NOTES ON
 AMPLITUDE AMPLIFICATION

MATTHEW MOORE

The Problem. Suppose that we are given the following.

- \mathcal{A}, a quantum circuit using no measurements.
- \mid start \rangle and \mid end \rangle, quantum states with $\mathcal{A} \mid$ start $\rangle=\mid$ end \rangle.
- \mid end $\rangle=|A\rangle+|B\rangle$ with $\langle A \mid B\rangle=0,\langle A \mid A\rangle=a$, and $\langle B \mid B\rangle=b=1-a$.

Let us consider $|A\rangle$ as a superposition of all "correct" outcomes of algorithm \mathcal{A}. Upon measuring |end \rangle, the probability of observing $|A\rangle$ is a. We would like a procedure to increase the probability of observing $|A\rangle$.

We assume that we have a basis $\left(\psi_{i}\right)_{i \in I}$ such that $I=A \cup B$ and a function $\chi: I \rightarrow\{0,1\}$ such that $\chi(A)=1$ and $\chi(B)=0$. Define

$$
|\Psi(\alpha, \beta)\rangle=\alpha|A\rangle+\beta|B\rangle
$$

and note that $|\Psi(1,1)\rangle=\mid$ end \rangle.

A solution

Let P be a permutation matrix such that $P \mid$ start $\rangle=|1 \cdots 1\rangle$ and define quantum circuits \widehat{R}_{A} and R_{s} as below.

Define operators

$$
\left.R_{A}=\frac{e^{i \theta}-1}{a}|A\rangle\langle A|+I, \quad \quad R_{\mathrm{s}}=\left(e^{i \tau}-1\right) \mid \text { start }\right\rangle\langle\operatorname{start}|+I
$$

and note that $R_{A}|\Psi(\alpha, \beta)\rangle=\left|\Psi\left(e^{i \theta} \alpha, \beta\right)\right\rangle$. Finally, define $\mathcal{G}=-\mathcal{A} \circ R_{\mathbf{s}} \circ \mathcal{A}^{\dagger} \circ R_{A}$.
Lemma 1. \widehat{R}_{A} computes R_{A} using 1 ancilla and \widehat{R}_{s} computes R_{s}.

Lemma 2.

$\mathcal{G}|\Psi(\alpha, \beta)\rangle=-\left|\Psi\left(\left(a e^{i \tau}+b\right) e^{i \theta} \alpha+\left(e^{i \tau}-1\right) b \beta,\left(e^{i \tau}-1\right) e^{i \theta} a \alpha+\left(b e^{i \tau}+a\right) \beta\right)\right\rangle$.
Theorem 3. Suppose that \mathcal{A} acting on |start〉 produces correct answers with probability $a \in(0,1)$. The circuit $\mathcal{G} \circ \mathcal{A}$ acting on \mid start \rangle is exact if and only if $\theta=\tau=\arccos (1-1 /(2 a))$ and $a \in[1 / 4,1)$.

[^0]Proof. From Lemma 2, we have

$$
\mathcal{G}|\Psi(1,1)\rangle=-\left|\Psi\left(\left(a e^{i \tau}+b\right) e^{i \theta}+\left(e^{i \tau}-1\right) b,\left(e^{i \tau}-1\right) e^{i \theta} a+b e^{i \tau}+a\right)\right\rangle
$$

The probability of observing an incorrect answer when this state is measured is

$$
b\left(\left(e^{i \tau}-1\right) e^{i \theta} a+b e^{i \tau}+a\right)^{2}
$$

$\mathcal{G} \circ \mathcal{A}$ is exact if and only if this quantity is equal to 0 . Setting it equal to 0 and solving for $e^{i \theta}$ and $e^{i \tau}$ (we assume $a, b \neq 0$) yields

$$
\begin{aligned}
& e^{i \theta}=\frac{b e^{i \tau}+a}{a\left(1-e^{i \tau}\right)}=\frac{a-b}{2 a}+\left(\frac{\sin (\tau)}{2 a(1-\cos (\tau))}\right) i \quad \text { and } \\
& e^{i \tau}=\frac{\left(e^{i \theta}-1\right) a}{a e^{i \theta}+b}=\frac{a(a-b)(1-\cos (\theta))}{a^{2}+2 a b \cos (\theta)+b^{2}}+\left(\frac{a \sin (\theta)}{a^{2}+2 a b \cos (\theta)+b^{2}}\right) i
\end{aligned}
$$

Equivalently,

$$
\begin{array}{ll}
\cos (\theta)=\frac{a-b}{2 a}, & \sin (\theta)=\frac{\sin (\tau)}{2 a(1-\cos (\tau))} \\
\cos (\tau)=\frac{a(a-b)(1-\cos (\theta))}{a^{2}+2 a b \cos (\theta)+b^{2}}, & \sin (\tau)=\frac{a \sin (\theta)}{a^{2}+2 a b \cos (\theta)+b^{2}}
\end{array}
$$

Focusing on $\cos (\theta)$, using $b=1-a$ this implies that $a \in(1 / 4,1)$. Substituting the expression for $\cos (\theta)$ into the one for $\cos (\tau)$ yields

$$
\cos (\tau)=\frac{(1 / 2)(a-b)^{2}}{a^{2}+b(a-b)+b^{2}}=\frac{a-b}{2 a}=\cos (\theta)
$$

Substituting $\cos (\tau)=(a-b) /(2 a)$ into the expression for $\sin (\theta)$ yields

$$
\sin (\theta)=\frac{\sin (\tau)}{2 a-a+b}=\sin (\tau)
$$

It follows from these that $\theta=\tau=\arccos (1-1 /(2 a))$. All of the manipulations done were reversible, and equivalent to $\mathcal{G} \circ \mathcal{A}$ being exact, establishing the claimed equivalence.

Theorem 4. Let $\theta=\tau=\pi$. Then

$$
G^{k}|\Psi(1,1)\rangle=\left|\Psi\left(\frac{1}{\sqrt{a}} \sin ((2 k+1) \gamma), \frac{1}{\sqrt{b}} \cos ((2 k+1) \gamma)\right)\right\rangle
$$

where γ is such that $e^{i \gamma}=\sqrt{b}+i \sqrt{a}$.
Proof. Define sequences $\left(\alpha_{k}\right)_{k \in \mathbb{N}}$ and $\left(\beta_{k}\right)_{k \in \mathbb{N}}$ by

$$
G^{k}|\Psi(1,1)\rangle=\left|\Psi\left(\alpha_{k}, \beta_{k}\right)\right\rangle
$$

From Lemma 2, these sequences are also defined recursively by

$$
\begin{array}{ll}
\alpha_{k}=(b-a) \alpha_{k-1}+2 b \beta_{k-1}, & \alpha_{0}=1 \\
\beta_{k}=-2 a \alpha_{k-1}+(b-a) \beta_{k-1}, & \beta_{0}=1
\end{array}
$$

This is a linear homogeneous recurrence, and its equivalent matrix form is

$$
\binom{\alpha_{k}}{\beta_{k}}=\left(\begin{array}{cc}
b-a & 2 b \\
-2 a & b-a
\end{array}\right)\binom{\alpha_{k-1}}{\beta_{k-1}}=\left(\begin{array}{cc}
b-a & 2 b \\
-2 a & b-a
\end{array}\right)^{k}\binom{1}{1}
$$

Let M be the matrix. M diagonalizes as $M=P D P^{-1}$ where

$$
D=\left(\begin{array}{cc}
\bar{\lambda}^{2} & 0 \\
0 & \lambda^{2}
\end{array}\right), \quad P=\frac{1}{\sqrt{a}}\left(\begin{array}{cc}
i \sqrt{b} & -i \sqrt{b} \\
\sqrt{a} & \sqrt{a}
\end{array}\right), \quad P^{-1}=\frac{1}{2 \sqrt{b}}\left(\begin{array}{cc}
-i \sqrt{a} & \sqrt{b} \\
i \sqrt{a} & \sqrt{b}
\end{array}\right)
$$

for $\lambda=e^{i \gamma}=\sqrt{b}+i \sqrt{b}$. We have

$$
\begin{aligned}
\binom{\alpha_{k}}{\beta_{k}} & =P D^{k} P^{-1}\binom{1}{1}=\frac{1}{2 \sqrt{b}} P D^{k}\binom{\bar{\lambda}}{\lambda}=\frac{1}{2 \sqrt{b}} P\binom{\bar{\lambda}^{2 k+1}}{\lambda^{2 k+1}} \\
& =\frac{1}{2 \sqrt{a b}}\binom{i \sqrt{b}\left(\bar{\lambda}^{2 k+1}-\lambda^{2 k+1}\right)}{\sqrt{a}\left(\bar{\lambda}^{2 k+1}+\lambda^{2 k+1}\right)}=\binom{\frac{1}{\sqrt{a}} \sin ((2 k+1) \gamma)}{\frac{1}{\sqrt{b}} \cos ((2 k+1) \gamma)} .
\end{aligned}
$$

Corollary 5. Let $m=\lfloor\pi /(4 \gamma)\rfloor$ where $\sin (\gamma)=\sqrt{a}$. If $a \rightarrow 0$ as $n \rightarrow \infty$ then $\mathcal{G}^{k} \circ \mathcal{A}$ produces correct answers with $\Theta(1 / \sqrt{a})$ iterations of \mathcal{A} and \mathcal{A}^{\dagger}.
Proof. From Theorem 4, the circuit $\mathcal{G}^{k} \circ \mathcal{A}$ acting on \mid start \rangle produces correct answers with probability $\sin ((2 k+1) \gamma)^{2}$. We have

$$
\sin ((2 k+1) \gamma) \geq \sin \left(\left(\frac{\pi}{2 \gamma}-1\right) \gamma\right)=\sin \left(\frac{\pi}{2}-\gamma\right)=\cos (\gamma)
$$

It follows that $\sin ((2 k+1) \gamma)^{2} \geq b=1-a$.
Hence the probability that a correct answer is observed when $\mathcal{G}^{k} \circ \mathcal{A} \mid$ start \rangle is measured is at least $1-a$, and after $1 /(1-a)$ iterations we can expect to have measured a correct answer. The number of calls to \mathcal{A} and \mathcal{A}^{\dagger} after $1 /(1-a)$ iterations of $\mathcal{G}^{k} \circ \mathcal{A}$ is $(2 k+1) /(1-a)$. As $a \rightarrow 0$, we have $1-a \rightarrow 1$ and $\gamma \rightarrow \sqrt{a}$ (since $\sin (\gamma)=\sqrt{a})$. Hence $(2 k+1) /(1-a) \rightarrow \pi /(2 \sqrt{a})+1$, so the number of iterations of \mathcal{A} and \mathcal{A}^{\dagger} is in $\Theta(1 / \sqrt{a})$.

[^0]: Date: March 29, 2020.

