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These problems were posed on Tuesday, September 20th by Ralph McKenzie
and Petar Marković.

The following result was proved by Marcin Kozik in 2009, appeared in the paper
[3], using the strong version of the bounded width theorem by Libor Barto from
[1]:

Theorem 1. Let V be a locally finite variety. V is congruence meet-semidistributive
iff there exist V-terms p(x, y, z) and q(x, y, z, u) which are both weak near-unanimity
terms in V and such that V |= p(x, x, y) ≈ q(x, x, x, y).

A proof which first copies Kozik’s almost verbatim and then uses a compactness
argument can be devised to prove (see [2]):

Theorem 2. Let V be a locally finite variety. V is congruence meet-semidistributive
iff for all k ≥ 3 there exist V-terms pk(x1, . . . , xk) which are weak near-unanimity
terms in V and a V-term b(x, y) such that for all k ≥ 3, V |= pk(x, . . . , x, y) ≈
b(x, y).

Problem 3. Is Theorem 2 still true if we add ”and V |= b(x, b(x, y)) ≈ b(x, y)”
at the end of its statement (i.e. the requirement that all pk are special in the
terminology of [4])?

One partial result is known from [4]:

Theorem 4. Let V be a locally finite variety. V is congruence meet-semidistributive
iff there exists n ≥ 3 such that for all k ≥ n there exist V-terms pk(x1, . . . , xk) which
are weak near-unanimity terms in V and a V-term b(x, y) such that for all k ≥ n,
V |= pk(x, . . . , x, y) ≈ b(x, y) ≈ b(x, b(x, y)).

Another strong Mal’cev characterization of the congruence meet-semidistributi-
vity in locally finite varieties proved in [2] is

Theorem 5. Let V be a locally finite variety. V is congruence meet-semidistributive
iff there exists a V-term p(x, y, z, u) such that V |= p(x, x, x, x) ≈ x and V |=
p(x, x, x, y) ≈ p(x, x, y, x) ≈ p(x, y, x, x) ≈ p(y, x, x, x) ≈ p(x, x, y, y) ≈ p(x, y, x, y)
≈ p(x, y, y, x).

This strong Mal’cev condition is pretty strong syntactically and it implies most
other known Mal’cev characterizations of congruence meet-semidistributivity in
locally finite varieties. However, a computer search identified two other strong
Mal’cev conditions which are even stronger than the one mentioned in Theorem 5,
so they imply congruence meet-semidistributivity, but may be actually equivalent
to it in all locally finite varieties. They are:
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(BD)
t(x, x, x, x) ≈ x
t(x, x, y, z) ≈ t(y, z, y, x) ≈ t(x, z, z, y)

(LS)
t(x, x, x, x) ≈ x
t(x, x, y, z) ≈ t(y, x, z, x) ≈ t(y, z, x, y)

Problem 6. Does every locally finite congruence meet-semidistributive variety
satisfy the strong Mal’cev condition (BD)? And how about (LS)?

Miklós Maróti solved Problem 6 on Friday, September 23rd by providing two
counterexamples which are algebras with six elements. Both generate congruence
meet-semidistributive varieties, but the first one fails the condition (BD) while the
other one fails the condition (LS).
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