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Figure 1. The quantum circuit for n-bit estimation of the eigenvalue associated with the
eigenvector |ψ〉 of U . The diagrammatic form is shown on the left, while the inline form is
given on the right (measurement operators are omitted). Both utilize the inverse quantum
Fourier transform as subroutines.
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Figure 2. A proposed quantum circuit for the Hidden Kernel Problem for semilattices. The
equivalent inline formula is given to the right. The mathematical formalism for measuring a
subset of qubits is taking the partial trace of the outer product of the output vector over the
unmeasured qubits. This measurement operator is represented by M2

|0〉 H H H · · ·

.

.

.

|0〉

|1〉

H
U

2 |0n〉 〈0n| − I⊗n
.
.
.

.

.

.
.
.
.

.

.

.

H H · · ·

H · · ·

iterate ≈ (π/4)
√
N times

Figure 3. The quantum circuit for Grover’s algorithm, with the function f encoded as
the operator U . The central component is an amplitude amplification procedure which is
required to be iterated approximately (π/4)

√
N times. Geometrically, a single application

corresponds to a rotation of a state vector towards the solution vector.
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exists α?
Rij =

{{
(a, b) ∈ K2

3 | a 6= b
}

if xi − xj in G,

K2
3 otherwise

constraint Cij =
(
(xi, xj) ; Rij

)
C =

{
Cij | 1 ≤ i, j ≤ 6

}

Figure 4. The Constraint Satisfaction Problem corresponding to graph 3-colorability,
CSP(K3). The left shows the standard relational homomorphism formulation of the problem,
and the right shows the equivalent system of constraints given as input to CSP(K3), where
the 6 vertices of G are labelled with the variables x1, . . . , x6.


