9 Algorithm Efficiency & Sorting

e Algorithm efficiency
* Big-O notation

e Searching algorithms
e Sorting algorithms

Overview

* Writing programs to solve problem consists of a large
number of decisions

— how to represent aspects of the problem for solution

— which of several approaches to a given solution
component to use

* |f several algorithms are available for solving a given
problem, the developer must choose among them

* |f several ADTs can be used to represent a given set of
problem data
— which ADT should be used?

— how will ADT choice affect algorithm choice?

Overview — 2

If a given ADT (i.e. stack or queue) is attractive as
part of a solution

How will the ADT implement affect the
program's:
— correctness and performance?

Several goals must be balanced by a developer in
producing a solution to a problem

— correctness, clarity, and efficient use of computer
resources to produce the best performance

How is solution performance best measured?
— time and space

Overview — 3

 The order of importance is, generally,
— correctness
— efficiency
— clarity
e Clarity of expression is qualitative and somewhat
dependent on perception by the reader
— developer salary costs dominate many software projects

— time efficiency of understanding code written by others
can thus have a significant monetary implication

* Focus of this chapter is execution efficiency
— mostly, run-time (some times, memory space)

/' Measuring Algorithmic Efficiency

* Analysis of algorithms

— provides tools for contrasting the efficiency of different
methods of solution

 Comparison of algorithms
— should focus on significant differences in efficiency

— should not consider reductions in computing costs due to
clever coding tricks

e Difficult to compare programs instead of algorithms
— how are the algorithms coded?
— what computer should you use?
— what data should the programs use?

Analyzing Algorithmic Cost

* Viewed abstractly, an algorithm is a sequence of steps
— Algorithm A {S1; S2;Sm1; Sm }

* The total cost of the algorithm will thus, obviously, be
the total cost of the algorithm's m steps

— assume we have a function giving cost of each statement
Cost (S;) = execution cost of S, for-all i, 1 <1<m
e Total cost of the algorithm's m steps would thus be:
Cost (A) = Y%, Cost (Si)

=’ Analyzing Algorithmic Cost — 2

 However, an algorithm can be applied to a wide
variety of problems and data sizes

— so we want a cost function for the algorithm A that
takes the data set size n into account

Cost (A,n) = X7 (X1"(Cost (S)))
* Several factors complicate things

— conditional statements: cost of evaluating condition
and branch taken

— loops: cost is sum of each of its iterations
— recursion: may require solving a recurrence equation

.

Analyzing Algorithmic Cost — 3

* Do not attempt to accumulate a precise
orediction for program execution time,
pecause

— far too many complicating factors: compiler
instructions output, variation with specific data

sets, target hardware speed
* Provides an approximation, an order of
magnitude estimate, that permits fair
comparison of one algorithm's behavior
against that of another

e Various behavior bounds are of interest

— best case, average case, worst case

* Worst-case analysis

— A determination of the maximum amount of time that
an algorithm requires to solve problems of size n

* Average-case analysis

— A determination of the average amount of time that
an algorithm requires to solve problems of size n

* Best-case analysis

— A determination of the minimum amount of time that
an algorithm requires to solve problems of size n

%> Analyzing Algorithmic Cost —5

 Complexity measures can be calculated in terms of
— T(n): time complexity and S(n): space complexity
e Basic model of computation used
— sequential computer (one statement at a time)
— all data require same amount of storage in memory
— each datum in memory can be accessed in constant time
— each basic operation can be executed in constant time
Note that all of these assumptions are incorrect!
— good for this purpose

e Calculations we want are order of magnitude

= Example — Linked List Traversal

, Node *cur = head, /[assignment op
* Assumptions while (cur != NULL) // comparisons op
C, = cost of assign. cout << cur—item |
_ << endl; /[write op
C, = cost of compare cur—next: /| assignment op
C, = cost of write)

* Consider the number of operations for n items
T(n) = (n+1)C, + (n+1)C, + nC,
= (C,+C,+C5)n + (C+C,) =K;n + K,
* Says, algorithm is of linear complexity

— work done grows linearly with n but also involves
constants

* Number of comparisons
Tg(n) =1 (or 3?)
T,(n)=n
Ta(n) = (n+1)/2

* |n general, what
developers worry about
the most is that this is
O(n) algorithm

— more precise analysis is
nice but rarely influences
algorithmic decision

) Example — Sequential Search

Seq_Search(A: array, key: integer);
1=1;
while i < n and AJi] # key do
I=i+1
endwhile;
ifi<n
then return(i)
else return(0)
endif:
end Sequential _Search;

Bounding Functions

To provide a guaranteed bound on how much work is
involved in applying an algorithm A to n items

— we find a bounding function f(n) such that
T(n) < f(n),Vn

It is often easier to satisfy a less stringent constraint by
finding an elementary function f(n) such that

T(n) <k * f(n), for sufficiently largen
This is denoted by the asymptotic big-O notation
Algorithm A is O(n) says

— that complexity of A is no worse than k*n as n grows
sufficiently large

Asymptotic Upper Bound

Defn: A function f is positive if f(n) > 0,Vvn >0
Defn: Given a positive function f(n), then
fn) =0(gn))
iff there exist constants k>0 and n, > 0 such that
f(n) <kxgn),vn>n,
Thus, g(n) is an asymptotic bounding function for the
work done by the algorithm
k and n, can be any constants

— can lead to unsatisfactory conclusions if they are very large
and a developer's data set is relatively small

=% Asymptotic Upper Bound — 2

e Example: show that: 2n? — 3n + 10 = 0(n?)
Observe that
2n—3n+10<2n?+10,n > 1
2n? —3n+10<2n?2+10,n*’n > 1
2n?—3n+10< 12n4,n>1

* Thus, expression is O(n?) fork =12 and n,> 1 (also k =
3 and ny>1, BTW)

— algorithm efficiency is typically a concern for large
problems only

Then, O(f(n)) information helps choose a set of final
candidates and direct measurement helps final choice

Algorithm Growth Rates

* An algorithm’s time requirements can be
measured as a function of the problem size

— Number of nodes in a linked list

— Size of an array

— Number of items in a stack

— Number of disks in the Towers of Hanoi problem

Algorithm Growth Rates — 2

Algorithm A requires n?/5 seconds

Algorithm B requires 5* n seconds

Seconds

2I5
n
*Algorithm A requires time proportional to n’

*Algorithm B requires time proportional to »

Algorithm Growth Rates — 3

e An algorithm’s growth rate enables comparison of one
algorithm with another

e Example

— if, algorithm A requires time proportional to n” and
algorithm B requires time proportional to n

— algorithm B is faster than algorithm A
2 .

— n” and n are growth-rate functions

— Algorithm A is O(nz) - order n’

— Algorithm B is O(n) - order n

* Growth-rate function f(n)

— mathematical function used to specify an algorithm’s
order in terms of the size of the problem

rder-of-Magnitude Analysis and Big
O Notation

(a) n
r A A
Function 10 100 1,000 10,000 100,000 1,000,000
1 1 1 1 1 1 1
log,n 3 6 9 13 16 19
n 10 102 103 104 10° 106
n *log,n | 30 664 9,965 10° 106 107
n? 102 104 108 108 1010 1012
n3 102 106 10° 1012 10" 1018
n 1 03 1030 1 0301 103,010 1030,103 10301,030

Figure 9-3a A comparison of growth-rate functions: (a) in tabular form

100 A

75

50 A

Value of growth-rate function

25 A

rder-of-Magnitude Analysis and Big

O Notation

2” n3 nz
n *log,n
n
log,n
1 1 I 1
5 10 15 20

Figure 9-3b A comparison of growth-rate functions: (b) in graphical form

N Drder-of-Magnitude Analysis and Big
| O Notation

* Order of growth of some common functions
— O(C) < O(log(n)) < O(n) < O(n * log(n)) < O(n?) <
O(n3) < 0(2") < O(3") < O(n!) < O(n")
* Properties of growth-rate functions
— O(n3 + 3n) is O(n3): ignore low-order terms

— O(5 f(n)) = O(f(n)): ignore multiplicative constant
in the high-order term

— O(f(n)) + O(g(n)) = O(f(n) + g(n))

Keeping Your Perspective

* Only significant differences in efficiency are
Interesting

* Frequency of operations

— when choosing an ADT’s implementation, consider
how frequently particular ADT operations occur in
a given application

— however, some seldom-used but critical
operations must be efficient

Keeping Your Perspective

* |f the problem size is always small, you can
probably ignore an algorithm’s efficiency
— order-of-magnitude analysis focuses on large
problems

* Weigh the trade-offs between an algorithm’s
time requirements and its memory
requirements

 Compare algorithms for both style and
efficiency

Sequential Search

e Sequential search
— look at each item in the data collection in turn

— stop when the desired item is found, or the end of the
data is reached

Int search(const int a[], int number_used, int target) {
Int index = 0; bool found = false;
while ((found) && (index < number_used)) {
If (target == a[index])
found = true;
else
Index++;
}
If (found) return index;
else return 1;

W Efficiency of Sequential Search

* Worst case: O(n)

— key value not present, we search the entire list to
prove failure

* Average case: O(n)
— all positions for the key being equally likely

e Best case: O(1)

— key value happens to be first

* Binary search of a sorted array

— Strategy
* Repeatedly divide the array in half
* Determine which half could contain the item, and
discard the other half
— Efficiency
* Worst case: O(log,n)

* For large arrays, the binary search has an enormous
advantage over a sequential search

— At most 20 comparisons to search an array of one million
items

Y
>

KU
ﬂ/-.:

Borting Algorithms and Their Efficiency

s,

* Sorting

— A process that organizes a collection of data into
either ascending or descending order

— The sort key is the data item that we consider when
sorting a data collection
* Sorting algorithm types

— comparison based
* bubble sort, insertion sort, quick sort, etc.

— address calculation
* radix sort

; &

2Wgorting Algorithms and Their Efficiency

e Categories of sorting algorithms

— An internal sort

* Requires that the collection of data fit entirely in the
computer’s main memory

— An external sort

* The collection of data will not fit in the computer’s
main memory all at once, but must reside in secondary
storage

Selection Sort

* Strategy
— Place the largest (or smallest) item in its correct place

— Place the next largest (or next smallest) item in its correct
place, and so on

e Algorithm

for index=0 to size-2 {

select min/max element from among A[index], ..., A[size-1];
swap(A[index], min);

}
* Analysis

— worst case: O(n2), average case: O(n2)
— does not depend on the initial arrangement of the data

Selection Sort

Shaded elements are selected:
boldface elements are in order.

Initial array:

After 15t swap:
After 29 swap:
After 39 swap:

After 41 swap:

| 29[10] 14

-10‘ ‘13‘37\

[13] 10 [44] 29]37]

3] 10] 14

29 |37 |

[10]13]14

29 |37 |

Bubble Sort

* Strategy

— compare adjacent elements and exchange them if
they are out of order

* moves the largest (or smallest) elements to the end of
the array

— repeat this process

» eventually sorts the array into ascending (or
descending) order

* Analysis: worst case: O(n2), best case: O(n)

Bubble Sort — algorithm

fori=1tosize--1 do
forindex =1 to size --i do
if Alindex] < Alindex1]
swap(A[index], Alindex1]);
endfor;
endfor;

Bubble Sort

(a) Pass 1 (b) Pass 2

10114113129 | 37

Figure 9-5

The first two passes of a bubble sort of an array of five integers: (a) pass 1; (b) pass 2

Insertion Sort

* Strategy

— Partition array in two regions: sorted and unsorted
* initially, entire array is in unsorted region

* take each item from the unsorted region and insert it into its
correct position in the sorted region

* each pass shrinks unsorted region by 1 and grows sorted
region by 1

* Analysis
— Worst case: O(n2)

* Appropriate for small arrays due to its simplicity
* Prohibitively inefficient for large arrays

Insertion Sort

Initial array: 37113 Copy 10
37113 Shift 29
10 [29 [37] 13 Insert 10; copy 14
b
1012912913713 Shift 29
10114 | 29 .E Insert 14; copy 37, insert 37 on top of itself
1014 29] 37 [ii5] Copy 13
A A A
1011411429 |37 Shift 37, 29, 14
Sorted array: 101314129137 Insert 13

Figure 9-7 An insertion sort of an array of five integers.

Mergesort

* A recursive sorting algorithm

* Performance is independent of the initial
order of the array items

* Strategy
— divide an array into halves
— sort each half
— merge the sorted halves into one sorted array
— divide-and-conquer approach

Mergesort — Algorithm

mergeSort(A,first,last) {
if (first < last) {
mid = (first + last)/2;
mergeSort(A, first, mid);
mergeSort(A, mid+1, last);
merge(A, first, mid, last)

Mergesort

theArray: | 8 1 41 3| 2 Divide the array in half

1 4 8 2 3 Sort the halves

Merge the halves:
a. 1 <2,somove 1 from left half to tempArray
b. 4 > 2, so move 2 from right half to tempArray
c. 4 > 3, so move 3 from right half to tempArray
d. Right half is finished, so move rest of left
half to tempArray

Temporary array
tempArray:

Copy temporary array back into
original array

theArray: 1

N
w
RN
(00

Mergesort

381627139 | 12| 27 R
38 | 16 | 27 39 | 12| 27
- T T > Recursive calls to mergesort
38 | 16 27 39 | 12 27
/ V4
/ /
38 || 16 / 39 || 12 /
\\ e // \\ 7 // <
16 | 38 /) 12 | 39 ,/
- / — /
=__. —_,
16 | 27 | 38 121 27 | 39 \- Merge steps
121162712738 39

Mergesort — Properties

Needs a temporary array into which to copy
elements during merging

— doubles space requirement

Mergesort is stable

— items with equal key values appear in the same
order in the output array as in the input

Advantage
— mergesort is an extremely fast algorithm

Analysis: worst / average case: O(n * log2n)

Quicksort

* A recursive divide-and-conquer algorithm
— given a linear data structure A with n records
— divide A into sub-structures S, and S,
—sort S; and S, recursively

e Algorithm
— Base case: if |S|==1, Sis already sorted

— Recursive case:

* divide A around a pivot value P into S, and S, , such that
all elements of S,<=P and all elements of S,>=P

* recursively sort S1 and S2 in place

Quicksort

* Partition()

— (a) scans array, (b) chooses a pivot, (c) divides A
around pivot, (d) returns pivot index

— Invariant: items in S, are all less than pivot, and items
in S, are all greater than or equal to pivot

* Quicksort()
— partitions A, sorts S, and S, recursively

Pivot S, S, Unknown
AL N N
4 Y Y N\
Y
P <p 2p ?
firstUnknown last

first lastSl1

% Quicksort — Pivot Partitioning

* Pivot selection and array partition are
fundamental work of algorithm

* Pivot selection
— perfect value: median of A[]

* sort required to determine median (oops!)
e approximation: If |A| > N, N==3 or N==5, use median of N
— Heuristic approaches used instead

e Choose Alfirst] OR A[last] OR A[mid] (mid = (first+last)/2) OR
Random element

* heuristics equivalent if contents of A[| randomly arranged

wl@j

= |
4

O uicksort — Pivot Partitioning Example

A=[5,8,3,7,4,2,1,6], first =0, last =7
e 1. Affirst]: pivot=5
e 2.AJlast]: pivot=6
e 3. A[mid]: mid =(0+7)/2=3, pivot =7
e 4. Alrandom()]: any key might be chosen
5. A[medianof3]: median(A[first], A[mid], A[last]) is
* median(5,7,6) =6
o Note that the median determination is itself a sort,
* but only of a fixed number of items, which is thus
e still O(1)
o Good pivot selection
« o Computed in O(1) time and partitions A into
* roughly equal parts S1 and S2

44

Quicksort

Originalarray: | 5 | 6 | 7 | 8| 9

Pivot

5
Pivot] S, Unknown

5 s | o S, is empty
Pivot S, Unknown

5 6 | 7 9 Sq is empty
Pivot S, Unknown
5 6 7 8 S-| IS empty

Unknown
7 8 9

Pivot

First partition: 5 6 | 7 8 9 5S¢ is empty

4 comparisons, 0 exchanges

Figure 9-19 A worst-case partitioning with quicksort

Quicksort

* Analysis
— Average case: O(n * log2n)
— Worst case: O(n2)

* When the array is already sorted and the smallest item
is chosen as the pivot

— Quicksort is usually extremely fast in practice

— Even if the worst case occurs, quicksort’s
performance is acceptable for moderately large
arrays

Radix Sort

* Strategy
— Treats each data element as a character string

— Repeatedly organizes the data into groups
according to the ith character in each element

* Analysis
— Radix sort is O(n)

Radix Sort

0123, 2154, 0222, 0004, 0283, 1560, 1061, 2150 Original integers

(1560, 2150) (1061) (0222) (0123, 0283) (2154, 0004) Grouped by fourth digit
1560, 2150, 1061, 0222, 0123, 0283, 2154, 0004 Combined

(0004) (0222,0123) (2150, 2154) (1560, 1061) (0283) Grouped by third digit
0004, 0222, 0123, 2150, 2154, 1560, 1061, 0283 Combined

(0004, 1061) (0123, 2150, 2154) (0222, 0283) (1560) Grouped by second digit
0004, 1061, 0123, 2150, 2154, 0222, 0283, 1560 Combined

(0004, 0123, 0222, 0283) (1061, 1560) (2150, 2154) Grouped by first digit
0004, 0123, 0222, 0283, 1061, 1560, 2150, 2154 Combined (sorted)

Figure 9-21 Aradix sort of eight integers

48

A Comparison of Sorting Algorithms

Worst case Average case
Selection sort n? n?
Bubble sort n? n?
Insertion sort n? n?
Mergesort n*logn n*logn
Quicksort n’ n *log n
Radix sort n n
Treesort rt n? n*logn
n*logn n*logn

Figure 9-22 Approximate growth rates of time required for eight sorting algorithms

49

The STL Sorting Algorithms

 Some sort functions in the STL library header
<algorithm>
— sort
* Sorts a range of elements in ascending order by default

— stable_sort

* Sorts as above, but preserves original ordering of
equivalent elements

The STL Sorting Algorithms

— partial_sort

» Sorts a range of elements and places them at the
beginning of the range

— nth_element

* Partitions the elements of a range about the nth
element

* The two subranges are not sorted
— partition

* Partitions the elements of a range according to a given
predicate

Summary

* Order-of-magnitude analysis and Big O
notation measure an algorithm’s time
requirement as a function of the problem size
by using a growth-rate function

* To compare the efficiency of algorithms

— Examine growth-rate functions when problems
are large

— Consider only significant differences in growth-
rate functions

Summary

* Worst-case and average-case analyses

— Worst-case analysis considers the maximum
amount of work an algorithm will require on a
problem of a given size

— Average-case analysis considers the expected
amount of work that an algorithm will require on
a problem of a given size

Summary

* Order-of-magnitude analysis can be the basis
of your choice of an ADT implementation

e Selection sort, bubble sort, and insertion sort
are all O(n?) algorithms

* Quicksort and mergesort are two very fast
recursive sorting algorithms

