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1. Introduction

First of all, is it ”finite base” or ”finite basis”? Never mind...

2. β function definitions and problems

In his talk, George McNulty gave the following definition of the beta function:

Definition 1. Let V be a variety in a finite signature, and n a positive integer.
βV(n) is the smallest positive integer ` such that any (finite) algebra B of cardinality
less than n belongs to V iff for all pairs (s, t) of terms in the signature of V with
|s| + |t| < `, if V |= s ≈ t then B |= s ≈ t. (|t| is the syntactic length of t.) The
function βV is called the equational complexity of V.

Ross doesn’t like this definition because (in principle at least; he can’t think
of an example off of the top of his head) βV depends too much on the signature,
that is, on the particular presentation of the clone of V. (For example, Ross sees
no reason why there there cannot exist two term-equivalent varieties V,W in finite
signatures, with βV bounded by a polynomial function while βW is exponential.)

The CORRECT definition involves a generalization of terms called circuits.
Given a finite signature, a circuit is a finite directed acyclic graph (V,→), that
is, a digraph with no directed cycles, which is connected, has a unique sink vertex
>, and whose vertices and edges have the following kind of labelling:

(1) Each non-leaf vertex is labelled by a basic operation symbol of arity n > 0.
(2) Each leaf is labelled by a variable or a constant symbol.
(3) For each non-leaf vertex v, if the label of v has arity n, then the edges

coming into v are labelled with the integers 1, 2, . . . , n. (An edge can have
multiple labels, but each i = 1, . . . , n labels exactly one edge coming into
v.)

The term tree of a term is an example of a circuit. Conversely, every circuit
recursively defines a term in the obvious way. The size of a circuit is its number
of nodes. The advantage of circuits is that some terms can be represented by
significantly smaller circuits.

Definition 2. Let V be a variety in a finite language, and n a positive integer.
β∗V(n) is defined just like βV(n) except that in place of pairs of terms (s, t) one uses
pairs of circuits.

It is easy to show that, given V, βV is bounded by a constant if and only if β∗V
is bounded by a constant. (So George and Ross can be friends.)

Problem 3. Does there exist a finite algebra A in a finite signature with the
properties that A is not finitely based, but βV(A) is bounded by a constant?
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3. Finite base questions

A well-known, and now surpassed, theorem about finite bases is

Theorem 4 (Willard, 2000, [6]). Let V be a locally finite, residually finite, congru-
ence meet-semidistributive variety. Then V is finitely based.

Definition 5. The tournaments are commutative idempotent groupoids in which
for all x and y, the product xy ∈ {x, y} (i.e. they are conservative).

One of the early applications of Willard’s finite basis theorem was:

Theorem 6 (Miklós Mároti, 2002, [5]). Every finite tournament has a finite base
of equations.

About this theorem: If one considers the subtraces, it is trivial to deduce that
any tournament generates a congruence meet-semidistributive variety. In order to
apply Willard’s finite basis theorem, one needs to prove residual finiteness. First,
it T is a finite tournament, one can limit the size of finite subdirectly irreducible
tournaments in the variety V(T) to 2|T |, next (and by far the hardest), prove that
all subdirectly irreducible algebras in the variety are tournaments.

A natural generalization would be the following:

Definition 7. A 2-semilattice is an idempotent, commutative groupoid which sat-
isfies the identity x(xy) ≈ xy.

Clearly all tournaments are 2-semilattices and the same proof which proves that
tournaments generate congruence meet-semidistributive varieties works also in 2-
semilattices. So the other requirement is the issue:

Problem 8. Does every finite 2-semilattice generate a residually finite variety?

This problem might be very difficult if the answer is yes, since, as we said, the
proof is very difficult even for tournaments. On the other hand, there may exist a
different proof which is easier, or a counterexample 2-semilattice.

Another issue concerns a slate of problems, or conjectures posed by, or attributed
to, Jonsson at the 1976 Oberwolfach meeting mentioned by George McNulty in his
talk (see the summary in [2]). They were (always we assume a finite language,
otherwise talking of finite equational base makes little sense):

Conjecture 1. If A is a finite algebra and the variety V it generates satisfies that
VSI ⊆ HS(A), then V is finitely based.

This is easily seen to be equivalent to the more popular statement (independently
posed by R. Park in his dissertation which came out that same year 1976):

Conjecture 2 (Jónsson-Park’s conjecture). If V has a finite residual bound, then
V is finitely based.

Another version attributed to Jónsson by R. McKenzie was refuted by McKenzie
in mid-1990s:

Conjecture 3. If V is finitely generated and residually small (= has a cardinal
residual bound), then V is finitely based.

Finally, the only version of the finite basis conjecture which actually made the
report from that Oberwolfach meeting was:
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Conjecture 4. If VSI is a strictly elementary class, then V is finitely based.

These are all the conjectures of Jónsson from the 1976 Oberwolfach meeting
about finite basis. However, Conjecture 2 can be plausibly strengthened a little,
and the strengthening would be vacuous if the following Restricted Quackenbush
Conjecture was proved:

Conjecture 5 (The Restricted Quachenbush Conjecture). If V is finitely generated
and contains no infinite subdirectly irreducible algebras, then V has a finite residual
bound.

In other words, the restricted Quackenbush Conjecture states that a finitely
generated variety in finite language can not have residual bound equal to ℵ0. Thus
the slightly stronger version of the Jónsson-Park Conjecture is

Conjecture 6. If V is finitely generated and residually finite, then V is finitely
based.

The current state of the on the most famous two versions, Conjectures 2 and
6 are well-known: The first one is verified if V has a weak difference term, while
the second one is verified whenever Conjecture 5 is, namely in congruence meet-
semidistributive varieties and the varieties which satisfy a nontrivial congruence
equation (see [3] and [4]). But a casual observer (like P. Marković) could mistak-
enly believe that Conjecture 4 was proved in the congruence distributive setting.
However, this is not true, Jónsson in [1] actually proved a slightly different result:

Theorem 9. If VFSI is a strictly elementary class, then V is finitely based.

This leaves the door open to two problems. Firstly,

Problem 10. If V is congruence distributive and VSI is a strictly elementary class,
must V be finitely based?

Also, it seems natural to consider the improved version of Conjecture 4, instead of
Jónsson’s original formulation:

Conjecture 7. If VFSI is a strictly elementary class, then V is finitely based.

This Conjecture 7 might be considered in restricted settings, like algebras with
a meet operation (expansions of a meet semilattice) or congruence join-semidistri-
butive varieties.

About the possible tools for Conjecture 4, we only know what was known to
Jónsson, namely his meta-theorem

Theorem 11 (Jónsson, see [1]). Let V be a variety and B a strictly elementary
class such that V ⊆ B. If there exists an elementary class C such that BSI ⊆ C and
that V ∩ C is strictly elementary, then V has a finite base.

and the theory of congruence distributive varieties (notably Jónsson’s Lemma). We
may also be able to use the following easily proved proposition:

Proposition 12. An elementary class A is strictly elementary relative to the ele-
mentary class B such that A ⊆ B iff the complement B \ A is closed under ultra-
products.
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For Conjecture 7 we may use the proof of Theorem 9 as a blueprint, namely
we may strive to describe the property that CgA(a, b) ∩ CgA(c, d) 6= ∅ by limiting
the complexity of polynomials used in the Mal’cev chains and the lengths of those
chains. For details on these approaches one may read more in the survey [7], which
may be dated for questions like Conjectures 2, 5 and 6, but is still up to date on
these other problems.
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