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1 Intro
Consider the abelian groups Zs = ({0,1},+),Z3 = ({0,1,2},+). Let T : Z2 — Z3 be defined by

1 if (by,be) = (1,2)

0 otherwise.

T(by,bs) = {

Let L = (Zy x Z3,®) where (q1,b1) @ (q2,02) = (q1 + g2 + T'(b1, b2), b1 + ba).

Proposition 1. The algebra L is a nonabelian loop of nilpotence class 2. The center, (, is the kernel of the
projection onto Zs.

Proof. That L is a loop is trivial to prove. The remaining facts follow from [3]. O

Note that L is not the product of prime power order loops. Since L has finite signature, this implies that L
is not supernilpotent [1]. Hence, the non-dualizability result of Bentz and Mayr [2] and the finite basis results of
Vaughan-Lee[4] /Freese and McKenzie [3] do not apply. We show L is both dualizable and finitely-based.

2 Dualizability

Let A be a finite algebra. A subset D of a finite power A* of A is called term-closed if there are f;, g; € Clog(A),i € I,
such that
D = {i e A*: fi(¥) = ¢;() for all i € T}.

Theorem 1 ([5]). Let A be a finite algebra. If there is a finite set R of compatible relations on A such that for
every term-closed subset D of a finite power of A and every function f : D — A, the following two conditions are
equivalent, then A is dualizable.

1. f preserves every relation in R.
2. f can be extended to a term operation.

Denote (0,0) € L by 0 and (0,0,...,0) € L* by 0. For z € L\ € 7k % € LF, define the following term
operations:
0-z=0, l-z=uz, 2-z=z6x, Jx=(x@x)dz

re)=r&(@® (@ (o)), lz)=(ror)or)dr) S
AZ=((..(A 21O X-22)D...) DA\ - T
(@ =3-(2-(A-7))
The proof of the following proposition is left to the reader.
Proposition 2. 1. 2@ r(x) =0 forallz € L
2. 4(x)®x=0 forallxz € L
8. 3-2C0 forallx e L
4. ex(Z) CO0 forall N € Z§, 7 € Lk

5. if & CF 4, then cx(T) = e (%))



We now describe the clone of term operations. In order to do so, we describe some subpowers of L:

0 = {0}, Po={(x,y,2) €L’ 1y 0,z @y =z}, Pr={(x,y,2) e L’z @y 2}
Proposition 3. If f € Clog(L), then

for some A € Z§, Iy C [k],T; C Zk — {0}. Moreover, this representation is unique, i.e. if f = g, then (Af Ip,Ty) =
(Ag:1g,Tg).

Proof. Let R = {0, Py, P1,(}. We show
1 2 3
3k 9k +3" =1 < |Clog (L)| < [Poly(R)| < 3 - 2k+3" 1,

1
To show <, it is enough to show each representation is unique. Suppose f = g. By modding out by (, we see
that Ay = A\;. Now

23 :1%692&Y L\ - Z)® f(Z) =L\ - T) ® g(Z) ZS 96169207

i€ly vyely i€ly v€ely
To show Iy = I, and I'y = I'y, we refer the reader to the appendix.

To show <, it is enough to note that each relation in R is a subpower.

3
To show <, we let f preserve R and show there are at most 3 - 2k+3" =1 choices for f- The proof of this is

almost identical to a proof below, so we omit it here. O
Proposition 4. Every term closed subset D of L* satisfies the following:

1.0eD

2. D is a union of n-classes for some n < C*,

3. if £, € D and Z C* i, then T n 7,
Proof. We may assume

D={zecL*: (&) =0}

for some term operation s € Clog(L). We may make this assumption because (right or left) subtraction is a
term operation and since the intersection of subsets that satisfy the above requirements will also satisfy those
requirements. Clearly, 0 € D.

Let U = DN0/¢* and n = Cg{(#@,0) : t € U}. Let ¥ € D and suppose ¥ 1 ij. To show D is a union of 7-classes,
it will be enough to show ¢ € D. First, we show U is a subalgebra of L*. Let iy, s € U. Then

s(ty @ o) = s(ti1) ® s(tiz) =04+0=0

where the first equality is due to s preserving the subpower Py. Now, because L is a loop, there is w such that
=7 ®wand @ n 0. So now,

s(7) = s(Z P W) = s(Z) & s(W) = s(w).
Since @ n 0 and 1 = Cg{(ﬁ,@) : 4 € U}, we know & = t(dy,...,Un, T1,...,Tm) and 0= t(d...,
for some term operation ¢, elements i, ..., 4, € U, and &1, ..., %y, € L*. But now, since t(ﬁ, ..., 0,
t(ﬁ, ...,0,0,...,0) =0 and [n,1] = 0, by the term condition,
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W= t(t, ..., Uy, L1, ..., Tm) = t(T1, ..., Upn,0,...,0) €U

and s(¢) = s(@) = 0 and ¢ € D, as desired.
Now suppose 7,4 € D and & ¢* j. We show Z 1 ij. By the same arguments as above, there is 7 such that
=2 ®Z with Z¢* 0. Then
0=s() =s(Z 2) = s(Z) & 5(2) = 5(2)
so that € DN 0/¢* = U, hence Zn 0 and 37 &



Proposition 5. The loop L is dualizable.

Proof. Let D be a term-closed subset of L*. Let f: D — L preserve O, Py, Py, and (.
Since f preserves P;, 0, and ¢, we have that f : D/¢* — L/ is well-defined and can be extended to a linear
transformation

F/CF s Ny JCH -+ N /¢ LR /CF = L/

Let ¢g(Z) be defined such that f(Z) = X - Z @ ¢g(Z), i.e. g(&¥) = €(\-T) & f(Z). Since g preserves Py, gly : U — L
is a linear transformation ¥ — k1 - o1 + -+ + kg - . Since U C 6/{’“, we can choose each k; € Zy and replace
each z; with 3-2;. Let I = {i : x; # 0}. Now g(&) = > ,;3 - u; for @ € U. Let 2(Z) be defined so that
ANZDY 3@ 2(T) = f(2), 1. 2(2) =L(A-TD),c;3-2;) D f(F). In order to show z is a sum of c) we need to
show that if 7,4 € D with Z ¢¥ 7, then 2(Z) = 2z(¥). Let &, be as above. By proposition ?, we have & 1 /. There
is @ € U such that & = ¥ @ 4. Now 2(Z) = 2(§ @ @) = 2(¥) © z(d) = 2(¥), as desired. Now f(Z) is the restriction of
a term operation, and L is dualizable.

O

3 Finite Axiomatizability

Proposition 6. The loop L is term equivalent to an expansion of a cyclic group.

Proof. 1t is left to the reader to check that
rdy=z+ytalyt+y) ta@tal@+y)+tal@+zty)talz+z+y+y)

and that
rty=r0y+c2-y)ta@ ta@dy)+a 2oy +al2 262 y)

where in the latter case ¢y is defined as above, and in the former it is defined by

1,0) when z ¢ (0,1
iy~ (020 <o)
(0,0) otherwise.
Hence the algebras (Z3 x Z3,®,0) and E := (Zy x Z3,+,¢1,0) are term equivalent. O

Proposition 7. Let A, B be finite algebras with finite signature. If A is term equivalent to B and A is finitely
based, then so is B.

Proposition 8. The loop L is finitely based.
Proof. We show E is finitely based. Let 3 be the set of equations below:
Lo+y+z)=@+y) +=2
2.z+y~ry+cx
3. 6z ~0
4. z+0~z
5. 2¢1(x) = 0
6. c1(x + 3y) = c1(x)
7. c1(x 4+ c1(y)) =~ c1(x)

e Every term operation f € Clog(E) can be written in the form

F@) =A@+ ) 3w+ Y ai(yd)

i€ly vy€Ely

for some Ay € Z%,I; C [k],T'; C Zk — {0}. This form will be called the canonical form of f.



Proof. The proof of this claim is similar to the proof above. O
o If f =g cclog(E), then A\f = \,, [ =1, and Ty =T,,.
Proof. The proof of this claim is similar to the proof above. O
e Every term ¢ can be rewritten in canonical form using only the rules in X.
Proof. Tt is true for variable symbols x; and the constant symbol 0. Suppose t is in canonical form. Then
c1(8(Z)) = e1 (M) by rules 1,6,7
Suppose s, t are in canonical form. Then

s(Z) + t(Z) = \d + 23331- + Z c1(y@) by rules 1,2,3,4,5
iel yel

O

Now let s = t be an equation in E. So f; = f; where f;, fs are s,¢ rewritten in canonical form, respectively.
Now ¥ = s~ f, and t = f;. Therefore ¥ = s~ t.

O
4 Appendix

For z = (¢,b) € L, let T = q € Zo. Let i € [k],\ € Z%. Define é;,w, € L* as follows:

é; = ((0,0),...,(0,0), (1,1-0)7 (0,0),...,(0,0))

Wy = ((0,A1), (0, A2),...,(0,A\g))
Let 3; : L¥ — L be defined by 3,(%) = 3 - ;.
Proposition 9. The operations 3;,cy fori € [k],\ € Z§ are linearly independent in Cloy(L) N (0/O)E" .

Proof. To do this it is enough to show the (k + 3% — 1) x (k + 3% — 1) matrix

31(€1) - 3a(ék) - 3a(Wy)
Qr = 3;@(.*1) 3k(.é'k) 31@(.@)
x(@1) -+ oa@n) -+ ca(iy)

is invertible. Note that cx(&j) = 0 for all A € Z&,j € [k]. Also, 3;(¢;) = 1 if and only if i = j. So we need only

show the matrix Ay = (cy(w,)) where A,y range over Z§ — {0} is invertible.
We define the 3¥ x 3% matrices Ay, By, Cj as follows:

AO = (0) ,BQ = (cl(wl)) ,OO = (CQ(U)Q))

A, A A B, Bi By Cr. Cp, Ch
Apt1= Ay Br Cyp|.,Biy1=|Br Cp Ar|,Cihy1=|Cr Ar By
A, C, By B, A, C C, By A

One can show that A, = (cA (“_ju)) where the A, i range over Z§ and are ordered lexicographically. So to show Ay,

is invertible, it is enough to show A, has rank equal to 3% — 1.
Claim: If Ag + By = (1), then Ay + By is invertible for all k¥ > 0. (The same is true if By + Cy = (1) or

Co+ Ay = (1))



Proof.

A+B A+B A+B A+B A+B A+B A+B A+B A+B A+ B 0 A+ B
A+B=|A+B B+C C+A|~|A+B B+C CH+A|~ 0 C+A B+C| ~ 0 A+B B+C

A+B C+A B+C 0 A+B A+B 0 A+B A+B 0 0 A+ B
where each ~~ represents either an elementary row or column operation. O
Now
A A A A A A A 0 A
A B C|~|0 A+B C+A|l~|0 B+C CH+A
A C B 0 B+C B+C 0 0 B+C

Since By 4+ Cy = (1), we have tk(Ay) > rk(Ap_1) +2 tk(Br_1 +Cp_1) =31 —142.31 =3F 1.
Now Aj, has rank 3% — 1, therefore flk and @y are invertible, and the operations 3;, ¢, are linearly independent.
O
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