A dualizable, finitely based, nilpotent loop

Eran Crockett

1 Intro

Consider the abelian groups $\mathbf{Z}_2 = (\{0,1\},+), \mathbf{Z}_3 = (\{0,1,2\},+)$. Let $T: \mathbb{Z}_3^2 \to \mathbb{Z}_2$ be defined by

$$T(b_1, b_2) = \begin{cases} 1 & \text{if } (b_1, b_2) = (1, 2) \\ 0 & \text{otherwise.} \end{cases}$$

Let $\mathbf{L} = (Z_2 \times Z_3, \oplus)$ where $(q_1, b_1) \oplus (q_2, b_2) = (q_1 + q_2 + T(b_1, b_2), b_1 + b_2).$

Proposition 1. The algebra **L** is a nonabelian loop of nilpotence class 2. The center, ζ , is the kernel of the projection onto \mathbf{Z}_3 .

Proof. That \mathbf{L} is a loop is trivial to prove. The remaining facts follow from [3].

Note that **L** is not the product of prime power order loops. Since **L** has finite signature, this implies that **L** is not supernilpotent [1]. Hence, the non-dualizability result of Bentz and Mayr [2] and the finite basis results of Vaughan-Lee[4]/Freese and McKenzie [3] do not apply. We show **L** is both dualizable and finitely-based.

2 Dualizability

Let **A** be a finite algebra. A subset *D* of a finite power A^k of *A* is called *term-closed* if there are $f_i, g_i \in \text{Clo}_k(\mathbf{A}), i \in I$, such that

$$D = \{ \vec{x} \in A^k : f_i(\vec{x}) = g_i(\vec{x}) \text{ for all } i \in I \}.$$

Theorem 1 ([5]). Let \mathbf{A} be a finite algebra. If there is a finite set \mathcal{R} of compatible relations on \mathbf{A} such that for every term-closed subset D of a finite power of A and every function $f : D \to A$, the following two conditions are equivalent, then \mathbf{A} is dualizable.

- 1. f preserves every relation in \mathcal{R} .
- 2. f can be extended to a term operation.

Denote $(0,0) \in L$ by 0 and $(0,0,\ldots,0) \in L^k$ by $\vec{0}$. For $x \in L, \lambda \in Z_3^k, \vec{x} \in L^k$, define the following term operations:

$$0 \cdot x = 0, \qquad 1 \cdot x = x, \qquad 2 \cdot x = x \oplus x, \qquad 3 \cdot x = (x \oplus x) \oplus x$$
$$r(x) = x \oplus (x \oplus (x \oplus (x \oplus x))), \qquad \ell(x) = (((x \oplus x) \oplus x) \oplus x) \oplus x)$$
$$\lambda \cdot \vec{x} = (\dots (\lambda_1 \cdot x_1 \oplus \lambda_2 \cdot x_2) \oplus \dots) \oplus \lambda_k \cdot x_k$$
$$c_\lambda(\vec{x}) = 3 \cdot (2 \cdot (\lambda \cdot \vec{x}))$$

The proof of the following proposition is left to the reader.

Proposition 2. 1. $x \oplus r(x) = 0$ for all $x \in L$ 2. $\ell(x) \oplus x = 0$ for all $x \in L$ 3. $3 \cdot x \zeta 0$ for all $x \in L$ 4. $c_{\lambda}(\vec{x}) \zeta 0$ for all $\lambda \in Z_{3}^{k}, \vec{x} \in L^{k}$

5. if $\vec{x} \zeta^k \vec{y}$, then $c_\lambda(\vec{x}) = c_\lambda(\vec{y})$

We now describe the clone of term operations. In order to do so, we describe some subpowers of L:

$$O = \{0\}, \qquad P_0 = \{(x, y, z) \in L^3 : y \zeta \ 0, x \oplus y = z\}, \qquad P_1 = \{(x, y, z) \in L^3 : x \oplus y \zeta \ z\}$$

Proposition 3. If $f \in Clo_k(\mathbf{L})$, then

$$f(\vec{x}) = \lambda_f \cdot \vec{x} \oplus \sum_{i \in I_f} 3 \cdot x_i \oplus \sum_{\gamma \in \Gamma_f} c_{\gamma}(\vec{x})$$

for some $\lambda \in Z_3^k$, $I_f \subseteq [k]$, $\Gamma_f \subseteq Z_3^k - \{\vec{0}\}$. Moreover, this representation is unique, i.e. if f = g, then $(\lambda_f, I_f, \Gamma_f) = (\lambda_g, I_g, \Gamma_g)$.

Proof. Let $\mathcal{R} = \{O, P_0, P_1, \zeta\}$. We show

$$3^{k} \cdot 2^{k+3^{k}-1} \stackrel{1}{\leq} |\operatorname{Clo}_{k}(\mathbf{L})| \stackrel{2}{\leq} |\operatorname{Pol}_{k}(\mathcal{R})| \stackrel{3}{\leq} 3^{k} \cdot 2^{k+3^{k}-1}.$$

To show \leq , it is enough to show each representation is unique. Suppose f = g. By modding out by ζ , we see that $\lambda_f = \lambda_g$. Now

$$\sum_{i \in I_f} 3 \cdot x_i \oplus \sum_{\gamma \in \Gamma_f} c_{\gamma}(\vec{x}) = \ell(\lambda_f \cdot \vec{x}) \oplus f(\vec{x}) = \ell(\lambda_g \cdot \vec{x}) \oplus g(\vec{x}) = \sum_{i \in I_g} 3 \cdot x_i \oplus \sum_{\gamma \in \Gamma_g} c_{\gamma}(\vec{x}).$$

To show $I_f = I_g$ and $\Gamma_f = \Gamma_g$, we refer the reader to the appendix.

To show $\stackrel{2}{\leq}$, it is enough to note that each relation in \mathcal{R} is a subpower.

To show ≤ 3 , we let f preserve \mathcal{R} and show there are at most $3^k \cdot 2^{k+3^k-1}$ choices for f. The proof of this is almost identical to a proof below, so we omit it here.

Proposition 4. Every term closed subset D of L^k satisfies the following:

- 1. $\vec{0} \in D$
- 2. D is a union of η -classes for some $\eta \leq \zeta^k$,
- 3. if $\vec{x}, \vec{y} \in D$ and $\vec{x} \zeta^k \vec{y}$, then $\vec{x} \eta \vec{y}$,

Proof. We may assume

$$D = \{ \vec{x} \in L^k : s(\vec{x}) = 0 \}$$

for some term operation $s \in \operatorname{Clo}_k(\mathbf{L})$. We may make this assumption because (right or left) subtraction is a term operation and since the intersection of subsets that satisfy the above requirements will also satisfy those requirements. Clearly, $\vec{0} \in D$.

Let $U = D \cap \vec{0}/\zeta^k$ and $\eta = Cg\{(\vec{u}, \vec{0}) : \vec{u} \in U\}$. Let $\vec{x} \in D$ and suppose $\vec{x} \eta \vec{y}$. To show D is a union of η -classes, it will be enough to show $\vec{y} \in D$. First, we show U is a subalgebra of \mathbf{L}^k . Let $\vec{u}_1, \vec{u}_2 \in U$. Then

$$s(\vec{u}_1 \oplus \vec{u}_2) = s(\vec{u}_1) \oplus s(\vec{u}_2) = 0 + 0 = 0$$

where the first equality is due to s preserving the subpower P_0 . Now, because **L** is a loop, there is \vec{w} such that $\vec{y} = \vec{x} \oplus \vec{w}$ and $\vec{w} \eta \vec{0}$. So now,

$$s(\vec{y}) = s(\vec{x} \oplus \vec{w}) = s(\vec{x}) \oplus s(\vec{w}) = s(\vec{w}).$$

Since $\vec{w} \ \eta \ \vec{0}$ and $\eta = \operatorname{Cg}\{(\vec{u}, \vec{0}) : \vec{u} \in U\}$, we know $\vec{w} = t(\vec{u}_1, \dots, \vec{u}_n, \vec{x}_1, \dots, \vec{x}_m)$ and $\vec{0} = t(\vec{0}, \dots, \vec{0}, \vec{x}_1, \dots, \vec{x}_m)$ for some term operation t, elements $\vec{u}_1, \dots, \vec{u}_n \in U$, and $\vec{x}_1, \dots, \vec{x}_m \in L^k$. But now, since $t(\vec{0}, \dots, \vec{0}, \vec{x}_1, \dots, \vec{x}_m) = t(\vec{0}, \dots, \vec{0}, \vec{0}, \dots, \vec{0}) = \vec{0}$ and $[\eta, 1] = 0$, by the term condition,

$$\vec{w} = t(\vec{u}_1, \dots, \vec{u}_n, \vec{x}_1, \dots, \vec{x}_m) = t(\vec{u}_1, \dots, \vec{u}_n, \vec{0}, \dots, \vec{0}) \in U$$

and $s(\vec{y}) = s(\vec{w}) = 0$ and $\vec{y} \in D$, as desired.

Now suppose $\vec{x}, \vec{y} \in D$ and $\vec{x} \zeta^k \vec{y}$. We show $\vec{x} \eta \vec{y}$. By the same arguments as above, there is \vec{z} such that $\vec{y} = \vec{x} \oplus \vec{z}$ with $\vec{z} \zeta^k \vec{0}$. Then

$$0 = s(\vec{y}) = s(\vec{x} \oplus \vec{z}) = s(\vec{x}) \oplus s(\vec{z}) = s(\vec{z})$$

so that $\vec{z} \in D \cap \vec{0}/\zeta^k = U$, hence $\vec{z} \eta \vec{0}$ and $\vec{y} \eta \vec{x}$.

Proposition 5. The loop **L** is dualizable.

Proof. Let D be a term-closed subset of L^k . Let $f: D \to L$ preserve O, P_0, P_1 , and ζ .

Since f preserves P_1, O , and ζ , we have that $f: D/\zeta^k \to L/\zeta$ is well-defined and can be extended to a linear transformation

$$\vec{x}/\zeta^k \mapsto \lambda_1 \cdot x_1/\zeta + \dots + \lambda_k \cdot x_k/\zeta : L^k/\zeta^k \to L/\zeta$$

Let $g(\vec{x})$ be defined such that $f(\vec{x}) = \lambda \cdot \vec{x} \oplus g(\vec{x})$, i.e. $g(\vec{x}) = \ell(\lambda \cdot \vec{x}) \oplus f(\vec{x})$. Since g preserves $P_0, g|_U : U \to L$ is a linear transformation $\vec{x} \mapsto \kappa_1 \cdot x_1 + \dots + \kappa_k \cdot x_k$. Since $U \subseteq \vec{0}/\zeta^k$, we can choose each $\kappa_i \in Z_2$ and replace each x_i with $3 \cdot x_i$. Let $I = \{i : \kappa_i \neq 0\}$. Now $g(\vec{u}) = \sum_{i \in I} 3 \cdot u_i$ for $\vec{u} \in U$. Let $z(\vec{x})$ be defined so that $\lambda \cdot \vec{x} \oplus \sum_{i \in I} 3 \cdot x_i \oplus z(\vec{x}) = f(\vec{x})$, i.e. $z(\vec{x}) = \ell(\lambda \cdot \vec{x} \oplus \sum_{i \in I} 3 \cdot x_i) \oplus f(\vec{x})$. In order to show z is a sum of c_λ we need to show that if $\vec{x}, \vec{y} \in D$ with $\vec{x} \zeta^k \vec{y}$, then $z(\vec{x}) = z(\vec{y})$. Let \vec{x}, \vec{y} be as above. By proposition ?, we have $\vec{x} \eta \vec{y}$. There is $\vec{u} \in U$ such that $\vec{x} = \vec{y} \oplus \vec{u}$. Now $z(\vec{x}) = z(\vec{y} \oplus \vec{u}) = z(\vec{y}) \oplus z(\vec{u}) = z(\vec{y})$, as desired. Now $f(\vec{x})$ is the restriction of a term operation, and \mathbf{L} is dualizable.

3 Finite Axiomatizability

Proposition 6. The loop L is term equivalent to an expansion of a cyclic group.

Proof. It is left to the reader to check that

$$x \oplus y = x + y + c_1(y + y) + c_1(x) + c_1(x + y) + c_1(x + x + y) + c_1(x + x + y + y)$$

and that

$$x + y = x \oplus y + c_1(2 \cdot y) + c_1(x) + c_1(x \oplus y) + c_1(2 \cdot x \oplus y) + c_1(2 \cdot x \oplus 2 \cdot y)$$

where in the latter case c_1 is defined as above, and in the former it is defined by

$$c_1(x) = \begin{cases} (1,0) & \text{when } x \zeta (0,1) \\ (0,0) & \text{otherwise.} \end{cases}$$

Hence the algebras $(Z_2 \times Z_3, \oplus, 0)$ and $\mathbf{E} := (Z_2 \times Z_3, +, c_1, 0)$ are term equivalent.

Proposition 7. Let \mathbf{A}, \mathbf{B} be finite algebras with finite signature. If \mathbf{A} is term equivalent to \mathbf{B} and \mathbf{A} is finitely based, then so is \mathbf{B} .

Proposition 8. The loop L is finitely based.

Proof. We show **E** is finitely based. Let Σ be the set of equations below:

- 1. $x + (y + z) \approx (x + y) + z$
- 2. $x + y \approx y + x$
- 3. $6x \approx 0$
- 4. $x + 0 \approx x$
- 5. $2c_1(x) \approx 0$
- 6. $c_1(x+3y) \approx c_1(x)$
- 7. $c_1(x + c_1(y)) \approx c_1(x)$
- Every term operation $f \in \operatorname{Clo}_k(\mathbf{E})$ can be written in the form

$$f(\vec{x}) = \lambda_f \vec{x} + \sum_{i \in I_f} 3x_i + \sum_{\gamma \in \Gamma_f} c_1(\gamma \vec{x})$$

for some $\lambda_f \in Z_3^k, I_f \subseteq [k], \Gamma_f \subseteq Z_3^k - \{\vec{0}\}$. This form will be called the *canonical form* of f.

Proof. The proof of this claim is similar to the proof above.

• If $f = g \in \operatorname{clo}_k(\mathbf{E})$, then $\lambda_f = \lambda_g$, $I_f = I_g$, and $\Gamma_f = \Gamma_g$.

Proof. The proof of this claim is similar to the proof above.

• Every term t can be rewritten in canonical form using only the rules in Σ .

Proof. It is true for variable symbols x_i and the constant symbol 0. Suppose t is in canonical form. Then

$$c_1(t(\vec{x})) = c_1(\lambda_t \vec{x})$$
 by rules 1, 6, 7

Suppose s, t are in canonical form. Then

$$s(\vec{x}) + t(\vec{x}) = \lambda \vec{x} + \sum_{i \in I} 3x_i + \sum_{\gamma \in \Gamma} c_1(\gamma \vec{x})$$
 by rules 1, 2, 3, 4, 5

Now let $s \approx t$ be an equation in **E**. So $f_s = f_t$ where f_t, f_s are s, t rewritten in canonical form, respectively. Now $\Sigma \models s \approx f_s$ and $t \approx f_t$. Therefore $\Sigma \models s \approx t$.

Appendix 4

For $x = (q, b) \in L$, let $\overline{x} = q \in Z_2$. Let $i \in [k], \lambda \in Z_3^k$. Define $\vec{e_i}, \vec{w_\lambda} \in L^k$ as follows:

$$\vec{e}_i = ((0,0), \dots, (0,0), (1,0), (0,0), \dots, (0,0))$$

 $\vec{w}_{\lambda} = ((0,\lambda_1), (0,\lambda_2), \dots, (0,\lambda_k))$

Let $3_i: L^k \to L$ be defined by $3_i(\vec{x}) = 3 \cdot x_i$.

Ź

Proposition 9. The operations $3_i, c_\lambda$ for $i \in [k], \lambda \in Z_3^k$ are linearly independent in $\operatorname{Clo}_k(\mathbf{L}) \cap (0/\zeta)^{L^k}$. *Proof.* To do this it is enough to show the $(k + 3^k - 1) \times (k + 3^k - 1)$ matrix

$$Q_{k} = \begin{pmatrix} \overline{3_{1}(\vec{e}_{1})} & \cdots & \overline{3_{1}(\vec{e}_{k})} & \cdots & \overline{3_{1}(\vec{w}_{\mu})} \\ \vdots & \vdots & \vdots & \vdots \\ \overline{3_{k}(\vec{e}_{1})} & \cdots & \overline{3_{k}(\vec{e}_{k})} & \cdots & \overline{3_{k}(\vec{w}_{\mu})} \\ \vdots & \vdots & \vdots & \vdots \\ \overline{c_{\lambda}(\vec{e}_{1})} & \cdots & \overline{c_{\lambda}(\vec{e}_{k})} & \cdots & \overline{c_{\lambda}(\vec{w}_{\mu})} \end{pmatrix}$$

is invertible. Note that $\overline{c_{\lambda}(\vec{e_j})} = 0$ for all $\lambda \in Z_3^k, j \in [k]$. Also, $\overline{3_i(\vec{e_j})} = 1$ if and only if i = j. So we need only show the matrix $\hat{A}_k = (\overline{c_\lambda(\vec{w}_\mu)})$ where λ, μ range over $Z_3^k - \{\vec{0}\}$ is invertible. We define the $3^k \times 3^k$ matrices A_k, B_k, C_k as follows:

$$A_0 = (0), B_0 = (\overline{c_1(w_1)}), C_0 = (\overline{c_2(w_2)})$$

$$A_{k+1} = \begin{pmatrix} A_k & A_k & A_k \\ A_k & B_k & C_k \\ A_k & C_k & B_k \end{pmatrix}, B_{k+1} = \begin{pmatrix} B_k & B_k & B_k \\ B_k & C_k & A_k \\ B_k & A_k & C_k \end{pmatrix}, C_{k+1} = \begin{pmatrix} C_k & C_k & C_k \\ C_k & A_k & B_k \\ C_k & B_k & A_k \end{pmatrix}$$

One can show that $A_k = (\overline{c_\lambda(\vec{w_\mu})})$ where the λ, μ range over Z_3^k and are ordered lexicographically. So to show \hat{A}_k is invertible, it is enough to show A_k has rank equal to $3^k - 1$.

Claim: If $A_0 + B_0 = (1)$, then $A_k + B_k$ is invertible for all $k \ge 0$. (The same is true if $B_0 + C_0 = (1)$ or $C_0 + A_0 = (1).$

Proof.

$$A+B = \begin{pmatrix} A+B & A+B & A+B \\ A+B & B+C & C+A \\ A+B & C+A & B+C \end{pmatrix} \rightsquigarrow \begin{pmatrix} A+B & A+B & A+B \\ A+B & B+C & C+A \\ 0 & A+B & A+B \end{pmatrix} \rightsquigarrow \begin{pmatrix} A+B & A+B & A+B \\ 0 & C+A & B+C \\ 0 & A+B & A+B \end{pmatrix} \rightsquigarrow \begin{pmatrix} A+B & 0 & A+B' \\ 0 & C+A & B+C \\ 0 & 0 & A+B & A+B \end{pmatrix} \rightsquigarrow \begin{pmatrix} A+B & 0 & A+B' \\ 0 & A+B & B+C' \\ 0 & 0 & A+B & A+B \end{pmatrix}$$

where each \rightsquigarrow represents either an elementary row or column operation.

Now

$$\begin{pmatrix} A & A & A \\ A & B & C \\ A & C & B \end{pmatrix} \rightsquigarrow \begin{pmatrix} A & A & A \\ 0 & A+B & C+A \\ 0 & B+C & B+C \end{pmatrix} \rightsquigarrow \begin{pmatrix} A & 0 & A \\ 0 & B+C & C+A \\ 0 & 0 & B+C \end{pmatrix}$$

Since $B_0 + C_0 = (1)$, we have $\operatorname{rk}(A_k) \ge \operatorname{rk}(A_{k-1}) + 2 \cdot \operatorname{rk}(B_{k-1} + C_{k-1}) = 3^{k-1} - 1 + 2 \cdot 3^{k-1} = 3^k - 1$.

Now A_k has rank $3^k - 1$, therefore \hat{A}_k and Q_k are invertible, and the operations $3_i, c_\lambda$ are linearly independent.

References

- Aichinger, Erhard; Mudrinski, Neboja. Some applications of higher commutators in Mal'cev algebras. Algebra Universalis 63 (2010), no. 4, 367403.
- [2] Bentz, Wolfram; Mayr, Peter. 'Supernilpotence prevents dualizability. J. Aust. Math. Soc. 96 (2014), no. 1, 124.
- [3] Freese, Ralph; McKenzie, Ralph Commutator theory for congruence modular varieties. London Mathematical Society Lecture Note Series, 125. Cambridge University Press, Cambridge, 1987.
- [4] Vaughan-Lee, M. R. Nilpotence in permutable varieties. Universal algebra and lattice theory (Puebla, 1982), 293308, Lecture Notes in Math., 1004, Springer, Berlin, 1983.
- [5] R. Willard. 'Four unsolved problems in congruence permutable varieties', Talk at the Conference on Order, Algebra, and Logics, Nashville, 2007.