A dualizable, finitely based, nilpotent loop

Eran Crockett

1 Intro

Consider the abelian groups $\mathbf{Z}_{2}=(\{0,1\},+), \mathbf{Z}_{3}=(\{0,1,2\},+)$. Let $T: Z_{3}^{2} \rightarrow Z_{2}$ be defined by

$$
T\left(b_{1}, b_{2}\right)= \begin{cases}1 & \text { if }\left(b_{1}, b_{2}\right)=(1,2) \\ 0 & \text { otherwise }\end{cases}
$$

Let $\mathbf{L}=\left(Z_{2} \times Z_{3}, \oplus\right)$ where $\left(q_{1}, b_{1}\right) \oplus\left(q_{2}, b_{2}\right)=\left(q_{1}+q_{2}+T\left(b_{1}, b_{2}\right), b_{1}+b_{2}\right)$.
Proposition 1. The algebra \mathbf{L} is a nonabelian loop of nilpotence class 2. The center, ζ, is the kernel of the projection onto \mathbf{Z}_{3}.

Proof. That \mathbf{L} is a loop is trivial to prove. The remaining facts follow from [3].
Note that \mathbf{L} is not the product of prime power order loops. Since \mathbf{L} has finite signature, this implies that \mathbf{L} is not supernilpotent [1]. Hence, the non-dualizability result of Bentz and Mayr [2] and the finite basis results of Vaughan-Lee[4]/Freese and McKenzie [3] do not apply. We show \mathbf{L} is both dualizable and finitely-based.

2 Dualizability

Let \mathbf{A} be a finite algebra. A subset D of a finite power A^{k} of A is called term-closed if there are $f_{i}, g_{i} \in \operatorname{Clo}_{k}(\mathbf{A}), i \in I$, such that

$$
D=\left\{\vec{x} \in A^{k}: f_{i}(\vec{x})=g_{i}(\vec{x}) \text { for all } i \in I\right\}
$$

Theorem 1 ([5]). Let A be a finite algebra. If there is a finite set \mathcal{R} of compatible relations on \mathbf{A} such that for every term-closed subset D of a finite power of A and every function $f: D \rightarrow A$, the following two conditions are equivalent, then \mathbf{A} is dualizable.

1. f preserves every relation in \mathcal{R}.
2. f can be extended to a term operation.

Denote $(0,0) \in L$ by 0 and $(0,0, \ldots, 0) \in L^{k}$ by $\overrightarrow{0}$. For $x \in L, \lambda \in Z_{3}^{k}, \vec{x} \in L^{k}$, define the following term operations:

$$
\begin{gathered}
0 \cdot x=0, \quad 1 \cdot x=x, \quad 2 \cdot x=x \oplus x, \quad 3 \cdot x=(x \oplus x) \oplus x \\
r(x)=x \oplus(x \oplus(x \oplus(x \oplus x))), \quad \ell(x)=(((x \oplus x) \oplus x) \oplus x) \oplus x \\
\lambda \cdot \vec{x}=\left(\ldots\left(\lambda_{1} \cdot x_{1} \oplus \lambda_{2} \cdot x_{2}\right) \oplus \ldots\right) \oplus \lambda_{k} \cdot x_{k} \\
c_{\lambda}(\vec{x})=3 \cdot(2 \cdot(\lambda \cdot \vec{x}))
\end{gathered}
$$

The proof of the following proposition is left to the reader.
Proposition 2. 1. $x \oplus r(x)=0$ for all $x \in L$
2. $\ell(x) \oplus x=0$ for all $x \in L$
3. $3 \cdot x \zeta 0$ for all $x \in L$
4. $c_{\lambda}(\vec{x}) \zeta 0$ for all $\lambda \in Z_{3}^{k}, \vec{x} \in L^{k}$
5. if $\vec{x} \zeta^{k} \vec{y}$, then $c_{\lambda}(\vec{x})=c_{\lambda}(\vec{y})$

We now describe the clone of term operations. In order to do so, we describe some subpowers of \mathbf{L} :

$$
O=\{0\}, \quad P_{0}=\left\{(x, y, z) \in L^{3}: y \zeta 0, x \oplus y=z\right\}, \quad P_{1}=\left\{(x, y, z) \in L^{3}: x \oplus y \zeta z\right\}
$$

Proposition 3. If $f \in \operatorname{Clo}_{k}(\mathbf{L})$, then

$$
f(\vec{x})=\lambda_{f} \cdot \vec{x} \oplus \sum_{i \in I_{f}} 3 \cdot x_{i} \oplus \sum_{\gamma \in \Gamma_{f}} c_{\gamma}(\vec{x})
$$

for some $\lambda \in Z_{3}^{k}, I_{f} \subseteq[k], \Gamma_{f} \subseteq Z_{3}^{k}-\{\overrightarrow{0}\}$. Moreover, this representation is unique, i.e. if $f=g$, then $\left(\lambda_{f}, I_{f}, \Gamma_{f}\right)=$ $\left(\lambda_{g}, I_{g}, \Gamma_{g}\right)$.
Proof. Let $\mathcal{R}=\left\{O, P_{0}, P_{1}, \zeta\right\}$. We show

$$
3^{k} \cdot 2^{k+3^{k}-1} \stackrel{1}{\leq}\left|\operatorname{Clo}_{k}(\mathbf{L})\right| \stackrel{2}{\leq}\left|\operatorname{Pol}_{k}(\mathcal{R})\right| \stackrel{3}{\leq} 3^{k} \cdot 2^{k+3^{k}-1}
$$

To show $\stackrel{1}{\leq}$, it is enough to show each representation is unique. Suppose $f=g$. By modding out by ζ, we see that $\lambda_{f}=\lambda_{g}$. Now

$$
\sum_{i \in I_{f}} 3 \cdot x_{i} \oplus \sum_{\gamma \in \Gamma_{f}} c_{\gamma}(\vec{x})=\ell\left(\lambda_{f} \cdot \vec{x}\right) \oplus f(\vec{x})=\ell\left(\lambda_{g} \cdot \vec{x}\right) \oplus g(\vec{x})=\sum_{i \in I_{g}} 3 \cdot x_{i} \oplus \sum_{\gamma \in \Gamma_{g}} c_{\gamma}(\vec{x}) .
$$

To show $I_{f}=I_{g}$ and $\Gamma_{f}=\Gamma_{g}$, we refer the reader to the appendix.
To show $\underset{3}{\frac{2}{\leq}}$, it is enough to note that each relation in \mathcal{R} is a subpower.
To show $\stackrel{3}{\leq}$, we let f preserve \mathcal{R} and show there are at most $3^{k} \cdot 2^{k+3^{k}-1}$ choices for f. The proof of this is almost identical to a proof below, so we omit it here.

Proposition 4. Every term closed subset D of L^{k} satisfies the following:

1. $\overrightarrow{0} \in D$
2. D is a union of η-classes for some $\eta \leq \zeta^{k}$,
3. if $\vec{x}, \vec{y} \in D$ and $\vec{x} \zeta^{k} \vec{y}$, then $\vec{x} \eta \vec{y}$,

Proof. We may assume

$$
D=\left\{\vec{x} \in L^{k}: s(\vec{x})=0\right\}
$$

for some term operation $s \in \operatorname{Clo}_{k}(\mathbf{L})$. We may make this assumption because (right or left) subtraction is a term operation and since the intersection of subsets that satisfy the above requirements will also satisfy those requirements. Clearly, $\overrightarrow{0} \in D$.

Let $U=D \cap \overrightarrow{0} / \zeta^{k}$ and $\eta=\operatorname{Cg}\{(\vec{u}, \overrightarrow{0}): \vec{u} \in U\}$. Let $\vec{x} \in D$ and suppose $\vec{x} \eta \vec{y}$. To show D is a union of η-classes, it will be enough to show $\vec{y} \in D$. First, we show U is a subalgebra of \mathbf{L}^{k}. Let $\vec{u}_{1}, \vec{u}_{2} \in U$. Then

$$
s\left(\vec{u}_{1} \oplus \vec{u}_{2}\right)=s\left(\vec{u}_{1}\right) \oplus s\left(\vec{u}_{2}\right)=0+0=0
$$

where the first equality is due to s preserving the subpower P_{0}. Now, because \mathbf{L} is a loop, there is \vec{w} such that $\vec{y}=\vec{x} \oplus \vec{w}$ and $\vec{w} \eta \overrightarrow{0}$. So now,

$$
s(\vec{y})=s(\vec{x} \oplus \vec{w})=s(\vec{x}) \oplus s(\vec{w})=s(\vec{w})
$$

Since $\vec{w} \eta \overrightarrow{0}$ and $\eta=\operatorname{Cg}\{(\vec{u}, \overrightarrow{0}): \vec{u} \in U\}$, we know $\vec{w}=t\left(\vec{u}_{1}, \ldots, \vec{u}_{n}, \vec{x}_{1}, \ldots, \vec{x}_{m}\right)$ and $\overrightarrow{0}=t\left(\overrightarrow{0}, \ldots, \overrightarrow{0}, \vec{x}_{1}, \ldots, \vec{x}_{m}\right)$ for some term operation t, elements $\vec{u}_{1}, \ldots, \vec{u}_{n} \in U$, and $\vec{x}_{1}, \ldots, \vec{x}_{m} \in L^{k}$. But now, since $t\left(\overrightarrow{0}, \ldots, \overrightarrow{0}, \vec{x}_{1}, \ldots, \vec{x}_{m}\right)=$ $t(\overrightarrow{0}, \ldots, \overrightarrow{0}, \overrightarrow{0}, \ldots, \overrightarrow{0})=\overrightarrow{0}$ and $[\eta, 1]=0$, by the term condition,

$$
\vec{w}=t\left(\vec{u}_{1}, \ldots, \vec{u}_{n}, \vec{x}_{1}, \ldots, \vec{x}_{m}\right)=t\left(\vec{u}_{1}, \ldots, \vec{u}_{n}, \overrightarrow{0}, \ldots, \overrightarrow{0}\right) \in U
$$

and $s(\vec{y})=s(\vec{w})=0$ and $\vec{y} \in D$, as desired.
Now suppose $\vec{x}, \vec{y} \in D$ and $\vec{x} \zeta^{k} \vec{y}$. We show $\vec{x} \eta \vec{y}$. By the same arguments as above, there is \vec{z} such that $\vec{y}=\vec{x} \oplus \vec{z}$ with $\vec{z} \zeta^{k} \overrightarrow{0}$. Then

$$
0=s(\vec{y})=s(\vec{x} \oplus \vec{z})=s(\vec{x}) \oplus s(\vec{z})=s(\vec{z})
$$

so that $\vec{z} \in D \cap \overrightarrow{0} / \zeta^{k}=U$, hence $\vec{z} \eta \overrightarrow{0}$ and $\vec{y} \eta \vec{x}$.

Proposition 5. The loop \mathbf{L} is dualizable.
Proof. Let D be a term-closed subset of L^{k}. Let $f: D \rightarrow L$ preserve O, P_{0}, P_{1}, and ζ.
Since f preserves P_{1}, O, and ζ, we have that $f: D / \zeta^{k} \rightarrow L / \zeta$ is well-defined and can be extended to a linear transformation

$$
\vec{x} / \zeta^{k} \mapsto \lambda_{1} \cdot x_{1} / \zeta+\cdots+\lambda_{k} \cdot x_{k} / \zeta: L^{k} / \zeta^{k} \rightarrow L / \zeta
$$

Let $g(\vec{x})$ be defined such that $f(\vec{x})=\lambda \cdot \vec{x} \oplus g(\vec{x})$, i.e. $g(\vec{x})=\ell(\lambda \cdot \vec{x}) \oplus f(\vec{x})$. Since g preserves $P_{0},\left.g\right|_{U}: U \rightarrow L$ is a linear transformation $\vec{x} \mapsto \kappa_{1} \cdot x_{1}+\cdots+\kappa_{k} \cdot x_{k}$. Since $U \subseteq \overrightarrow{0} / \zeta^{k}$, we can choose each $\kappa_{i} \in Z_{2}$ and replace each x_{i} with $3 \cdot x_{i}$. Let $I=\left\{i: \kappa_{i} \neq 0\right\}$. Now $g(\vec{u})=\sum_{i \in I} 3 \cdot u_{i}$ for $\vec{u} \in U$. Let $z(\vec{x})$ be defined so that $\lambda \cdot \vec{x} \oplus \sum_{i \in I} 3 \cdot x_{i} \oplus z(\vec{x})=f(\vec{x})$, i.e. $z(\vec{x})=\ell\left(\lambda \cdot \vec{x} \oplus \sum_{i \in I} 3 \cdot x_{i}\right) \oplus f(\vec{x})$. In order to show z is a sum of c_{λ} we need to show that if $\vec{x}, \vec{y} \in D$ with $\vec{x} \zeta^{k} \vec{y}$, then $z(\vec{x})=z(\vec{y})$. Let \vec{x}, \vec{y} be as above. By proposition ?, we have $\vec{x} \eta \vec{y}$. There is $\vec{u} \in U$ such that $\vec{x}=\vec{y} \oplus \vec{u}$. Now $z(\vec{x})=z(\vec{y} \oplus \vec{u})=z(\vec{y}) \oplus z(\vec{u})=z(\vec{y})$, as desired. Now $f(\vec{x})$ is the restriction of a term operation, and \mathbf{L} is dualizable.

3 Finite Axiomatizability

Proposition 6. The loop \mathbf{L} is term equivalent to an expansion of a cyclic group.
Proof. It is left to the reader to check that

$$
x \oplus y=x+y+c_{1}(y+y)+c_{1}(x)+c_{1}(x+y)+c_{1}(x+x+y)+c_{1}(x+x+y+y)
$$

and that

$$
x+y=x \oplus y+c_{1}(2 \cdot y)+c_{1}(x)+c_{1}(x \oplus y)+c_{1}(2 \cdot x \oplus y)+c_{1}(2 \cdot x \oplus 2 \cdot y)
$$

where in the latter case c_{1} is defined as above, and in the former it is defined by

$$
c_{1}(x)= \begin{cases}(1,0) & \text { when } x \zeta(0,1) \\ (0,0) & \text { otherwise }\end{cases}
$$

Hence the algebras $\left(Z_{2} \times Z_{3}, \oplus, 0\right)$ and $\mathbf{E}:=\left(Z_{2} \times Z_{3},+, c_{1}, 0\right)$ are term equivalent.
Proposition 7. Let \mathbf{A}, \mathbf{B} be finite algebras with finite signature. If \mathbf{A} is term equivalent to \mathbf{B} and \mathbf{A} is finitely based, then so is \mathbf{B}.

Proposition 8. The loop \mathbf{L} is finitely based.
Proof. We show \mathbf{E} is finitely based. Let Σ be the set of equations below:

1. $x+(y+z) \approx(x+y)+z$
2. $x+y \approx y+x$
3. $6 x \approx 0$
4. $x+0 \approx x$
5. $2 c_{1}(x) \approx 0$
6. $c_{1}(x+3 y) \approx c_{1}(x)$
7. $c_{1}\left(x+c_{1}(y)\right) \approx c_{1}(x)$

- Every term operation $f \in \operatorname{Clo}_{k}(\mathbf{E})$ can be written in the form

$$
f(\vec{x})=\lambda_{f} \vec{x}+\sum_{i \in I_{f}} 3 x_{i}+\sum_{\gamma \in \Gamma_{f}} c_{1}(\gamma \vec{x})
$$

for some $\lambda_{f} \in Z_{3}^{k}, I_{f} \subseteq[k], \Gamma_{f} \subseteq Z_{3}^{k}-\{\overrightarrow{0}\}$. This form will be called the canonical form of f.

Proof. The proof of this claim is similar to the proof above.

- If $f=g \in \operatorname{clo}_{k}(\mathbf{E})$, then $\lambda_{f}=\lambda_{g}, I_{f}=I_{g}$, and $\Gamma_{f}=\Gamma_{g}$.

Proof. The proof of this claim is similar to the proof above.

- Every term t can be rewritten in canonical form using only the rules in Σ.

Proof. It is true for variable symbols x_{i} and the constant symbol 0 . Suppose t is in canonical form. Then

$$
c_{1}(t(\vec{x}))=c_{1}\left(\lambda_{t} \vec{x}\right) \text { by rules } 1,6,7
$$

Suppose s, t are in canonical form. Then

$$
s(\vec{x})+t(\vec{x})=\lambda \vec{x}+\sum_{i \in I} 3 x_{i}+\sum_{\gamma \in \Gamma} c_{1}(\gamma \vec{x}) \text { by rules } 1,2,3,4,5
$$

Now let $s \approx t$ be an equation in \mathbf{E}. So $f_{s}=f_{t}$ where f_{t}, f_{s} are s, t rewritten in canonical form, respectively. Now $\Sigma \models s \approx f_{s}$ and $t \approx f_{t}$. Therefore $\Sigma \models s \approx t$.

4 Appendix

For $x=(q, b) \in L$, let $\bar{x}=q \in Z_{2}$. Let $i \in[k], \lambda \in Z_{3}^{k}$. Define $\vec{e}_{i}, \vec{w}_{\lambda} \in L^{k}$ as follows:

$$
\begin{gathered}
\vec{e}_{i}=((0,0), \ldots,(0,0),(1,0),(0,0), \ldots,(0,0)) \\
\vec{w}_{\lambda}=\left(\left(0, \lambda_{1}\right),\left(0, \lambda_{2}\right), \ldots,\left(0, \lambda_{k}\right)\right)
\end{gathered}
$$

Let $3_{i}: L^{k} \rightarrow L$ be defined by $3_{i}(\vec{x})=3 \cdot x_{i}$.
Proposition 9. The operations $3_{i}, c_{\lambda}$ for $i \in[k], \lambda \in Z_{3}^{k}$ are linearly independent in $\operatorname{Clo}_{k}(\mathbf{L}) \cap(0 / \zeta)^{L^{k}}$.
Proof. To do this it is enough to show the $\left(k+3^{k}-1\right) \times\left(k+3^{k}-1\right)$ matrix

$$
Q_{k}=\left(\begin{array}{ccccc}
\overline{3_{1}\left(\vec{e}_{1}\right)} & \ldots & \overline{3_{1}\left(\vec{e}_{k}\right)} & \ldots & \overline{3_{1}\left(\vec{w}_{\mu}\right)} \\
\vdots & & \vdots & & \vdots \\
\overline{3_{k}\left(\vec{e}_{1}\right)} & \ldots & \overline{3_{k}\left(\vec{e}_{k}\right)} & \ldots & \overline{3_{k}\left(\vec{w}_{\mu}\right)} \\
\vdots & & \vdots & & \vdots \\
\overline{c_{\lambda}\left(\vec{e}_{1}\right)} & \ldots & \overline{c_{\lambda}\left(\vec{e}_{k}\right)} & \ldots & \overline{c_{\lambda}\left(\vec{w}_{\mu}\right)}
\end{array}\right)
$$

is invertible. Note that $\overline{c_{\lambda}\left(\vec{e}_{j}\right)}=0$ for all $\lambda \in Z_{3}^{k}, j \in[k]$. Also, $\overline{3_{i}\left(\vec{e}_{j}\right)}=1$ if and only if $i=j$. So we need only show the matrix $\hat{A}_{k}=\left(\overline{c_{\lambda}\left(\vec{w}_{\mu}\right)}\right)$ where λ, μ range over $Z_{3}^{k}-\{\overrightarrow{0}\}$ is invertible.

We define the $3^{k} \times 3^{k}$ matrices A_{k}, B_{k}, C_{k} as follows:

$$
\begin{gathered}
A_{0}=(0), B_{0}=\left(\overline{c_{1}\left(w_{1}\right)}\right), C_{0}=\left(\overline{c_{2}\left(w_{2}\right)}\right) \\
A_{k+1}=\left(\begin{array}{lll}
A_{k} & A_{k} & A_{k} \\
A_{k} & B_{k} & C_{k} \\
A_{k} & C_{k} & B_{k}
\end{array}\right), B_{k+1}=\left(\begin{array}{lll}
B_{k} & B_{k} & B_{k} \\
B_{k} & C_{k} & A_{k} \\
B_{k} & A_{k} & C_{k}
\end{array}\right), C_{k+1}=\left(\begin{array}{lll}
C_{k} & C_{k} & C_{k} \\
C_{k} & A_{k} & B_{k} \\
C_{k} & B_{k} & A_{k}
\end{array}\right)
\end{gathered}
$$

One can show that $A_{k}=\left(\overline{c_{\lambda}\left(\vec{w}_{\mu}\right)}\right)$ where the λ, μ range over Z_{3}^{k} and are ordered lexicographically. So to show \hat{A}_{k} is invertible, it is enough to show A_{k} has rank equal to $3^{k}-1$.

Claim: If $A_{0}+B_{0}=(1)$, then $A_{k}+B_{k}$ is invertible for all $k \geq 0$. (The same is true if $B_{0}+C_{0}=(1)$ or $C_{0}+A_{0}=(1)$.)

Proof.

where each \rightsquigarrow represents either an elementary row or column operation.
Now

$$
\left(\begin{array}{ccc}
A & A & A \\
A & B & C \\
A & C & B
\end{array}\right) \rightsquigarrow\left(\begin{array}{ccc}
A & A & A \\
0 & A+B & C+A \\
0 & B+C & B+C
\end{array}\right) \rightsquigarrow\left(\begin{array}{ccc}
A & 0 & A \\
0 & B+C & C+A \\
0 & 0 & B+C
\end{array}\right)
$$

Since $B_{0}+C_{0}=(1)$, we have $\operatorname{rk}\left(A_{k}\right) \geq \operatorname{rk}\left(A_{k-1}\right)+2 \cdot \operatorname{rk}\left(B_{k-1}+C_{k-1}\right)=3^{k-1}-1+2 \cdot 3^{k-1}=3^{k}-1$.
Now A_{k} has rank $3^{k}-1$, therefore \hat{A}_{k} and Q_{k} are invertible, and the operations $3_{i}, c_{\lambda}$ are linearly independent.

References

[1] Aichinger, Erhard; Mudrinski, Neboja. Some applications of higher commutators in Mal'cev algebras. Algebra Universalis 63 (2010), no. 4, 367403.
[2] Bentz, Wolfram; Mayr, Peter. 'Supernilpotence prevents dualizability. J. Aust. Math. Soc. 96 (2014), no. 1, 124.
[3] Freese, Ralph; McKenzie, Ralph Commutator theory for congruence modular varieties. London Mathematical Society Lecture Note Series, 125. Cambridge University Press, Cambridge, 1987.
[4] Vaughan-Lee, M. R. Nilpotence in permutable varieties. Universal algebra and lattice theory (Puebla, 1982), 293308, Lecture Notes in Math., 1004, Springer, Berlin, 1983.
[5] R. Willard. 'Four unsolved problems in congruence permutable varieties', Talk at the Conference on Order, Algebra, and Logics, Nashville, 2007.

