
Cloneable JVM: A New Approach to Start
Isolated Java Applications Faster

Kiyokuni Kawachiya Kazunori Ogata Daniel Silva ∗

Tamiya Onodera Hideaki Komatsu Toshio Nakatani

IBM Research, Tokyo Research Laboratory
1623-14, Shimotsuruma, Yamato, Kanagawa 242-8502, Japan

<kawatiya@jp.ibm.com>

Abstract
Java has been successful particularly for writing applications in
the server environment. However, isolation of multiple applications
has not been efficiently achieved in Java. Many customers require
that their applications are guarded by independent OS processes,
but starting a Java application with a new process results in a long
sequence of initializations being repeated each time. To date, there
has been no way to quickly start a new Java application as an
isolated OS process.

In this paper, we propose a new isolation approach called Clone-
able JVM to eliminate this startup overhead in Java. The key idea is
to create a new Java application by copying, or cloning, the already-
initialized image of the primary JVM process. Since the clone is
already initialized, it can begin actual operations immediately as
a new isolated process. This cloning abstraction can support new
scenarios for Java, such as user isolation and transaction isolation.

We implemented a prototype of the Cloneable JVM by modi-
fying a production JVM on Linux, which provides a new API for
cloning constructed on the Isolate API defined in JSR 121. Using
this cloning API, several Java applications, including a large pro-
duction J2EE application server, were modified to demonstrate the
isolation scenarios. Evaluations using these prototypes showed that
new ready-to-serve Java applications can start up as a new process
in less than 5 seconds, which is 4 to 170 times faster than starting
these applications from scratch.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—frameworks

General Terms Languages, Design, Performance, Experimenta-
tion

Keywords Java, startup overhead, cloning, isolation

∗ Daniel Silva joined this project as an intern from Northeastern University,
and is currently a Ph.D. student at Harvard University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’07, June 13–15, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-630-1/07/0006. . . $5.00

1. Introduction
Java [18] has become very popular, especially in server-side en-
vironments such as those used for Web services. One important
feature required in the server environment is to run each applica-
tion in isolation, in order to protect it against other applications’
failures. The most preferred and proven approach for this isola-
tion is to run each application on an independent process, which
is strongly guarded by the underlying operating system. However,
this approach has not been efficient in Java, since starting a Java
application as a new process takes a long time. For example, IBM’s
WebSphere Application Server (WAS) [22] Version 5.1.1, which is
middleware for hosting Java 2 Enterprise Edition (J2EE) [45] appli-
cations, takes about 14 seconds to start up on a 3.06 GHz dual Xeon
PC, even if no J2EE application is installed. The situation is worse
when J2EE applications are installed, and may take several min-
utes in actual configurations. This slow startup problem prevents
Java from being used for various isolation scenarios.

Figure 1 illustrates why the startup of Java applications is so
slow. The upper bar (JVM 1) shows the image of the tasks1 per-
formed when a Java application starts up. Before the application
becomes ready-to-serve, the Java virtual machine (JVM) [32] com-
pletes a long startup sequence with actions such as loading and ini-
tializing classes, creating objects, constructing internal data struc-
tures, compiling bytecodes, and setting up the middleware. For ex-
ample, about 6,000 classes need to be loaded and initialized to start
WAS 5.1.1, even without any J2EE application. All Java applica-
tions pay this startup overhead tax every time they are started.

One existing approach to reduce the startup overhead is to share
and reuse data structures among multiple JVMs [3, 4, 9, 11, 12,
20, 44]. If the loaded class structures and JIT-compiled native code
blocks are reused through sharing, subsequent applications can be
started faster. However, this sharing approach does not completely
eliminate the startup overhead. Because each Java application is
started from its entry point, there still remains a significant over-
head, such as class initialization and object creation, as shown in
the lower bar (JVM 2) of Figure 1. For example, in the case of
WAS 5.1.1, class loading took about 25% and JIT compilation took
10% of the startup time. This implies that 65% of the startup over-
head still remains even if the loaded classes and JIT-compiled code
blocks are aggressively shared and reused among JVMs. In addi-
tion, to implement such data sharing, both the JVM and JIT com-

1 Figures 1 and 2 show the breakdown of the startup overhead into several
major tasks, but do not mean that these tasks are performed sequentially.
In addition, each task contains processing for the middleware and the
application as well as for the Java environment itself.

1

Load JVM DLLs Load classes

Initialize classes

Create objects

JIT compilation

Setup middleware

Start the serviceCreate internal structures

JVM 1

JVM 2

Time

Startup overhead

Many initializations are still necessary, even if loaded classes
and compiled code blocks are shared with JVM 1.

(25%) (10%)

The application is
ready-to-serve

Figure 1. Startup overhead of Java application, most of which still
remains even if some internal data structures are shared.

piler must be extensively modified, possibly degrading execution
performance of the application.

The Isolate API defined by the Java Community Process as
JSR 121 [26] has the same limitation, since each Isolate must start
an application from its entry point. A new execution abstraction
should be introduced to reduce the startup overhead further.

In this paper, we propose a new isolation approach called
cloning to remove almost all of the startup overhead by copying
the initialized image of the primary JVM process into the new
process after the target Java application is initialized. Figure 2 il-
lustrates this cloning startup, where the JVMs 2 to 4 are started
almost instantly by cloning the already-initialized JVM 1. Each
cloned environment contains the initialized image of the appli-
cation, and the application is resumed from the point of cloning
instead of being started from its entry point. Therefore, it can begin
actual operations after a few reconfiguration steps without redoing
the initialization. Since each cloned environment is guarded by an
independent OS process, new scenarios such as user isolation and
transaction isolation become possible with this cloning abstraction.

We implemented the cloning function by modifying a produc-
tion JVM as a Cloneable JVM, without modifying the underly-
ing operating system. With this approach, we could implement the
cloning function efficiently, since the internal structure of the JVM
could be freely adjusted for cloning. Using a new cloning API pro-
vided by the Cloneable JVM, several Java applications were mod-
ified to demonstrate the isolation scenarios. Evaluation using these
prototypes showed that new ready-to-serve Java applications can
start up as a new process in less than 5 seconds, which is 4 to
170 times faster than starting these applications from scratch.

To the best of the authors’ knowledge, this is the first successful
demonstration of cloning the entire Java environment for isolation.
The contributions of this paper are:
• Proposal of a new execution abstraction, cloning, where an

initialized Java application is duplicated to start a new isolated
environment almost instantly.

• The descriptions of several scenarios made possible by the
cloning.

• Detailed design and implementation of the Cloneable JVM and
the cloning API on a production-level JVM.

• Evaluation of the cloning using real clone-aware applications as
well as micro-benchmarks.

The rest of the paper is organized as follows. Section 2 explains
the key concepts of cloning by presenting several usage scenarios,
a programming model, and design issues. Section 3 describes the
necessary modifications to the JVM layer, and Section 4 shows
actual Java applications that exploit cloning. Section 5 presents the
effectiveness of cloning with the results of various measurements.
Section 6 discusses related work, and Section 7 offers conclusions.

JVM 1
(Master)

Startup overhead

JVM 2

Clones

Reconfigure the appl.

Start the service

Copy the ready-
to-serve image

Load JVM DLLs Load classes

Initialize classes

Create objects

JIT compilation

Setup middleware

(Start the service)Create internal structures

Time

JVM 3

JVM 4

Figure 2. Create new Java execution environments by cloning.

2. Key Concept
The cloning presented in this paper is an aggressive approach
that tries to eliminate all startup overhead. The key idea is to
create a new Java environment by copying the image of an already-
initialized, ready-to-serve Java application, including its internal
structures such as classes, objects, and JIT-compiled code blocks.

The idea resembles the fork system call of Unix-style operating
systems, which creates a new process by duplicating the memory
image of the current process. However, that is usually a transient
state until a new program is loaded by using exec. In addition, a
Java execution environment cannot be cloned simply by fork since
it does not duplicate several OS resources such as threads, mutexes,
and file management structures, as will be discussed in Section 3.2.

Before going into the implementation details, in this section
we show how the cloning concept can be used with actual Java
applications.

2.1 Cloning Scenarios

By using cloning, a new ready-to-serve Java environment can be
started immediately as a new OS process separated from the orig-
inal environment. Therefore, various new usage scenarios become
possible, some of which are shown in Figure 3.

The first scenario is user isolation. Cloning can provide a Java
application environment for each user isolated from those of other
users. Figure 3(a) shows an example flow of this scenario. The ap-
plication is started in advance of the real operations up to the point
where initialization has been completed. When a user requests the
application to perform the operation, a clone is created from that
image and dedicated to the user. The cloned Java environments are
executed as independent processes, so they do not interfere with
each other. A user’s application can be properly isolated from fail-
ure in other users’ applications.

The second scenario is transaction isolation. In transaction pro-
cessing, there is a requirement to process each transaction on a
clean and reliable environment [7]. With cloning, such isolation
is realized by processing each transaction in a cloned transaction
processing environment. Figure 3(b) shows the flow of this sce-
nario, where each transaction is executed on dedicated middleware,
without being affected by other transactions. It is also possible to
process multiple transactions in parallel if they are independent or
appropriately synchronized. This scenario is also useful to provide
a scripting environment by Java. By cloning, each script processing
can be started immediately in a dedicated clean environment.

The third scenario is failure recovery, as shown in Figure 3(c).
In this scenario, after the application is initialized, a clone is created
to perform the actual operations. The master monitors the status
of the cloned environment, instead of performing the operations.
When it detects abnormal termination of the clone, it creates a new
clone, which can take over the operation immediately.

2

Clone 1

Process

Java VM

Application

Java VM

Master

Time
Process

Clone 2

4. Dump the snapshot

Snapshot

Application

Java VM

Process

Java VM

Snapshot

3. Continue the service2. Clone periodically

(d) Checkpointing

1. Long running
 Java application

- The states can be
 checked without
 stopping the service.

User1's
data

App. Server

Java VM

App. Server
(ready-to-serve)

Java VM

Master

Clone 1

Clone 2

Process
1. Long initialization to
 set up the App. Server

2. Clone!

3. Read user1's
 data

4. Start the service
 for user1

User1

Isolated

Time
Process

Process

User2's
data

App. Server

Java VM

User2

(a) User isolation

- Isolated per-user server
 can be started almost
 instantly.

Middleware
(ready-to-serve)

Java VM

Master
2. Clone!

Isolated

Time
Process

Clone 2

Process

Transac-
tion 2

Middleware

Java VM

Clone 1

Process

Transac-
tion 1

Middleware

4. Wait for the termination

Java VM

3. Process a transaction

1. Long initialization to
 set up the middleware

(b) Transaction isolation

- Each transaction can
 be processed on a clean
 environment.

Application
(ready-to-serve)

Java VM

Master

Time
Process

Clone 2

Process

Clone 1

Process

Application
(clone)

Java VM

Application
(clone)

Java VM

6. Restart the service3. Start the service 4. Failure!

1. Long initialization to
 set up the application 2. Clone! 5. Detect the termination

(c) Failure recovery

- Failed service can be
 taken over immediately.

Figure 3. Several scenarios using cloning.

class Isolate
— is modified to provide the cloning functions.

static Isolate cloneMe()
— clones the current Java environment as an Isolate,

and returns different values to the master and clone.
void start()

— starts the created Isolate (clone).
int waitFor()

— waits for the termination of the specified Isolate (clone),
and returns its exit code.

abstract class CloneAction
— is a convenient class to manage CloneAction callbacks.

static CloneActionList \
addCloneAction(CloneAction a, Object o, int when)

— adds an action invoked while the environment is cloned.
The argument when is one of BEFORE_CLONE_IN_MASTER,
AFTER_CLONE_IN_MASTER, or AFTER_CLONE_IN_CLONE.

abstract boolean perform(Object o, int when)
— defines a method invoked before or after the cloning.

Table 1. The provided cloning API, which is an extension of the
Isolate API.

The fourth scenario is checkpointing, as shown in Figure 3(d).
This scenario clones a long-running Java application periodically
and uses the clones for dumping snapshots or for checking the in-
ternal consistency. A similar idea was reported for C as Libckpt
[36]. In this scenario, the dumping or checking can be done com-
pletely in the cloned environment without stopping the original ap-
plication. In addition, the cloned snapshot can also be used as a
hot-standby image to quickly take over the application if the mas-
ter crashes.

2.2 Programming Model

As shown in the above scenarios, in the cloning execution model,
the master environment is started in advance. The cloning is initi-
ated when the master environment invokes a method for cloning at
a cloning point, after the necessary initialization is finished.

Table 1 summarizes our API for cloning. Since the primary
purpose of cloning is to create isolated Java environments, we
defined the cloning API by extending the Isolate API designed in
JSR 121 [26]. The cloneMe method added to the Isolate class
is the key function for the cloning, and creates a new process by
copying the current Java environment.

Figure 4 shows an example of a simple clone-aware Java pro-
gram using this API, implementing the transaction-isolation sce-
nario explained above. The vertical bars indicate the portion added
for cloning. After the master finished the long initialization, it reads
a request at line 9, and creates a clone of the initialized environ-
ment by calling the cloneMe method at line 12. The master and
cloned environments are essentially the same, but different values
are returned by the cloneMe method. The value null is returned
to the clone, while an object of the Isolate class is returned to the
master in order to allow the master to control the clone. Therefore,
by checking the returned value, a program can distinguish between
the environments in which the program is running and change the
processing after the cloning. In this example, the master starts the
clone at line 14, and the clone processes the request at line 17.
Since the initialization has already been done, the requested opera-
tion is started immediately in the clone dedicated to it. The master
can wait for the termination of the clone by invoking the waitFor
method, shown as a comment at line 15. However, in this exam-
ple, it just moves to the next iteration for reading the next request.
There is no problem even if the variable req is modified while the
previous request is being processed, since it was already copied to
another process.

3

1 import javax.isolate.*;
2
3 class CloneAwareServer {
4 :
5 public static void main(String[] args) {
6 initializeServer(); //Long initialization
7
8 while (true) { //Master loop
9 req = readARequest(); // read a request
10

| 11 // Create a clone for processing the request
| 12 Isolate clone = Isolate.cloneMe();//cloning point
| 13 if (clone != null) { //Master
| 14 clone.start(); // start the cloned JVM
| 15 //clone.waitFor(); // then wait, if necessary
| 16 } else { //Clone

17 processARequest(req);// process the request
| 18 System.exit(0); // then exit
| 19 }

20 } // while (true)
21 }
22 }

Figure 4. Simple clone-aware Java program, based on the
transaction-isolation scenario.

By the time the master environment reaches the cloning point,
the JVM has initialized many of the states based on the command-
line parameters and property files. Likewise, the middleware and
the application have also initialized their states based on various
configuration files. We assume that the clone basically inherits and
uses these states as they exist. However, for some scenarios, it may
be necessary to reconfigure some states, such as network connec-
tions, in the cloned environment. Each clone-aware application is
responsible for such reconfiguration, but the cloning API includes a
function to assist it. The application can extend the CloneAction
abstract class and register its instance with an object that should
be reconfigured through the addCloneAction method. The per-
form method of the class will then be called back before or after
the cloning in the master or cloned environment, as specified by
the when parameter. What should be reconfigured depends on each
application and scenario. If the application already supports some
kind of reconfiguration, for example through the OSGi framework
[34] or Java Management Extensions [24], we can utilize those
functions for our purposes.

Since our cloning API is based on the concept of Isolates, we
can also use the standard inter-Isolate communication mechanisms
defined in JSR 121 [26], such as Link and IsolateStatus, to
control the cloned environment.

2.3 Design Issues

As shown above, various new isolation scenarios become possible
using the cloning abstraction, since it can remove almost all of
the startup overhead. Next, we discuss several design issues of the
cloning functions.

The first, fundamental issue is how to isolate the cloned Java
environment. We chose to create a new OS process for each Java
environment, which is the most preferred and proven approach for
isolation. It might be possible to run multiple Java environments in
a single OS process [20]. This approach is suitable for reducing
memory consumption, but controlling the resource consumption
for each environment is very difficult, which may also degrade
the execution performance. In addition, failure in one environment
such as an OutOfMemoryError may affect other environments.

The second issue is how to control the cloning. As explained
in the previous section, we chose an approach to modify each
application to be clone-aware, by exposing the necessary cloning

API. Another approach might be to control the cloning outside
of the target application, which is very attractive since it could
minimize modifications of the application. However, it is usually
difficult to determine the cloning point, where the application is
initialized and ready for cloning, from outside of the application.
Moreover, each application needs to be modified anyway, because
only the application knows what must be reconfigured after the
cloning.

The third issue is where to implement the cloning function.
We chose the JVM layer as a primary module to implement the
functions, because (i) all activities of Java applications pass through
the JVM layer, and (ii) the internal structure of the JVM can be
easily adjusted to be suitable for cloning. It might be possible to
modify the operating system rather than the JVM, but the execution
performance might suffer because such OS-level functions would
need to be more generic to support arbitrary processes other than
just a JVM. In addition, distributing a modified OS is more difficult
and potentially less reliable than distributing a modified JVM, even
though kernel extension techniques can be used. Therefore, in our
implementation, the underlying operating system was not modified
at all.

Another possible approach is to use the emerging hypervisor
technologies [15, 17]. This approach makes it possible to clone
arbitrary applications, but introduces performance degradation and
additional overhead of copying the full image of the guest OS.
In addition, the concept of cloning is not exactly same as the
dump/restore or migration supported by hypervisors. In cloning,
multiple execution environments run in parallel as shown in Fig-
ure 3, which introduces the necessity of reconfiguration. This
means that, even in hypervisor-based cloning, applications need
to be modified since only they know what should be reconfigured.

3. The Cloneable JVM
The cloneMe method described in Section 2.2 is the key function
for the cloning provided by the modified JVM, called the Clone-
able JVM2. In this section, we describe the details of the JVM-
level modifications for implementing the cloning, which consists of
(1) copying the memory image and (2) regenerating OS resources.

3.1 Copying the Memory Image

The first cloning step in the JVM layer is to create a new process
by copying the memory image of the master environment. Each
memory region must be copied to the same address of the new pro-
cess to avoid pointer relocation. In addition to JVM data structures
such as classes, this step also copies the initialized Java heap image,
threads’ execution stacks, and DLL code and data, so no initializa-
tion will be needed in the cloned environment.

On Unix-style operating systems, the fork system call can
be used for this step. In recent systems, the memory copy for
fork is performed virtually by using copy-on-write [38], where
the memory pages are shared as read-only between the master and
the newly created processes until modified. Therefore, the process
can be created significantly faster because the contents of memory
pages need not actually be copied. The actual data copying will
occur incrementally on a memory page basis when one of the
processes tries to write into the read-only page.

Even on an operating system that does not support fork, the
memory copy step can be implemented using a memory allocation
interface while explicitly specifying the logical addresses, such as

2 The word Cloneable is already used in Java to indicate a class whose
object can be duplicated by clone method. We adopt this word in the
meaning that the JVM itself can be duplicated. Actually it is a misspelling
of “clonable”, but we use the same misspelling to maintain consistency in
Java.

4

OS resources
Resource A

Cloneable JVM

Resource B

1
2
3

1
2
3

reference
regeninfo

Resource
management

tables

Internal
data structures

States will be
dumped

(dump-method)

Activities are
logged

(log-method)

Process

User level

OS level

Memory image

Figure 5. Resource management tables to control all OS resources.

VirtualAlloc in Windows. This is because our target is not an
arbitrary program but just a Java execution environment, and we
can modify the JVM code to record all of the allocated addresses.
While a cloned environment is created, the new process allocates
the memory regions explicitly at the recorded addresses and copies
the contents from the master environment.

3.2 Regenerating OS Resources

With the memory copy step explained above, most of the internal
states of the Java execution environment are copied, such as the
Java heap and class structures. However, this is not enough for the
new process to run as a new Java environment. It is necessary to
bring the copied memory image to life by reproducing states inside
the OS kernel. Examples of such states are the register contexts
of the threads, the internal states of any mutexes, and the internal
file management structures. These are usually first class resources
provided by the operating system, so we call them OS resources
here.

Regeneration of these OS resources in the new environment is
the second cloning step in the JVM layer, where two issues must
be solved. The first issue is that the states of the OS resources exist
inside the OS kernel and may not be represented in the memory
image of a process. The memory image usually contains just han-
dles (or descriptors) to control the OS resources. The second issue
is that even if OS resources are regenerated in the cloned environ-
ment, the values of their handles may be different from those in the
master environment.

To implement the OS resource regeneration while solving these
problems, we modified the JVM code to centrally manage all OS
resources through resource management tables, as shown in Fig-
ure 5. In Java, OS resources are not directly accessed from an ap-
plication but are accessed through the JVM. Therefore, the cloning
mechanism can control all of the OS resources used in the Java
execution environment through these tables. If a Java application
uses its own non-Java native code through the Java Native Interface
[31] and the code directly uses some OS resource, the application
may not be correctly cloned since that resource is not managed by
the Cloneable JVM. This problem does not occur for “100% Pure
Java” applications.

An entry of the resource management table corresponds to an
OS resource and consists of two fields, reference and regen-
info. The reference field contains a handle for the OS resource.
The JVM code is modified to access the OS resources indirectly
through the tables. Only the table entry contains the actual handle,
while other data structures in the JVM are modified to point to the
table entry. The other field, regeninfo, is used to store informa-
tion necessary for regenerating the OS resource. In the new envi-
ronment, the Cloneable JVM regenerates the OS resources using
the information in the fields, which are copied by the memory copy
step, and stores the new handles into the corresponding reference

ProcessProcess

Clone 4. Regenerate
 from the dump

5. Regenerate
 from the log

Master
OS

resources

R
es

ou
rc

e
A

Memory image

R
es

ou
rc

e
B

Internal
states

1. Logging the
 activities

2. Dump the
 status

3. Copy the
 memory image

regeninforegeninfo

Figure 6. Cloning steps in the JVM layer.

fields. Since handles are used only in the reference fields, it does
not cause any problem even if their values are different from those
in the master environment.

There are two methods to store information into the regen-
info field. First, we use the dump-method for OS resources whose
internal states can be retrieved from a user-mode program, which is
a JVM in our situation. For such resources, their states are retrieved
and dumped into the regeninfo field just before copying the
memory image. Unfortunately, for some OS resources, we cannot
retrieve their internal states. For such resources, we use the log-
method, where operations on the resources in the JVM are hooked
and logged into the regeninfo field. The logging overhead is
small compared to that of system calls to control the OS resource.

3.3 Implementation Details on Linux

By using these memory copy and OS resource regeneration tech-
niques as explained above, we can create a new Java execution
environment as a clone of the master Java environment. Figure 6
summarizes the general cloning steps in the JVM layer, where Re-
source A is regenerated by the dump-method and Resource B is
regenerated by the log-method.

We developed the Cloneable JVM by modifying the IBM J9
Java virtual machine [19] for Linux. The memory copy is per-
formed by fork, and the threads and file management structures
are regenerated in the new environment. In Linux, the fork system
call copies other OS resources used in the JVM such as the mu-
texes, so it was not necessary to explicitly regenerate them in the
prototype.

Figure 7 shows the actual flow of cloning in the prototype.
When the application requests cloning by calling the Isolate.-
cloneMe method, the Cloneable JVM first sets a global cloning flag
which indicates that cloning is underway. To lock up the memory
image that should be copied, all running threads other than the
thread that requested the cloning, called the initiator thread here,
are suspended (M1). During the suspension process, each thread
executes the setjmp function to dump its register context into the
corresponding regeninfo field, and waits for a resume message
from the initiator thread (M1a).

The J9 JVM already has a mechanism to cooperatively suspend
threads at a GC-safe point for a stop-the-world type of garbage col-
lection, and we used this mechanism for the suspension. However,
a thread blocking at a system call such as accept is not suspended
by this mechanism since such a thread is marked as GC-safe before
issuing the system call and need not be suspended for GC. For the
cloning, such threads must also be suspended to dump their con-
texts. Therefore, in the current implementation, we specify a time-
out for the blocking system calls in order to periodically check the
cloning flag. Currently, the timeout is set to 1 second, so the cloning

5

Turn on a global cloning flag, and
suspend all other threads.

Create a new process while copying
the memory image, by using fork.

Regenerate other threads.

Each suspending thread dumps its
context by setjmp, and waits for a
resume message.

Each created thread reads the
dumped context by using longjmp,
and waits for a resume message.

Each waiting thread resumes
processing.

Return to the application with an
object to control the clone.

START

END (master)

Master environment

Parent or
child?

Parent
Child

Turn off the cloning flag, and send
resume messages to the other threads.

Each waiting thread resumes
processing.

Return to the application with null.

END (clone)

Turn off the cloning flag, and send
resume messages to the other threads.

Dump the offset locations of opened
files by using lseek.

Regenerate file management structures
by reopening the files and setting the
offset locations by using lseek.

Process

Process

Executed by the initiator thread

Executed by other threads

M1

M2

M3

M4

M5

M1a

M4a

C1

C2

C3

Wait for the Isolate.start request.

C4

C5

C1a

C4a

Cloned environment

Figure 7. Flow of cloning in the Cloneable JVM on Linux.

time may be extended to several seconds in the worst case. For us-
age scenarios that require significantly fast cloning (of less than
1 second), an alternative implementation may need to be pursued,
for example, to force the blocking thread’s suspension by a signal
or interrupt. In addition, the JVM creates several helper threads,
which are not bound to Java threads, to help with GC or JIT com-
pilation. These must also be suspended, so we modified the JVM
code for each helper thread to check the cloning flag for suspension.

When all threads are suspended and their contexts have been
dumped, the initiator thread prepares information for regenerating
the file management structures in the new environment. The Clone-
able JVM regenerates this OS resource by reopening each file and
setting its seek pointer. Here, the seek pointer value of each file is
retrieved by the lseek system call and stored into the correspond-
ing regeninfo field using the dump-method (M2). For the file
name and the access flag, we modified the JVM code to record the
information into the regeninfo field using the log-method when
each file is opened.

After these dump processing steps are finished, the initiator
thread creates a new process by using the fork system call (M3).
After the process creation, the master’s initiator thread turns off the
cloning flag and sends a resume message to each thread (M4) to
restart the execution of all of the threads (M4a). An object of class
Isolate to control the cloned environment is created and returned
to the application (M5).

In the new process created by the fork, only the initiator thread
is running, so it first regenerates the other threads (C1). The threads
are created one-by-one and execute the longjmp function to read
the register context dumped in the regeninfo field (C1a). This
longjmp forces the thread to return to the point where the set-
jmp was executed. There each thread waits for a resume message
from the initiator thread. Note that the stack area of the regenerated

thread is also switched into the copied memory area by executing
the longjmp because the stack pointer register is also replaced.

File descriptors, which are the handles used to access files, have
been automatically copied to the new process by the fork. How-
ever, each file management structure in the OS kernel represented
by a file descriptor is now shared between the master and new en-
vironments. To avoid interference, the initiator thread in the new
environment regenerates the file management structures (C2). This
regeneration is done for regular files opened as read-only, by re-
opening each file and setting its seek pointer using lseek with the
information dumped in the regeninfo field. File descriptors which
represent writable files or connected sockets are closed in the new
environment. Clone-aware applications are responsible for recon-
figuring these resources appropriately in the cloned environment.

After all of the threads and file management structures are
regenerated, the initiator thread in the cloned environment waits for
a start request from the master environment (C3), which will be sent
when the master invokes the start method for the returned Iso-
late object. On receiving that request, the initiator thread turns off
the cloning flag and sends a resume message to each thread (C4).
In the new environment, the cloneMe method returns null to the
application that requested the cloning (C5).

These are all of the cloning steps that we have implemented in
the Cloneable JVM. A new Java process which has fully-initialized
states has been created, and starts running independently. This
implementation added about 5,000 lines3 to the JVM and class
libraries, which is very small compared to their total code size.

In the implementation of the Cloneable JVM for Linux shown
here, the memory copy is performed virtually by using copy-on-
write. Therefore, pages that are not modified after cloning by either
of the two environments remain shared as read-only, which can
reduce the overhead of actual memory copy and the system-wide
memory consumption. The J9 JVM manages the class data struc-
ture by dividing it into read-only portions and writable portions,
and the read-only portions can remain shared after the cloning.

If objects are moved by garbage collection, it causes additional
page separations by the copy-on-write. Since the copying-type GC
would cause immediate page separations, a traditional single heap
mark-and-sweep GC [27] was chosen for the Cloneable JVM. Al-
though not performed automatically in the cloning step, it is also
possible for each application to explicitly execute GC before the
cloning, to tidy up the Java heap area.

4. Clone-Aware Java Applications
By using the cloning API provided by the Cloneable JVM, a Java
application can create its clone almost instantly. However, since it
differs for each application and scenario how the cloning is used
and when the clone should be created, the application should be
slightly modified to be clone-aware, as explained in Section 2.2.

At present, we have already developed clone-aware prototypes
of several real Java applications. This section describes the usage
of cloning and the modifications in each application.

4.1 Clone-Aware HTTP Server

For the first experiment in cloning a real application, we chose
the Jigsaw HTTP server [49], an HTTP server written in Java,
developed and distributed by the World Wide Web Consortium
(W3C). We modified Jigsaw Version 2.2.4 and implemented a
failure-recovery scenario using cloning.

In the clone-aware Jigsaw, a clone is created at the point where
the initialization of creating objects and worker threads has finished
and just before starting the actual HTTP service. After cloning, the

3 This number does not include the changes we made separately to add the
Isolate API to the JVM, which was about 4,000 lines.

6

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000
Heap size actually used (MB)

T
im

e
fo

r
cl

on
in

g
(m

se
c)

#Threads=500

#Threads=200
#Threads=1

Figure 8. The time required to clone with various heap sizes actu-
ally used.

clone continues to perform the HTTP service, while the master
waits for the termination of the clone. If the clone terminates
abnormally, for example due to some erroneous servlet, the master
detects it and creates another clone to recover the HTTP service
immediately. This is possible because the master is isolated from
the clone and not affected by its abnormal termination.

Less than 100 lines were changed for the clone-aware modifica-
tion, which is very small compared to the approximately 160,000
lines of the original Jigsaw.

4.2 Clone-Aware XML Parser Generator

The next experiment was done with an XML parser generator,
which is a Java program that reads an XML Schema [50] and
generates the corresponding XML parser for validating XML data.
The version we used has about 90,000 lines of Java code and
requires a considerable amount of time to initialize the internal
states before compiling the specified XML Schema files.

In the clone-aware XML parser generator, after the initialization
is finished, a clone is created to compile each XML Schema file. For
each input file, the compilation is started immediately by a cloned
generator that has no need to be re-initialized. Fewer than 200 lines
were modified to make this application clone-aware.

Here, cloning provides a powerful mechanism to allow all of
the clones to run in parallel even if the original Java program is not
reentrant, since each clone is an independent Java environment that
shares no global data. This is considered to be a variation of the
transaction-isolation scenario shown in Section 2.

4.3 Clone-Aware Application Server

Although these first two clone-aware applications clearly illustrate
the feasibility of cloning, their startup times were relatively triv-
ial even without cloning. To demonstrate a noticeable reduction in
startup time, a larger scale Java program should be cloned. There-
fore, we modified IBM’s WebSphere Application Server (WAS)
[22] Version 5.1.1 to be clone-aware, based on the user-isolation
scenario explained in Section 2.1. As explained in Section 1, WAS
5.1.1 takes several minutes to start up in actual configurations, so it
had not been realistic to start a new server for each user who wants
to be isolated.

In our prototype of the clone-aware WAS, after all of the WAS
components and installed EJB applications are initialized, a special
thread is created to receive a cloning request. When the cloning
request is sent from a user, the thread executes the cloneMe
method and a new WAS environment is created by cloning. The
cloned WAS first reconfigures all of the network ports to have non-
conflicting port numbers, then starts operating as an application

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500
Number of threads

T
im

e
fo

r
cl

on
in

g
(m

se
c) Used heap=1000MB

Used heap=500MB
Used heap=0MB

Figure 9. The time required to clone with various numbers of
threads.

server dedicated to the user. It is also possible to create multiple
WAS clones by sending the cloning request repeatedly.

The clone-aware WAS was created by adding about 900 lines.
With these changes, we succeeded in cloning the WAS with un-
modified EJB applications, which will be described and evaluated
in Section 5.3.

5. Evaluation
Using the Cloneable JVM and the clone-aware applications de-
scribed in the previous sections, we measured the performance of
cloning from various viewpoints. All of the measurements were
done on a 3.06 GHz dual Xeon PC with 4 GB of memory, running
the Red Hat Enterprise Linux 3 AS operating system. The Java heap
size was set to 1,024 MB.

5.1 Micro-Benchmarks

First, the performance of cloning at the JVM level was evaluated.
The time taken to create a clone by calling cloneMe was measured
for various JVM internal states. It turned out that the cloning time
is mainly affected by the size of allocated Java heap area and by the
number of Java threads.

Figure 8 shows the time required to clone when the total size
of objects created by the test program was changed from 0 MB to
1,000 MB. The cases of 1 thread, 200 threads, and 500 threads
are shown. The graphs are almost linear, with the cloning time
increasing about 13.6 ms for every 100 MB of heap space that was
used. For example, it took about 143 ms for a 1,000 MB heap with
1 thread. This is because the memory copy cost is increased for the
larger heap sizes. In our prototype on Linux, the memory copy is
performed using copy-on-write and the contents of the heap are not
actually copied at the time of cloning. Only the page management
structures need to be prepared to share the contents as read-only.
Therefore, the cloning cost is quite small even for the larger heap
sizes.

The fast memory copy by copy-on-write may not be available
for other operating systems. For such environments, the memory
contents must actually be copied during the first step of cloning.
To estimate the cost of such cloning with copying, the speed of
memory copy was measured. It took about 111 ms to copy 100 MB
of page-aligned data using the memcpy library function in the same
Linux environment. Because this value would add up, the cloning
cost is estimated to be 125 ms for every 100 MB of heap, which
is about 10 times slower than when copy-on-write is used. Based
on this, it is expected that cloning a very large application without
using copy-on-write should take about 1 to 2 seconds. Whether

7

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8
Number of warehouses

sl
ow

 <
=

B

en
ch

m
ar

k
sc

or
e

 =
>

 f
as

t

Original JVM
Cloned JVM

Figure 10. pBOB scores in original and cloned environments.

this is acceptable or not depends on the specific scenario using the
cloning, but it is still much faster than starting the application from
scratch.

Another factor that affects the cloning time is the number of
threads. Figure 9 shows the time required to clone when the number
of Java threads was increased from 1 to 500. The cases where the
total size of the created objects is 0 MB, 500 MB, and 1,000 MB
are shown. The cloning time increased about 0.9 ms for every
10 threads, reaching 50 ms with 500 threads even if no objects
are allocated by the test program. This is due to the costs for
suspending, regenerating, and resuming the increasing numbers of
threads. Although the impact of the number of threads is not so
large compared to the allocated heap size, it should be taken into
account for applications that create many worker threads.

5.2 Execution Performance

Next, the execution performance of the Cloneable JVM was mea-
sured. For the measurement, we used a benchmark program called
pBOB (Portable Business Object Benchmark) [6], which consists
of about 30,000 lines of Java. The pBOB is a multithreaded busi-
ness transaction benchmark used to measure the performance of
Java execution environments. Scalability can also be measured by
changing the number of emulated warehouses. In the normal con-
figuration, after the benchmark environment is initialized, 30 sec-
onds of ramp-up execution is performed, and then the actual bench-
mark is executed for 2 minutes. The ramp-up is done to stabilize the
execution environment, and the major methods for the benchmark
are JIT-compiled during this phase.

We modified the benchmark to create a clone just before the
actual measurement is started after the initialization and the ramp-
up execution are completed. Since a log file is opened during the
initialization phase, we added reconfiguration code for the cloned
environment to open a new log file and to copy the contents of the
original log file. Although the master and clone can run simulta-
neously, that makes the benchmark score meaningless. Therefore
in the clone-aware pBOB, the clone first executes the benchmark,
while the master waits for the termination of the clone. The total
changes needed to make it clone-aware were about 200 lines.

Using the pBOB benchmark, the scores on the original unmodi-
fied JVM and those on the cloned JVM were measured. The bench-
mark was performed separately for each of 1 to 8 warehouses. Fig-
ure 10 shows the results. The score on the cloned JVM was 1 to 3%
worse than the original JVM. The reason is believed to be the over-
head for making the JVM cloneable, such as using the resource
management tables. Another possible reason is the overhead for
separating pages by copy-on-write during the benchmark. Anyway,
the performance degradation is very small compared to the slow-

0

10000

20000

30000

40000

50000

60000

70000

0 1 2 3 4 5 6 7
Time after calling cloneMe (sec)

C
um

ul
at

iv
e

of

 s
ep

ar
at

ed
 p

ag
es

GC occurred here.

The case if all pages are
separated immediately.

Figure 11. Copy-on-write activities in the cloned pBOB.

downs from other approaches such as modifying the JIT compiler
to generate sharable code or executing the JVM and OS on a hy-
pervisor.

Figure 11 shows the page separation activity caused by the
copy-on-write during the pBOB benchmark on the cloned JVM.
This measurement was done for the case of 1 warehouse with the
heap size specified as 256 MB because of the limitations of the
evaluation system. The x-axis is the elapsed time from the clone-
Me call, and the y-axis shows the cumulative number of separated
pages.

The cloning was completed at 47 ms, and the benchmark mea-
surement started. The pBOB benchmark continuously creates ob-
jects during its execution. Therefore, most of the 256 MB heap
area, which is 65,536 pages, were written to and therefore actually
copied in the first 7 seconds of the measurement period. However,
this is much slower than copying the whole heap at once. Because
copying the 256 MB of memory takes only 280 ms, it can be said
that the page separation occurred gradually during the benchmark
execution. We can say that the copy-on-write is functioning effec-
tively for the initial goal of providing a new ready-to-serve Java
environment more quickly.

Another interesting point in Figure 11 is in the period from 5.78
to 5.85 seconds, where garbage collection was performed. This was
the first GC after the clone was created, so the number of separated
pages increased because the GC work area was modified. However,
excessive page separation did not occur, because the mark-and-
sweep GC does not move the live objects.

For the pBOB measurements, almost all of the heap area was
separated eventually because pBOB creates many objects after
cloning. However, we believe that most pages will remain shared
for an application in which most objects are created during the
initialization phase and most of them are read-only, or in scenar-
ios where the operations of the cloned environment are finished
quickly, as expected in the transaction-isolation scenario shown in
Section 2.

5.3 Startup Time Reduction

The main objective of cloning is to create isolated ready-to-serve
Java environments instantly. Therefore, the startup times were mea-
sured for the clone-aware applications described in Section 4 and
the clone-aware pBOB used in Section 5.2. Here, the startup is de-
fined as the period until the application becomes ready-to-serve.

Figure 12 summarizes the reduction of startup time by cloning.
For each application, the left bar shows the original startup time
when started from scratch, and the right bar shows the time nec-
essary to create a clone with the application-level reconfiguration.
The original startup times of pBOB4 and WAS were affected by

8

0

1

2

3

4

5

6

7

8

Jigsaw XML Parser
Generator

 pBOB
(#wh=1)

 pBOB
(#wh=8)

 WAS
(0 beans)

 WAS
(500 beans)

fa
st

 <
=

St

ar
tu

p
tim

e
(s

ec
)

 =
>

 s
lo

w

Original startup
Cloning startup

x 34

x 172

x 54

x 20

x 4 x 14

14.4 70.6

Figure 12. Improvement in the startup time by cloning.

their configurations, so two cases are shown for each of these two
applications. For WAS, more detailed results will be shown later.

The number beside each arrow in the graph shows the ratio
of startup improvement. By using cloning, a new ready-to-serve
environment could be created from 4 to 170 times faster than the
original startup. As shown in Section 5.1, the JVM-level cloning
time mainly depends on the allocated heap size and the number of
threads. The XML parser generator could be cloned significantly
faster, in 9 ms, because its allocated heap size is not very large
and no extra threads exist at the cloning point. Jigsaw needed more
time for cloning, about 15 ms, because about 60 worker threads are
running at the cloning point. The reason for pBOB’s longer cloning
time is the large heap size. In addition, pBOB took about 9 ms for
reconfiguration, in which the log file was separated.

For WAS, the cloning took a longer time because some threads
are blocking within the accept system call at the cloning point. In
the current Cloneable JVM implementation, a timeout mechanism
is used to suspend such blocking threads, which made the cloning
slower. Although this part has room for improvement, the startup
time of the cloned WAS was already 4 to 14 times faster than that
of the original WAS.

Next, we performed a more detailed evaluation of the clone-
aware WAS by installing an EJB application for a stress test on
it. This application uses many session beans, whose number can
be specified at deployment time. When many beans are installed,
the startup of WAS becomes slower in order to create, initialize,
and start them. While changing the number of installed beans, we
measured the original startup time of WAS and the time for cloning
this initialized WAS environment. For these measurements, the EJB
application was not modified at all. Only the JVM and WAS were
modified for cloning as already described in Sections 3.3 and 4.3.

The results are shown in Figure 13. The original startup time
of WAS became slower in proportion to the number of installed
beans. It took about 70 seconds when 500 beans were installed. In
contrast, the clone of the initialized WAS could be created in almost
constant time, just 4 to 5 seconds, without being noticeably affected
by the number of installed beans. This result includes the time for
reconfiguring the network ports in the clones, so the cloned WAS
environment can start operations immediately at that point.

To summarize the results in this section, the cloning approach
can create an isolated ready-to-serve environment 4 to 170 times
faster than starting the application from scratch, without degrading
the execution performance. This is very promising for the new
isolation scenarios based on cloning, as discussed in Section 2.1.

4 For pBOB, the original startup time means the time for finishing the
initialization, and does not include the 30 seconds ramp-up time.

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500
Number of installed beans

fa
st

 <
=

St

ar
tu

p
tim

e
(s

ec
)

 =
>

 s
lo

w Original startup
Cloning startup

x 14

x 7

x 4

Figure 13. Startup times of WAS with a stress-test application.

6. Related Work
This section will introduce related work from several viewpoints,
and compare that work with the cloning approach.

6.1 Application Isolation

Java is designed to execute a single application although it sup-
ports parallel processing primitives such as threads. If multiple ap-
plications are forced to run in a single Java execution environment,
unexpected results may occur, because static variables and the res-
olution status of classes are globally shared. In addition, since there
is no way to protect data, an application may be affected by errors
in other applications. Therefore, some mechanism to provide an
isolated Java environment for each application is desired.

The Java Community Process defined an API to create and
manage logically isolated Java environments, named Isolates, in
JSR 121 [26]. Although it is not defined how to implement the Iso-
late API, its execution model states that an application is started
from its entry point on a new Isolate, even if it is the same appli-
cation currently running. Therefore, the startup overhead cannot be
eliminated completely. However, since it also defines various useful
inter-Isolate communication mechanisms such as Link and Iso-
lateStatus, we defined the cloning API by adding some func-
tions to the Isolate API as described in Section 2.2.

Smits [41] is proposing an approach to keep user states for
its middleware outside the JVM using a technique called Shared
Closures, then dispatching them to VM Containers that can be
started very quickly. The approach is very interesting, but it seems
that the mechanism is currently dedicated to and tightly coupled
with SAP’s Advanced Business Application Programming Server.

6.2 Data Sharing Among JVMs

As briefly mentioned in Section 1, if sharable parts of the JVM’s
internal data structures are separated and reused, a new Java envi-
ronment can be created more quickly. Czajkowski et al. proposed
various methods for such data sharing [10, 11, 12, 20]. KaffeOS [4]
and Janos [46] proposed an architecture to run multiple processes
on a Java environment. Among production Java execution environ-
ments, Apple’s Java Shared Archive [3], Sun’s Class Data Sharing
[44], and IBM’s Shared Classes [9] make it possible to share class
data structures among multiple Java processes.

With these data sharing mechanisms, application startup can be
accelerated to some extent because the shared data structures need
not be constructed again after the first creation of a JVM. However,
in all of these implementations, each Java application is started
from its entry point in the new environment. Therefore, the startup
overhead cannot be removed completely, as shown in Figure 1,

9

unlike in cloning. However, it is worth incorporating these sharing
techniques in the Cloneable JVM to further reduce the memory
consumption.

IBM’s Persistent Reusable JVM [21] for z/OS can also create
multiple Java environments in a single address space while sharing
the class data structures and JIT-compiled code blocks [14]. It also
supports a unique mechanism for reusing the Java environment
and middleware by resetting the middleware after an application
finishes [7]. This idea resembles the cloning approach in that the
initialized environment is reused. However, the environment can
only be used serially, and the middleware must be extensively
modified to be resettable.

Adding orthogonal persistence to Java [25, 28] allows some of
the cloning scenarios such as checkpointing. In addition to its nar-
rower applicability than the Cloneable JVM, the approach requires
a programmer to decide which part of the Java heap should be made
persistent, which may not necessarily be trivial.

6.3 Startup Acceleration

Both the data sharing shown above and our cloning are approaches
to eliminate the startup overhead by reusing already-initialized (or
constructed) data in subsequent Java environments. On the other
hand, there is another type of approach, to accelerate or reduce the
time-consuming steps in the startup by modifying the JVM.

Multi-level JIT compilation [19, 43] is a typical example of this
approach, in which every method is first executed by an interpreter
or by being compiled quickly with a low optimization level. Since
many methods executed during the startup are used only for initial-
ization and not executed repeatedly, startup time is accelerated by
reducing the overhead of the JIT compilation for those methods.

The ahead-of-time (AOT) compilation [40] uses the JIT com-
piler as a static compiler. Though the generated code may not be as
highly-optimized, it would be “good-enough” and fully compliant
to the Java specification. The J9 JVM also supports the AOT. Orig-
inally, it is used in small devices to reduce footprint by eliminating
the JIT compiler. More recently, it is used in WebSphere Real Time
[23] to eliminate non-deterministic behaviors due to the JIT.

Class loading and verification are also time-consuming steps
during the startup. By performing these steps in advance and con-
verting the class files to some internal format, startup overhead can
be reduced [30].

However, even if these techniques are used, the startups of large
Java applications are still very slow compared to native applica-
tions. This is because there remains a lot of overhead such as class
initialization and object creation, as explained in Section 1.

6.4 Freezing and Migration

There is a technique to dump, or freeze, an initialized application
image in advance and start the application faster by loading the
image. For example, the GNU Emacs editor [16] dumps the Lisp
heap after the initialization of Emacs Lisp, and uses the image
for ordinary startup. In Smalltalk [29], it is possible to create a
snapshot of the environment, which can be used for future restarts.
The hibernation of Windows and the snapshot function of VMware
[47] are considered to be approaches towards applying the dump
technique to the whole system image. In the world of Java, the
Jikes RVM [1] uses the dump mechanism to create a bootstrap
image, which contains the minimum set to start the virtual machine.
However, it is limited to the bootstrap image, and cannot dump an
arbitrary JVM image with its application.

As a related project, application migration is emerging as a
new research area [8, 33, 35], where an application can be mi-
grated to another environment by using virtualization techniques
[5, 37, 39, 42]. Compared to these approaches, our cloning ap-
proach targets creating multiple isolated environments rather than

suspending and resuming a single application instance. Both the
master and clones can coexist and run in the system. For this pur-
pose, we explicitly exposed the cloning API to the applications, to
assist in the reconfiguration necessary to run multiple application
instances.

The Potemkin virtual honeyfarm system in UCSD [48] utilizes
a hypervisor to quickly start multiple honeypot environments by
flash cloning, where copy-on-write is also used to reduce the cost
of cloning. It might be possible to use a hypervisor for cloning
Java applications, but we chose to implement the function in the
JVM layer, as discussed in Section 2.3. Through this approach, we
could minimize the execution overhead, as measured in Section 5.2.
Recently, JVMs become runnable directly on hypervisors [2, 13].
Comparing them with our Cloneable JVM is one of the future work.

7. Conclusion
This paper described the proposal, implementation, and evaluation
of a cloning execution model, which is an idea to start a new Java
application faster by copying an initialized running Java environ-
ment. Since the cloned environment runs as a separate process, it is
possible to create an isolated Java application almost instantly.

We developed the Cloneable JVM by modifying the IBM J9
JVM for Linux to add functions for memory copy and OS resource
regeneration. In this version, JVM-level cloning can be performed
in less than 200 ms.

The Cloneable JVM provides a new API for cloning, which
is constructed on the Isolate API. Using this cloning API, we
have modified several real Java applications to be clone-aware,
according to various cloning scenarios such as user or transaction
isolation and failure recovery.

Measurements using the Cloneable JVM and clone-aware ap-
plications showed that the time required to create a new application
environment by cloning was 4 to 170 times faster than the time re-
quired to start the application from scratch. With cloning, the new
environment became ready-to-serve in less than 5 seconds for all of
the tested cases. In addition, the execution on the Cloneable JVM
was only 1 to 3% slower than on the original JVM.

The primary contributions of this paper are: the proposal of a
cloning abstraction in Java along with an API, the scenarios using
cloning, and the actual implementation and evaluation of the Clone-
able JVM. We believe this is the first successful demonstration of
cloning the entire Java environment for isolation enablement.

Acknowledgments
We thank Matt Hogstrom, Martin Trotter, John Duimovich, Trent
Gray-Donald, Bob Blainey, and Kevin Stoodley for their help and
advice on this project. We thank Tom Musta and Joseph Latone,
who gave us permission to use their programs. We also thank the
members of the Systems group in IBM Tokyo Research Laboratory,
who gave us valuable suggestions.

References
[1] B. Alpern, C. R. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel,

D. Lieber, T. Ngo, M. Mergen, J. C. Shepherd, and S. Smith.
Implementing Jalapeño in Java. Proc. 14th ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA ’99), 314–324, Denver, October 1999.

[2] G. Ammons, J. Appavoo, M. Butrico, D. Da Silva, D. Grove,
K. Kawachiya, O. Krieger, B. Rosenburg, E. Van Hensbergen, and
R. W. Wisniewski. Libra: A Library Operating System for a JVM in
a Virtualized Execution Environment. Proc. 3rd ACM Conference on
Virtual Execution Environments (VEE ’07), San Diego, June 2007.

[3] Apple Computer. Mac OS X Java Shared Archive. Java Development
Guide for Mac OS X, May 2006.
http://developer.apple.com/documentation/Java/
Conceptual/Java14Development/Java14Development.pdf

10

[4] G. Back, W. C. Hsieh, and J. Lepreau. Processes in KaffeOS:
Isolation, Resource Management, and Sharing in Java. Proc. 4th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI ’00), 333–346, San Diego, October 2000.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. Proc. 19th ACM Symposium on Operating Systems
Principles (SOSP ’03), 164–177, Bolton Landing, October 2003.

[6] S. J. Baylor, M. Devarakonda, S. Fink, E. Gluzberg, M. Kalantar,
P. Muttineni, E. Barsness, S. Munroe, R. Arora, and R. Dimpsey.
Java Server Benchmarks. IBM Systems Journal, 39(1), 57–81,
February 2000.

[7] S. Borman, S. Paice, M. Webster, M. Trotter, R. McGuire, A. Stevens,
B. Hutchison, and R. Berry. A Serially Reusable Java Virtual Machine
Implementation for High Volume, Highly Reliable, Transaction
Processing. Technical Report TR 29.3406, IBM.

[8] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live Migration of Virtual Machines.
Proc. 2nd USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’05), 273–286, Boston, May 2005.

[9] B. Corrie. Java Technology, IBM Style: Class Sharing, IBM, May
2006. http://www.ibm.com/developerworks/java/library/
j-ibmjava4/

[10] G. Czajkowski. Application Isolation in the Java Virtual Machine.
Proc. 15th ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA ’00), 354–366,
Minneapolis, October 2000.

[11] G. Czajkowski and L. Daynès. Multitasking without Compromise:
a Virtual Machine Evolution. Proc. 16th ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA ’01), 125–138, Tampa, October 2001.

[12] G. Czajkowski, L. Daynès, and N. Nystrom. Code Sharing among
Virtual Machines. Proc. 16th European Conference on Object-
Oriented Programming (ECOOP ’02), 155–177, Málaga, June
2002.

[13] J. Dahlstedt. “Bare Metal” – Speeding Up Java Technology in
a Virtualized Environment. Presentation in JavaOne ’06, TS-
3792, San Francisco, May 2006. http://developers.sun.com/
learning/javaoneonline/2006/coolstuff/TS-3792.pdf

[14] D. Dillenberger, R. Bordawekar, C. W. Clark, D. Durand, D. Emmes,
O. Gohda, S. Howard, M. F. Oliver, F. Samuel, and R. W. St. John.
Building a Java Virtual Machine for Server Applications: The JVM
on OS/390. IBM Systems Journal, 39(1), 194–210, February 2000.

[15] R. Figueiredo, P. A. Dinda, and J. Fortes (ed). Resource Virtualization
Renaissance. IEEE Computer, 38(5), 28–69, May 2005.

[16] GNU Project. GNU Emacs.
http://www.gnu.org/software/emacs/

[17] R. Goldberg. Survey of Virtual Machine Research. IEEE Computer,
7(6), 34–45, June 1974.

[18] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification, Third Edition, Addison Wesley, 2005.

[19] N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley, and V. Sundare-
san. Java Just-In-Time Compiler and Virtual Machine Improvements
for Server and Middleware Applications. Proc. 3rd USENIX Virtual
Machine Research and Technology Symposium (VM ’04), 151–162,
San Jose, May 2004.

[20] J. J. Heiss. The Multi-Tasking Virtual Machine: Building a Highly
Scalable JVM, Sun Developer Network, March 2005. http://java.
sun.com/developer/technicalArticles/Programming/mvm/

[21] IBM Corporation. Persistent Reusable Java Virtual Machine User’s
Guide, SC34-6201-01, 2001. http://www.ibm.com/servers/
eserver/zseries/software/java/pdf/prjvm14.pdf

[22] IBM Corporation. WebSphere Application Server: Product Overview.
http://www.ibm.com/software/webservers/appserv/was/

[23] IBM Corporation. WebSphere Real Time.
http://www.ibm.com/software/webservers/realtime/

[24] Java Community Process. JSR 3: Java Management Extensions
(JMX) Specification. http://jcp.org/en/jsr/detail?id=3

[25] Java Community Process. JSR 20: Orthogonal Persistence for the
Java Platform. http://jcp.org/en/jsr/detail?id=121

[26] Java Community Process. JSR 121: Application Isolation API
Specification. http://jcp.org/en/jsr/detail?id=20

[27] R. Jones and R. Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management, Wiley, 1996.

[28] M. Jordan and M. Atkinson. Orthogonal Persistence for Java – A Mid-
term Report. Proc. 3rd International Workshop on Persistence and
Java (PJW3), Tiburon, September 1998.

[29] G. Krasner (ed). Smalltalk-80: Bits of History, Words of Advice,
Addison Wesley, 1983.

[30] C. Laffra, S. Foley, and J. McAffer. Packaging Eclipse RCP
Applications. EclipseCON 2005, Burlingame, February 2005.
http://www.eclipsecon.org/2005/

[31] S. Liang. The Java Native Interface: Programmer’s Guide and
Specification, Addison Wesley, 1999.

[32] T. Lindholm and F. Yellin. The Java Virtual Machine Specification,
Second Edition, Addison Wesley, 1999.

[33] M. Nelson, B.-H. Lim, and G. Hutchins. Fast Transparent Migration
for Virtual Machines. Proc. 2005 USENIX Annual Technical
Conference (USENIX ’05), 391–394, Anaheim, April 2005.

[34] OSGi Alliance. About the OSGi Service Platform: Technical
Whitepaper, November 2005.
http://www.osgi.org/documents/collateral/
TechnicalWhitePaper2005osgi-sp-overview.pdf

[35] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design and
Implementation of Zap: A System for Migrating Computing
Environments. Proc. 5th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’02), 361–376, Boston, December
2002.

[36] J. S. Plank, M. Beck, and G. Kingsley. Libckpt: Transparent
Checkpointing under Unix. Proc. USENIX Winter 1995 Technical
Conference, 220–232, New Orleans, January 1995.

[37] Qumranet Inc. KVM: Kernel-based Virtual Machine for Linux.
http://kvm.qumranet.com/kvmwiki

[38] R. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron, D. Black,
W. Bolosky, and J. Chew. Machine-Independent Virtual Memory
Management for Paged Uniprocessor and Multiprocessor Architec-
tures. Proc. 2nd ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS-
II), 31–39, Palo Alto, October 1987.

[39] M. Rosenblum and T. Garfinkel. Virtual Machine Monitors: Current
Technology and Future Trends. IEEE Computer, 38(5), 39–47, May
2005.

[40] M. Serrano, R. Bordawekar, S. Midkiff, and M. Gupta. Quicksilver:
A Quasi-Static Compiler for Java. Proc. 15th ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA ’00), 66–82, Minneapolis, October 2000.

[41] T. Smits. Unbreakable Java: The Java Server that Never Goes Down,
SAP AG, 2004. https://www.sdn.sap.com/irj/servlet/
prt/portal/prtroot/com.sap.km.cm.docs/library/webas/
Unbreakable%20Java.pdf

[42] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson.
Container-Based Operating System Virtualization: A Scalable, High-
Performance Alternative to Hypervisors. Proc. EuroSys 2007, 275–
288, Lisbon, March 2007.

[43] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani.
A Dynamic Optimization Framework for a Java Just-In-Time Com-
piler. Proc. 16th ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA ’01), 180–194,
Tampa, October 2001.

[44] Sun Microsystems. Class Data Sharing, 2004.
http://java.sun.com/j2se/1.5.0/docs/guide/vm/
class-data-sharing.html

[45] Sun Microsystems. Java 2 Platform, Enterprise Edition (J2EE)
Overview. http://java.sun.com/j2ee/overview.html

[46] P. Tullmann, M. Hibler, and J. Lepreau. Janos: A Java-Oriented
OS for Active Network Nodes. IEEE Journal on Selected Areas in
Communications, 19(3), 501–510, March 2001.

[47] VMware Inc. Using the Snapshot. VMware Workstation 4 User’s
Manual. http://www.vmware.com/pdf/ws40 manual.pdf

[48] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren,
G. M. Voelker, and S. Savage. Scalability, Fidelity, and Containment
in the Potemkin Virtual Honeyfarm. Proc. 20th ACM Symposium
on Operating Systems Principles (SOSP ’05), 148–162, Brighton,
October 2005.

[49] World Wide Web Consortium. Jigsaw – W3C’s Server.
http://www.w3.org/Jigsaw/

[50] World Wide Web Consortium. XML Schema.
http://www.w3.org/XML/Schema

11

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

