MAL'CEV PRODUCTS

CLIFF BERGMAN

1. INTRODUCTION

The earliest mention of Mal'cev products of varieties were in a 1962 paper by Hanna Neumann, with ideas dating back to an earlier paper of hers from 1956. In her 1967 book *Varieties of groups* she presented the same material nicely. A. I. Mal'cev extended those ideas in 1967 (taken from an earlier lecture of his at the International Congress of Mathematicians in Moscow). Let \mathcal{A} , \mathcal{B} and \mathcal{C} be quasivarieties throughout the lecture.

Definition 1. $\mathcal{A} \circ \mathcal{B} = \{ \mathbf{G} : (\exists \theta \in \operatorname{Con} \mathbf{G}) \ (\mathbf{G}/\theta \in \mathcal{B} \& (\forall x \in G)(x/\theta \in \operatorname{Sub} \mathbf{G} \Rightarrow x/\theta \in \mathcal{A})) \}.$

We will write $[x]_{\theta} = \{y \in G : (x, y) \in \theta\}$ when we think of the θ -class of x as a set, and x/θ when we think of it as a member of the factor algebra \mathbf{G}/θ (though it is the same object, formally).

Definition 2. If $\mathcal{A}, \mathcal{B} \subseteq \mathcal{C}, \ \mathcal{A} \circ_{\mathcal{C}} \mathcal{B} = (\mathcal{A} \circ \mathcal{B}) \cap \mathcal{C}.$

Observe that $[a]_{\theta} \in \text{Sub } \mathbf{G}$ iff for all basic operations $f, f(a, a, \dots, a) \theta a$.

Lemma 3. Let **G** be an algebra and \mathcal{A} and \mathcal{B} quasivarieties. Denote by $\Lambda := \{\theta \in C \text{ on } \mathbf{G} : \mathbf{G}/\theta \in \mathcal{B}\}$ and let $\lambda = \bigcap \Lambda$. Then $\mathbf{G}/\lambda \in \mathcal{B}$ and $\mathbf{G} \in \mathcal{A} \circ \mathcal{B}$ iff for all $x \in G$, if $x/\lambda \in Sub \mathbf{G}$, then $x/\lambda \in \mathcal{A}$.

Proof. By the subdirect decomposition we have $\mathbf{G}/\lambda \leq_{sd} \prod_{\theta \in \Lambda} \mathbf{G}/\theta$. Since \mathcal{B} is a

quasivariety, it is closed under subdirect products, so $\mathbf{G}/\lambda \in \mathcal{B}$ and therefore $\lambda \in \Lambda$. Since $\mathbf{G} \in \mathcal{A} \circ \mathcal{B}$, we select the congruence θ which satisfies the provisions of Definition 1. We wish to prove that $\lambda = \bigcap \Lambda$ also satisfies the same provisions. By the choice of θ , $\mathbf{G}/\theta \in \mathcal{B}$, hence $\theta \in \Lambda$ by definition of Λ and so we get $\lambda \leq \theta$. Assuming $[x]_{\lambda} \in \mathcal{A}$, then for all fundamental operations $f, f(a, a, \ldots, a) \lambda a$ hence from $\lambda \subseteq \theta$ follows that for all fundamental operations $f, f(a, a, \ldots, a) \theta a$, and therefore $[a]_{\theta} \in \operatorname{Sub} \mathbf{G}$. From the choice of θ follows that $[a]_{\theta} \in \mathcal{A}$ and this, in turn, together with $[a]_{\lambda} \leq [a]_{\theta}$ implies that $[a]_{\lambda} \in \mathcal{A}$.

We conclude that we may always use λ instead of some random $\theta \in \text{Con } \mathbf{G}$. We call λ the verbal congruence induced on \mathbf{G} by \mathcal{B} . Of course, it depends only on \mathbf{G} and \mathcal{B} , not on \mathcal{A} .

Theorem 4. Let \mathcal{A} and \mathcal{B} be quasivarieties of finite similarity type. Then $\mathcal{A} \circ \mathcal{B}$ is a quasivariety. If \mathcal{B} is idempotent, then "finite similarity type" can be dropped.

Definition 5. A pole of the quasivariety C is a unary term c(x) such that

(1) $\mathcal{C} \models c(x) \approx c(y)$ (it is constant) and

CLIFF BERGMAN

(2) For all basic operations $c, C \models f(c(x), c(x), \dots, c(x)) \approx c(x)$ (c is an idempotent element).

There are two interesting special cases:

- a) When \mathcal{A} and \mathcal{B} are both idempotent.
- b) When \mathcal{A} and \mathcal{B} are both "polarized" (have a pole).

Note also that if \mathcal{A} and \mathcal{B} are both idempotent, then $\mathcal{A} \circ \mathcal{B}$ is idempotent.

If \mathcal{A} and \mathcal{B} are both idempotent, then several Mal'cev conditions are preserved under \circ (as proved in [1] by R. Freese and R. McKenzie):

- Having a Taylor term,
- having a cube term,
- congruence meet-semidistributivity,
- Having a near-unanimity term,
- Existence of some $n \in \omega$ such that a variety is congruence *n*-permutable.

Theorem 6 (C. Bergman). If \mathcal{A} and \mathcal{B} are both idempotent, congruence permutable varieties such that $\mathcal{A} \vee \mathcal{B}$ is congruence permutable, then $\mathcal{A} \circ \mathcal{B}$ is congruence permutable.

Theorem 7 (A. I. Mal'cev). If $\mathcal{A}, \mathcal{B} \subseteq \mathcal{C}$ are idempotent varieties and \mathcal{C} is congruence permutable, then $\mathcal{A} \circ_{\mathcal{C}} \mathcal{B}$ is a variety.

Proof. Let $\mathbf{R} \in \mathcal{A} \circ_{\mathcal{C}} \mathcal{B}$, $\alpha \in \text{Con } \mathbf{R}$. We wish to prove $\mathbf{R}/\alpha \in \mathcal{A} \circ_{\mathcal{C}} \mathcal{B}$. Let λ be the verbal congruence of $\mathbf{R}, \overline{\lambda} := \lambda \lor \alpha$. We know that $\overline{\lambda}/\lambda \in \text{Con } \mathbf{R}/\lambda$ and $\overline{\lambda}/\alpha \in \text{Con } \mathbf{R}/\alpha$. We get $(\mathbf{R}/\alpha)/(\overline{\lambda}/\alpha) \cong \mathbf{R}/\overline{\lambda} \cong (\mathbf{R}/\lambda)/(\overline{\lambda}/\lambda) \in \mathsf{H}(\mathbf{R}/\lambda) \subseteq \mathsf{H}(\mathcal{B}) = \mathcal{B}$. Moreover, let $A = [r]_{\lambda} \in \mathcal{A}$. Denote by $A^{\alpha} := \{x \in R : (\exists a \in A)x \alpha a\}$.

 $x\in [r]_{\overline{\lambda}}\iff (x,r)\in \overline{\lambda}=\alpha \lor \lambda=\lambda\circ \alpha \iff (\exists a\in A) \; x\; \alpha\; a\; \lambda\; r \iff x\in A^\alpha.$

So we obtain $[r/\alpha]_{(\overline{\lambda}/\alpha)} = ([r]_{\overline{\lambda}})/\alpha = (\mathbf{A}^{\alpha})/\alpha \cong \mathbf{A}/\alpha \in \mathcal{A}$. Since we know that $\mathcal{A} \circ_{\mathcal{C}} \mathcal{B}$ is closed under S and P (as it is a quasivariety), $\mathcal{A} \circ_{\mathcal{C}} \mathcal{B}$ is a variety. \Box

Example 8. Let Sq be the variety of Steiner quasigroups (squags) with one binary operation. The equational base of Sq is

$$xx \approx x$$
$$xy \approx yx$$
$$x(xy) \approx y$$

Define by q(x, y, z) := y(xz), which is a Mal'cev term for Sq. Clearly, $Sq \lor Sq = Sq$, which is a congruence permutable variety, so by Theorem 6, $Sq \circ Sq$ is a variety.

<u>Problems</u>

Problem 9. Find an equational base for $\mathcal{A} \circ \mathcal{B}$. In particular, how about $Sq \circ Sq$?

Problem 10. More generally, if we have axiomatizations of \mathcal{A} and \mathcal{B} , can we find an axiomatization of $\mathcal{A} \circ \mathcal{B}$ (or $\mathcal{A} \circ_{\mathcal{C}} \mathcal{B}$)?

Problem 11. If \mathcal{A} and \mathcal{B} are both locally finite, what about $\mathcal{A} \circ \mathcal{B}$? Ian Payne says: pretty much never. And $\mathcal{A} \circ_{\mathcal{C}} \mathcal{B}$?

Problem 12. What can we say about $\mathbf{F}_{\mathcal{A} \circ \mathcal{B}}(X)$?

 $\mathbf{2}$

For starters, $\mathbf{F}_{\mathcal{A}\circ\mathcal{B}}(X)/\lambda \cong \mathbf{F}_{\mathcal{B}}(X)$.

Let $\mathcal{S}emi$ be the variety of semilattices and $\mathcal{S}g$ the variety of semigroups. Define $\mathcal{Q} = \mathcal{S}emi \circ_{\mathcal{S}g} \mathcal{S}emi$. Then $\mathbf{F}_{\mathcal{Q}}(x, y)$ has the following λ -classes: $\{x\}, \{y\}$ and {everything else such as xy, yx, x(xy), ...}.

Problem 13. Axiomatize $Semi \circ Semi$. Or the quasivariety Q above.

References

- [1] Freese, R., McKenzie, R.: Maltsev families of varieties closed under join or Maltsev product, Algebra Universalis, (in press).
- [2] A. I. Mal'cev, Multiplication of classes of algebraic systems, Siberian Math. J. 8 (1967), 254–267, translated in "The Metamathematics of Algebraic Systems. Collected Papers 1936–1967," North Holland, 1971.
- [3] H. Neumann, Varieties of groups, Springer-Verlag, Berlin, 1967.