place the next largest (or next smallest) item in its correct 

place, and so on 

• Algorithm 
 
 
 
• Analysis  

– worst case: O(n2), average case:  O(n2) 
– does not depend on the initial arrangement of the data 
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Selection Sort 
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Figure 9-4  A selection sort of an array of five integers 



Bubble Sort 

• Strategy 

– compare adjacent elements and exchange them if 
they are out of order 

• moves the largest (or smallest) elements to the end of 
the array 

– repeat this process  

• eventually sorts the array into ascending (or 
descending) order 

• Analysis: worst case: O(n2), best case:  O(n) 
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Bubble Sort – algorithm 

for i = 1 to size -- 1   do 

     for index = 1 to size -- i do 

           if A[index] < A[index1] 

                swap(A[index], A[index1]); 

     endfor; 

endfor; 
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Bubble Sort 
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Figure 9-5 

The first two passes of a bubble sort of an array of five integers: (a) pass 1; (b) pass 2 



Insertion Sort 

• Strategy 
– Partition array in two regions: sorted and unsorted 

• initially, entire array is in unsorted region 

• take each item from the unsorted region and insert it into its 
correct position in the sorted region 

• each pass shrinks unsorted region by 1 and grows sorted 
region by 1 

• Analysis 
– Worst case: O(n2) 

• Appropriate for small arrays due to its simplicity 

• Prohibitively inefficient for large arrays 
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Insertion Sort 
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Figure 9-7  An insertion sort of an array of five integers. 



Mergesort 

• A recursive sorting algorithm 

• Performance is independent of the initial 
order of the array items 

• Strategy 

– divide an array into halves 

– sort each half 

– merge the sorted halves into one sorted array 

– divide-and-conquer approach 
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Mergesort – Algorithm  

mergeSort(A,first,last) { 

 if (first < last) { 

  mid = (first + last)/2; 

  mergeSort(A, first, mid); 

  mergeSort(A, mid+1, last); 

  merge(A, first, mid, last) 

 } 

}  
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Mergesort 
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Mergesort 
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Mergesort – Properties 

• Needs a temporary array into which to copy 
elements during merging 
– doubles space requirement 

• Mergesort is stable 
– items with equal key values appear in the same 

order in the output array as in the input 

• Advantage 
– mergesort is an extremely fast algorithm 

• Analysis: worst / average case: O(n * log2n) 
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Quicksort 

• A recursive divide-and-conquer algorithm 
– given a linear data structure A with n records 

– divide A into sub-structures S1 and S2 

– sort S1 and S2 recursively 

• Algorithm 
– Base case: if |S|==1, S is already sorted 

– Recursive case: 
• divide A around a pivot value P into S1 and S2 , such that  

all elements of S1<=P and all elements of S2>=P 

• recursively sort S1 and S2 in place 
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Quicksort 

• Partition() 
–  (a) scans array, (b) chooses a pivot, (c) divides A 

around pivot, (d) returns pivot index 
– Invariant: items in S1 are all less than pivot, and items 

in S2 are all greater than or equal to pivot 

• Quicksort() 
– partitions A, sorts S1 and S2 recursively 
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Quicksort – Pivot Partitioning 

• Pivot selection and  array partition are 
fundamental work of algorithm 

• Pivot selection 

– perfect value: median of A[ ] 

• sort required to determine median (oops!) 

• approximation: If |A| > N, N==3 or N==5, use median of N 

– Heuristic approaches used instead 

• Choose A[first] OR A[last] OR A[mid] (mid = (first+last)/2) OR 
Random element 

• heuristics  equivalent if contents of A[ ] randomly arranged 
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Quicksort – Pivot Partitioning Example 

 A= [5,8,3,7,4,2,1,6], first =0, last =7 
• 1. A[first]: pivot = 5 
• 2. A[last]: pivot = 6 
• 3. A[mid]: mid =(0+7)/2=3, pivot = 7 
• 4. A[random()]: any key might be chosen 
• 5. A[medianof3]: median(A[first], A[mid], A[last]) is  
• median(5,7,6) = 6 
• ● Note that the median determination is itself a sort,  
• but only of a fixed number of items, which is thus  
• still O(1) 
• ● Good pivot selection 
• ● Computed in O(1) time and partitions A into  
• roughly equal parts S1 and S2 
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Quicksort 
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Figure 9-19  A worst-case partitioning with quicksort 



Quicksort 

• Analysis 

– Average case: O(n * log2n) 

– Worst case: O(n2)  

• When the array is already sorted and the smallest item 
is chosen as the pivot 

– Quicksort is usually extremely fast in practice 

– Even if the worst case occurs, quicksort’s 
performance is acceptable for moderately large 
arrays 
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Radix Sort 

• Strategy 

– Treats each data element as a character string 

– Repeatedly organizes the data into groups 
according to the ith character in each element 

• Analysis 

– Radix sort is O(n) 
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Radix Sort 

 

 

48 

Figure 9-21  A radix sort of eight integers 



A Comparison of Sorting Algorithms 
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Figure 9-22  Approximate growth rates of time required for eight sorting algorithms 



The STL Sorting Algorithms 

• Some sort functions in the STL library header 
<algorithm> 

– sort 

• Sorts a range of elements in ascending order by default 

– stable_sort 

• Sorts as above, but preserves original ordering of 
equivalent elements 
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The STL Sorting Algorithms 

– partial_sort 

• Sorts a range of elements and places them at the 
beginning of the range  

– nth_element 

• Partitions the elements of a range about the nth 
element 

• The two subranges are not sorted 

– partition 

• Partitions the elements of a range according to a given 
predicate 
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Summary 

• Order-of-magnitude analysis and Big O 
notation measure an algorithm’s time 
requirement as a function of the problem size 
by using a growth-rate function 

• To compare the efficiency of algorithms 

– Examine growth-rate functions when problems  
are large 

– Consider only significant differences in growth-
rate functions 
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Summary 

• Worst-case and average-case analyses 

– Worst-case analysis considers the maximum 
amount of work an algorithm will require on a 
problem of a given size 

– Average-case analysis considers the expected 
amount of work that an algorithm will require on 
a problem of a given size 
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Summary 

• Order-of-magnitude analysis can be the basis 
of your choice of an ADT implementation 

• Selection sort, bubble sort, and insertion sort 
are all O(n2) algorithms 

• Quicksort and mergesort are two very fast 
recursive sorting algorithms 
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