
NOTES ON

AMPLITUDE AMPLIFICATION

MATTHEW MOORE

The Problem. Suppose that we are given the following.

• A, a quantum circuit using no measurements.

• |start〉 and |end〉, quantum states with A |start〉 = |end〉.
• |end〉 = |A〉+ |B〉 with 〈A | B〉 = 0, 〈A | A〉 = a, and 〈B | B〉 = b = 1− a.

Let us consider |A〉 as a superposition of all “correct” outcomes of algorithm A.
Upon measuring |end〉, the probability of observing |A〉 is a. We would like a
procedure to increase the probability of observing |A〉.

We assume that we have a basis (ψi)i∈I such that I = A ∪ B and a function
χ : I → {0, 1} such that χ(A) = 1 and χ(B) = 0. Define

|Ψ(α, β)〉 = α |A〉+ β |B〉
and note that |Ψ(1, 1)〉 = |end〉.

A solution

Let P be a permutation matrix such that P |start〉 = |1 · · · 1〉 and define quantum

circuits R̂A and Rs as below.

R̂A =

|0〉

χ⊕ χ⊕

eiθ

|0〉

.

.

.
.
.
. R̂s = P P †

eiτ

.

.

.
.
.
.

Define operators

RA =
eiθ − 1

a
|A〉 〈A|+ I, Rs = (eiτ − 1) |start〉 〈start|+ I

and note that RA |Ψ(α, β)〉 =
∣∣Ψ(eiθα, β)

〉
. Finally, define G = −A ◦Rs ◦ A† ◦RA.

Lemma 1. R̂A computes RA using 1 ancilla and R̂s computes Rs.

Lemma 2.

G |Ψ(α, β)〉 = −
∣∣∣Ψ((aeiτ + b

)
eiθα+

(
eiτ − 1

)
bβ,

(
eiτ − 1

)
eiθaα+

(
beiτ + a

)
β
)〉

.

Theorem 3. Suppose that A acting on |start〉 produces correct answers with
probability a ∈ (0, 1). The circuit G ◦ A acting on |start〉 is exact if and only if
θ = τ = arccos(1− 1/(2a)) and a ∈ [1/4, 1).
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Proof. From Lemma 2, we have

G |Ψ(1, 1)〉 = −
∣∣∣Ψ((aeiτ + b

)
eiθ +

(
eiτ − 1

)
b,
(
eiτ − 1

)
eiθa+ beiτ + a

)〉
The probability of observing an incorrect answer when this state is measured is

b
(
(eiτ − 1)eiθa+ beiτ + a

)2
.

G ◦ A is exact if and only if this quantity is equal to 0. Setting it equal to 0 and
solving for eiθ and eiτ (we assume a, b 6= 0) yields

eiθ =
beiτ + a

a(1− eiτ )
=
a− b

2a
+

(
sin(τ)

2a(1− cos(τ))

)
i and

eiτ =
(eiθ − 1)a

aeiθ + b
=
a(a− b)(1− cos(θ))

a2 + 2ab cos(θ) + b2
+

(
a sin(θ)

a2 + 2ab cos(θ) + b2

)
i.

Equivalently,

cos(θ) =
a− b

2a
, sin(θ) =

sin(τ)

2a(1− cos(τ))
,

cos(τ) =
a(a− b)(1− cos(θ))

a2 + 2ab cos(θ) + b2
, sin(τ) =

a sin(θ)

a2 + 2ab cos(θ) + b2
.

Focusing on cos(θ), using b = 1− a this implies that a ∈ (1/4, 1). Substituting the
expression for cos(θ) into the one for cos(τ) yields

cos(τ) =
(1/2)(a− b)2

a2 + b(a− b) + b2
=
a− b

2a
= cos(θ).

Substituting cos(τ) = (a− b)/(2a) into the expression for sin(θ) yields

sin(θ) =
sin(τ)

2a− a+ b
= sin(τ).

It follows from these that θ = τ = arccos(1 − 1/(2a)). All of the manipulations
done were reversible, and equivalent to G ◦ A being exact, establishing the claimed
equivalence. �

Theorem 4. Let θ = τ = π. Then

Gk |Ψ(1, 1)〉 =

∣∣∣∣Ψ( 1√
a

sin
(
(2k + 1)γ

)
,

1√
b

cos
(
(2k + 1)γ

))〉
where γ is such that eiγ =

√
b+ i
√
a.

Proof. Define sequences (αk)k∈N and (βk)k∈N by

Gk |Ψ(1, 1)〉 = |Ψ(αk, βk)〉 .

From Lemma 2, these sequences are also defined recursively by

αk = (b− a)αk−1 + 2bβk−1, α0 = 1,

βk = −2aαk−1 + (b− a)βk−1, β0 = 1.

This is a linear homogeneous recurrence, and its equivalent matrix form is(
αk

βk

)
=

(
b− a 2b

−2a b− a

)(
αk−1

βk−1

)
=

(
b− a 2b

−2a b− a

)k(
1

1

)
.
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Let M be the matrix. M diagonalizes as M = PDP−1 where

D =

(
λ
2

0

0 λ2

)
, P =

1√
a

(
i
√
b −i

√
b

√
a

√
a

)
, P−1 =

1

2
√
b

(
−i
√
a
√
b

i
√
a
√
b

)
for λ = eiγ =

√
b+ i
√
b. We have(

αk

βk

)
= PDkP−1

(
1

1

)
=

1

2
√
b
PDk

(
λ

λ

)
=

1

2
√
b
P

(
λ
2k+1

λ2k+1

)

=
1

2
√
ab

i√b(λ2k+1 − λ2k+1
)

√
a
(
λ
2k+1

+ λ2k+1
) =

(
1√
a

sin
(
(2k + 1)γ

)
1√
b

cos
(
(2k + 1)γ

)) . �

Corollary 5. Let m = bπ/(4γ)c where sin(γ) =
√
a. If a → 0 as n → ∞ then

Gk ◦ A produces correct answers with Θ(1/
√
a) iterations of A and A†.

Proof. From Theorem 4, the circuit Gk ◦ A acting on |start〉 produces correct
answers with probability sin((2k + 1)γ)2. We have

sin
(
(2k + 1)γ

)
≥ sin

((
π

2γ
− 1

)
γ

)
= sin

(π
2
− γ
)

= cos(γ).

It follows that sin
(
(2k + 1)γ

)2 ≥ b = 1− a.

Hence the probability that a correct answer is observed when Gk ◦ A |start〉 is
measured is at least 1 − a, and after 1/(1 − a) iterations we can expect to have
measured a correct answer. The number of calls to A and A† after 1/(1 − a)
iterations of Gk ◦ A is (2k + 1)/(1− a). As a→ 0, we have 1− a→ 1 and γ →

√
a

(since sin(γ) =
√
a). Hence (2k + 1)/(1 − a) → π/(2

√
a) + 1, so the number of

iterations of A and A† is in Θ(1/
√
a). �
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