
1EECS 768 Virtual Machines

Process Virtual Machines – Outline

• Structure of a process VM
• Compatibility issues
• Guest-to-host state mapping issues
• Emulation of

– memory, instructions, exceptions, and OS calls

• Profiling
• Optimization issues

2EECS 768 Virtual Machines

Background

• Compiled applications
are bound by the ABI
to only work for one
OS-ISA pair
– process VMs

overcome this
limitation

• Example: IA-32 EL
process VM with
interfaces for
Windows and Linux

HOST OS

Disk

file sharing

guest
process

create

host

process

guest

process

runtime
runtime

guest

process

runtime

host

process

3EECS 768 Virtual Machines

Structure of a PVM

Initialization

Code Cache

Code Cache
Manager

OS Call Emulator
Exception
Emulation

Application Memory Image

Host Operating System

Initialize
signals

Exception
Side Tables

Emulation Engine

Interpreter

Translator

Profile
Data

4EECS 768 Virtual Machines

Structure of a PVM (2)

• loader
– load guest code and data

– load runtime code

• initialization block
– allocate memory

– establish signal handlers

• emulation engine
– interpreter and/or translator

• code cache manager
– manage translated guest code

– flush outdated translations

• profile database
– hold program profile info.

– block/edge/invocation profile

• OS call emulator
– translate OS calls

– translate OS responses

• exception emulator
– handle signals

– form precise state

• side tables
– structures used during

emulation

5EECS 768 Virtual Machines

Compatibility

• How accurately does the emulation of the
guest’s functional behavior compare with its
behavior on its native platform
– two systems are compatible if, in response to the same

sequence of input values, they give the same sequence
of output values

• Intrinsic compatibility
– precise behavior, difficult to achieve

• Extrinsic compatibility
– accuracy within some well-defined constraints

– acceptable for most systems

6EECS 768 Virtual Machines

Intrinsic Compatibility

• Compatibility requires 100% accuracy for all
programs all the time
– compatible for all possible input sequences
– no further verification needed to confirm emulation

accuracy
– difficult to achieve

• Based entirely on the properties of the VM.
• e.g., hardware designers use intrinsic

compatibility to guaranty micro-architectural
ISA compatibility.

7EECS 768 Virtual Machines

Extrinsic Compatibility

• Compatible for well-defined subset of input
sequences
– based on VM implementation, architecture/OS

specifications, and external guarantees or certificates
– some burden on the users to ensure that guarantees

are met

• e.g., VM may only guaranty accuracy for
programs compiled with a particular compiler

• e.g., program may be compatible as long as it
has limited resource requirements

8EECS 768 Virtual Machines

Verifying Compatibility

• Too complex to theoretically prove

– except in simple systems

• In practice
– use informal reasoning

– use test suites

• Sufficient conditions
– decompose compatibility into parts

– allows the reasoning process to be simplified

• Assume state of guest is 1 to 1 mapped to host
– but same “type” of state is not necessary

9EECS 768 Virtual Machines

A Compatibility Framework

• The need for a framework
– rigorously proving that compatibility holds is hard
– allow to reason about compatibility issues
– decide when/where during program execution should

compatibility be guaranteed/verified

• Model of program execution
– machine state, defined by registers, memory, I/O, etc.
– operations that change state

10EECS 768 Virtual Machines

A Compatibility Framework (2)

• Guaranty isomorphic mapping between guest and
host states

Si S

Si' Sj'

Guest

Host

V(Si) V(S j)

e(Si)

e'(S i')

j

11EECS 768 Virtual Machines

Compatibility Framework (3)

• Managing (changes to) program state at two levels
– user-managed state

• main memory, registers
• straightforward mapping between guest and host states
• operated on by user-level instructions

– OS-managed state
• disk contents, I/O state, networks
• operated via OS calls, traps, interrupts
• operations can affect user-level state as well

12EECS 768 Virtual Machines

Compatibility Framework (4)

• Compatibility is only verified at points where
control is transferred between the user code and OS
– establish one-to-one mapping between control transfer points

in both native platform and VM

Host Operating System

OS Call
Emulator

Exception
Emulator

Emulation Engine

Application Memory Image

traps OS calls

Application Memory Image

Native Operating System

OS callstraps

13EECS 768 Virtual Machines

Compatibility Framework (5)

• Conditions for compatibility
– guest state should be equivalent to host state at

• control transfer from user instructions to OS

• control transfer from OS to user instructions

– all user-managed state must be compatible

– instruction-level equivalence not required

14EECS 768 Virtual Machines

Trap Compatibility

• If source traps, then target traps
• If target traps, then source would have trapped

– runtime can filter target traps, to remove false ones

• Page faults are special case
– page fault behavior is non-deterministic w.r.t. user process

. . .

r4  r6 + 1

r1  r2 + r3

r1  r4 + r5

r6  r1 * r7
…

trap? Remove
dead

assignment

. . .

R4  R6 + 1

R1  R4 + R5

R6  R1 * R7
…

Source Target

15EECS 768 Virtual Machines

Register State Compatibility

• At the time of an exception is the register state
exactly as in the real machine?
– including dead register values?

. . .
R1 <- R2 + R3
R9 <- R1 + R5
R6 <- R1 * R7
R3 <- R6 + 1
…

. . .
R1 <- R2 + R3
R6 <- R1 * R7
R9 <- R1 + R5
R3 <- R6 + 1
…

trap?
re-schedule

16EECS 768 Virtual Machines

Memory State Compatibility

• Memory state compatibility is maintained if, at
the time of a trap or interrupt, the contents of
memory are exactly the same in the translated
target program as in the original source program.

. . .
R7  R6 << 8

 A: mem (R6)  R1
 B: mem (R7)  R2

. . .

. . .
R7  R6 << 8

 B: mem (R7)  R2
 A: mem (R6)  R1

. . .
Protection fault

Source Target

17EECS 768 Virtual Machines

Memory Ordering Compatibility

• Maintain equivalent consistency model
• Important for multiprocessors

A = Flag = 0;

Process P1

A = 1;
Flag = 1;

Process P2

while (Flag == 0);
.... = A;

18EECS 768 Virtual Machines

Undefined Architecture Cases

• Some (most?) ISAs have undefined cases
– example: self-modifying code with I-caches

– unless special actions are performed, result may be
undefined

• Different, undefined behavior is compatible
behavior
– can be tricky – what if undefined behavior is different

from all existing implementations?

– what if existing implementations do the “logical” thing?
• e.g., self-modifying code works as “expected”

19EECS 768 Virtual Machines

Constructing a Process VM

• Mapping of user-managed state
– held in registers
– held in memory

• Perform emulation (operations to transform state)
– memory architecture emulation
– instruction emulation
– exception emulation
– OS emulation

20EECS 768 Virtual Machines

State Mapping

• Map user-managed
register & memory state
– guest data and code map

into host’s address space
– host address space includes

runtime data and code
– guest state does not have

to be maintained in the
same type of resource

• Register mapping
– straight-forward
– depends on number of

guest and host registers
Guest Code

Guest Data

VM Data

VM Code

Guest
Registers

Host Registers

Host ABI
Address
 Space

Host
Register
 Space

21EECS 768 Virtual Machines

Memory State Mapping

• Memory address space mapping
– map guest address space to host address space
– maintain protection requirements

• Methods – results in different performance and
flexibility levels
– software supported translation table
– direct translation

22EECS 768 Virtual Machines

Software Translation Tables

• VM software maintains
translation table
– map each guest memory

address to host address
– similar to hardware

page tables / TLBs
– used when all other

approaches fail
– provides most

flexibility and least
performance

translation
table

Guest
Application

Address
Space

Host
Application

Address
Space

VM
Software

23EECS 768 Virtual Machines

Software Translation Tables (2)

Initially, R1 holds source address
R30 holds base address of mapping table

srwi r29,r1,16 ;shift r1 right by 16
slwi r29,r29,2 ;convert to a byte address
lwzx r29,r29,r30 ;load block location in host memory
slwi r28,r1,16 ;shift left/right to zero out
srwi r28,r28,16 ;source block number
slwi r29,r29,16 ;shift up target block number
or r29,r28,r29 ;form address
lwz r2,0(r29) ;do load

24EECS 768 Virtual Machines

Direct Memory Translation

• Use underlying hardware
– guest memory allocated contiguous host space
– guest address space + runtime <= host address space
– minimal overhead, most performance

fixed non-zero offset zero offset

Guest
Application

Address
Space

Guest
Application

Address
Space

Runtime
Software

Guest
Application

Address
Space

Guest
Application

Address
Space

Runtime
Software

+base
addr

25EECS 768 Virtual Machines

Memory State Mapping – Summary

• Runtime + guest space <= host space
– direct memory translation
– can achieve performance and intrinsic compatibility

• Runtime + guest space > host space
– software translation
– will lose intrinsic compatibility, performance or both

• guest space == host space
– happens often, same-ISA dynamic translation
– no room for runtime

• use software translation, extrinsic compatibility

26EECS 768 Virtual Machines

Memory Architecture Emulation

• Address space structure
– segmented or flat

• Access privilege types
– combination of N, R, W, E

• Protection / allocation
granularity
– size of the smalled block of

memory that can be
allocated by the OS

• Aspects of the ABI memory architecture that
need to be emulated. 7FFF FFFF

7FFE FFFF
Reserved by System

0001 0000

0000 0000
Reserved by System

Committed

Free

Committed

Reserved

Free

Committed

Reserved

27EECS 768 Virtual Machines

Guest Memory Protection

• Access restrictions placed on different regions of
memory.

• Can be achieved during software supported
translation
– slow and inefficient, but very flexible

• Host supported memory protection
– runtime sets access restrictions using OS system calls
– OS delivers signals to runtime on access violations
– protection faults reported to runtime
– requires host OS support

28EECS 768 Virtual Machines

Host OS Support

• Direct mechnism
– runtime sets protection levels via system calls (mprotect)

– protection faults trap to handler in runtime (SIGSEGV)

• Indirect mechanism
– mapping region of memory to file with access protections

• mmap() in linux

Virtual Machine's
Virtual Address Space

references succeed

references cause
page faults

references succeed

writes cause
protection faults

Free Pages

Physical Memory File
(VM Memory)

Read-Only Mappings

29EECS 768 Virtual Machines

Guest Memory Protection (2)

• Implementation issues
– host and guest ISAs provide different protection types

• host provides a superset of guest protections
• host provides a subset of guest protections

– host and guest support different page sizes
• difficult to map access privileges
• simple if guest page size is a multiple of host page size

Host Page

Guest Page
(Code)

Guest Page
(Data)

30EECS 768 Virtual Machines

Self-Referencing/Modifying Code

• Program may either refer to itself, or attempt to
modify itself.

• Solution
– maintain guest program code memory image
– load/store addresses are mapped into source memory

region
– loads from code region are ok
– writes to code region trigger segfault

• flush relevant cache entry, enable writes to code region,
interpret the code block that caused the fault, re-enable
write-protection

31EECS 768 Virtual Machines

Self-Referencing/Modifying Code (2)

trans-
lator

original code translated code

data

self reference

trans-
lator

original code translated code

data

write protected

Self – referencing code Self – modifying code

32EECS 768 Virtual Machines

Protecting Runtime Memory

• Runtime and guest application share the same
process address space
– guest program can read/write portions of the runtime

• Addressing
– software translation tables
– hardware address translation, software protection

checking
– hardware for both address translation and protection

checking
• OS sets protections for emulation mode and runtime mode
• see Figure 3.16

33EECS 768 Virtual Machines

Protecting Runtime Memory (2)
• Change protections on

context switch from runtime
to translated code

• Translated code can only
access guest memory image

• Translated code cannot jump
outside code cache
(emulation s/w sets up links)

• Multiple system calls at
context switch time
– high overhead

Guest Code

Guest Data

Runtime

Data

Runtime

Code

N

R/W

Code Cache

Ex

R/W

N

R/W

R/W Guest Code

Guest Data

Runtime

Data

Runtime

Code

N

N

Code Cache

N

Ex

N

R/W

R

Runtime mode Emulation mode

34EECS 768 Virtual Machines

Instruction Emulation

• Techniques for instruction emulation
– interpretation, binary translation

• Start-up time (S)
– cost of translating code for emulation
– one time cost for translating code

• Steady-state performance (T)
– cost of emulation
– average rate at which instructions are emulated

35EECS 768 Virtual Machines

Instruction Emulation (2)

• Overall performance (S + NT)
– N is the number of times an instruction is executed
– S=1000, T=2/20, tradeoff point=55ins

0

500

1000

1500

2000

2500

10 20 30 40 50 60 70 80 90 100

T
o

ta
l E

m
u

la
ti

o
n

 T
im

e

interpretation

binary translation

36EECS 768 Virtual Machines

Staged Emulation

• Application of emulation techniques in stages
– start with low start-up overhead tech. (interpretation)
– profile data determines hot dynamic blocks of code
– if execution count > threshold, then compile
– place in code cache, update links and side table entries
– optimize hotter code further ?

Binary Memory Image Code CacheProfile Data

Interpreter

Translator/
Optimizer

Emulation
Manager

37EECS 768 Virtual Machines

Emulation Engine Execution Flow

Code Cache

interpret until
branch or jump

lookup target
in map table

check profile
database

is block hot?

miss

jump to block in
code cache

Translate Block

yes

hit

startup

no

increment profile
data for target

block

Space available in
cache

no; call cache manager

Set up links with
other blocks; Insert
block in code cache

trap condition

trap (via signal)

Create entry in map
table

yes

OS call

OS call

call exception
emulator

call OS
emulator

return from exception emulator

return from OS emulator

non-
linked
block

38EECS 768 Virtual Machines

Exception Emulation

• Types of exceptions
– trap: produced by a specific program instruction during

program execution
– interrupt: an external event, not associated with a particular

instruction
• Precise exceptions

– all prior instructions have committed
– none of the following instructions have committed

• Further division of exceptions for a process VM
– ABI visible: exceptions returned to the application via an OS

signal
– ABI invisible: ABI is unaware of the exception’s occurrence

39EECS 768 Virtual Machines

Trap Detection

• Detecting trap conditions
– interpretive trap detection: checking trap conditions

during interpretation routine
– trap condition detected by the host OS

• Implementation
– runtime registers all exceptions with the host OS
– all signals registered by the guest program are recorded
– on receiving OS signal, if signal is guest-registered then

send to guest signal-handling code
– else, runtime handles the trap condition
– special tables needed during binary translation

40EECS 768 Virtual Machines

Interrupt Handling

• Interrupts are not associated with any instruction
– a small response latency is acceptable

– maintaining precise state easier than traps

• Receiving interrupt during interpretation
– complete current routine
– service interrupt

• Receiving interrupt during binary translation
– execution may not be at an interruptible point
– precise recovery at arbitrary points difficult
– no idea when control will return to the EM from the

code cache

41EECS 768 Virtual Machines

Interrupt Handling (cont…)

• Solving the interrupt response time problem
during binary translation
– on interrupt, control is passed to runtime
– runtime unlinks the current translation block from

the next block
– control is returned back to translated code
– control returns to runtime after end of current block
– runtime handles the interrupt

42EECS 768 Virtual Machines

Determining Precise State

• Interpreter
– easy, each source instruction has its own routine
– source PC and state updated in each instruction routine

• Binary Translation
– hard, first determine the source PC
– source PC not continuously updated
– maintain reverse translation table mapping target PC to

source PC, inefficient
– target instruction can map to multiple source

instructions
– target code may be optimized, and re-ordered

43EECS 768 Virtual Machines

Reverse Translation Table

block A

block B

code cache

.

.

.
block N

side table

source code

trap occurs

signal returns target PC

search
side table

find corresponding source
PC

1

2

3
target PCs

Start PC Src PC1End PC Src PC2 Src PCm

Start PC Src PC1End PC Src PC2 Src PCn

Start PC Src PC1End PC Src PC2 Src PCz

4

source PCs

44EECS 768 Virtual Machines

Restoring Precise State

• Register state (during binary translation)
– 2 cases, based on if source-to-target register

mapping remains constant throughout emulation
– if not constant, side tables can be maintained, or

analyze from start of translation block again

• Memory State (during binary translation)
– changed by store instructions
– do not reorder stores, or other potentially trapping

instructions with stores
– restricts optimizations

45EECS 768 Virtual Machines

OS Call Emulation

• A PVM emulates the function or semantics of
the guest’s OS calls
– not emulate individual instructions in the guest OS

• Different from instruction emulation
– given enough time, any function can be performed

on the input operands to produce a result
– most ISAs perform same functions, ISA emulation

is always possible
– with OS, it is possible that providing some host

function is impossible, operation semantic mismatch

46EECS 768 Virtual Machines

OS Call Emulation (2)

• Different source and target OS
– semantic translation of mapping required
– may be difficult or impossible
– ad-hoc process on a case-by-case basis

• Same source and target OS
– emulate the guest calling convention
– guest system call jumps to runtime, which provides

wrapper code

47EECS 768 Virtual Machines

OS Call Emulation (3)

• Same source and target OS (cont...)
– runtime may handle some guest OS calls itself

(signals, memory management)
– handling abnormal conditions like callbacks, runtime

maintaining program control, lack of documentation

Source code segment
.
.
s_inst1
s_inst2
s_system_call X
s_inst4
s_inst5
.
.

Target code segment
.
.
t_inst1
t_inst2
jump runtime
t_inst4
t_inst5
.
.

Runtime

wrapper code
copy/convert arg1
copy/convert arg2
.
.
t_system_call X
copy/convert return val
return to t_inst4

Binary
Translation

48EECS 768 Virtual Machines

Code Cache

• Storage space for holding translated guest code.
• Code cache is different from ordinary caches

– code cache blocks do not have a fixed size
– code cache blocks are chained with each other
– code cache blocks are not backed up
– has implications on code cache management

(replacement) algorithms used

• Code cache space is limited
– blocks need to be replaced if cache fills up

49EECS 768 Virtual Machines

Code Cache Replacement

• Least recently used (LRU)
– good is theory, problematic in practice
– overhead of keeping track of the LRU block
– backpointers are needed to eliminate chained links
– fragmentation problem due to variable-sized blocks
– unlink blocks before removing

• maintain backpointers

50EECS 768 Virtual Machines

Code Cache Back Pointers

block A

block B

block C

code cache

Source PC Target PC Back Ptrs

Source PC Target PC Back Ptr

Source PC Target PC Back Ptr

Source PC Target PC Back Ptr

Source PC Target PC Back Ptr

hash table

.

.

.
block N

51EECS 768 Virtual Machines

Code Cache Replacement (2)

• Cache flush
– when full or on phase change
– gets rid of stale blocks
– minimal maintainence overhead
– even actively used blocks may be removed, and may

need re-translation

detect working set
change and flush

ne
w

 tr
an

sl
a t

io
n s

time

52EECS 768 Virtual Machines

Code Cache Replacement (3)

• First In First Out (FIFO)
– non-fragmenting, as cache can be maintained as a

circular buffer
– alleviates LRU problems at lower hit rates
– needs to maintain backpointers

• Course-grained FIFO
– partition code cache into large FIFO blocks
– Links only maintained between blocks that span

replacement boundaries (see Figure on next slide)

53EECS 768 Virtual Machines

Code Cache Replacement (4)

• Course-grain FIFO (cont...)

.

.

.

FIFO
 block A

FIFO
 block B

FIFO
 block D

Code Cache Backpointer
Tables

54EECS 768 Virtual Machines

PVM Performance

• Important for VM acceptance
– optimization framework along with staged

emulation

• Difference from static optimization
– conservative, over small code regions, traces,

superblocks
– high level semantic information not available
– profiling, architectural information can be used

• Will study in next chapter …

	Process Virtual Machines – Outline
	Background
	Structure of a PVM
	Slide 4
	Compatibility
	Intrinsic Compatibility
	Extrinsic Compatibility
	Slide 8
	A Compatibility Framework
	Slide 10
	Compatibility Framework – PVM
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	State Mapping
	State Mapping (cont…)
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Self-Referencing/Modifying Code
	Slide 31
	Slide 32
	Slide 33
	Instruction Emulation
	Slide 35
	Staged Emulation
	Slide 37
	Exception Emulation
	Trap Detection
	Interrupt Handling
	Interrupt Handling (cont…)
	Determining Precise State
	Slide 43
	Restoring Precise State
	OS Emulation
	OS Emulation (cont…)
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	PVM Performance

