
LOCAL MAL’CEV-LIKE CONDITIONS

MIROSLAV OLŠAK

All operations which will be discussed are idempotent. By a strong Mal’cev
condition we mean a finite set of identities in some language. Informally, a strong
Mal’cev condition is realized in an algebra A (or variety V) if there is a way to
interpret the function symbols appearing in the condition as term operations of A
(or V) so that the identities in the Mal’cev condition become true equations in A
(or V). Another way of saying that an algebra A realizes a condition C is saying
that A has a <description of the condition C >-term.

Example 1. If an algebra has a commutative idempotent binary term opera-
tion + then this algebra has a 4-ary weak near-unanimity term. Proof: just use
w(x, y, z, u) = (x + y) + (z + u).

Now we introduce the local satisfaction of a Mal’cev condition.

Definition 2. Let A be an algebra, let C be a strong Mal’cev condition and and
let X ⊆ A. We say that A realizes C on X if there is a way to interpret the
operations as terms of A so that for all evaluations of the variables as elements of
X, all identities in C are true in those evaluations.

Problem 3. Let A be an algebra and X ⊆ A. If A has a commutative binary
term on X, must A also have a 4-ary weak near-unanimity term on X?

Motivations:

(1) Continuous (for usual implications) vs. uniformly continuous (for local
implications) clone homomorphisms.

(2) Local is simpler than global!

Definition 4. The double loop term is a strong Mal’cev condition in one 12-ary
operation symbol t and two identities plus idempotence. It is given by
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i.e. one identity between the terms in the first two rows and the other identity is
between the terms in the second two rows of the above figure.

Problem 5. Let A be an algebra and X ⊆ A. If A has a Taylor term on X, must
A also have a 12-ary double loop term on X?

We fix a variety V with a Taylor term t. Let F = FV(X) and X = {x, y}.
1



2 MIROSLAV OLŠAK

Define Q ≤ F4 by

Q = SgA4
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and define R ≤ F2 by

[
a
b

]
∈ R iff (∃c ∈ F )


a
b
c
c

 ∈ Q.

By the definition of Q we know [
x
y

]
,

[
y
x

]
∈ R

Moreover, since the set of all generators of Q is invariant under transposition of the
first two coordinates, then so is the whole of Q. It follows that R is also invariant
under the transposition of the first two coordinates as

[
a
b

]
∈ R iff (∃c ∈ F )


a
b
c
c

 ∈ Q iff (∃c ∈ F )


b
a
c
c

 ∈ Q iff

[
b
a

]
∈ R.

The above argument proves that R is a symmetric relation. Next we prove

Theorem 6. The set A :=

{[
x
y

]
,

[
y
x

]}
absorbs the set B :=

{[
x
x

]
,

[
y
y

]}
into R.

Proof. We will prove absorption via the Taylor term t.
Indeed, let i ≤ n, let [a1, b1]T , . . . , [ai−1]T , [ai+1]T , . . . , [an, bn]T ∈ A and let

[ai, bi]
T ∈ B (of course, all aj , bk ∈ {x, y}). Since t is Taylor, there exist c1, . . . , cn,

d1, . . . , dn ∈ {x, y} such that ci = x, di = y and t(c1, . . . , cn) ≈ t(d1, . . . , dn).
Let t(c1, . . . , cn) = z. Note that for all j 6= i, [aj , bj , cj , dj ]

T ∈ Q (actually
they are among the generators of Q) since [aj , bj ]

T ∈ A, so {aj , bj} = {x, y}.
Moreover, either [ai, bi, ci, di]

T = [x, x, x, y]T or [ai, bi, ci, di]
T = [y, y, x, y]T , so

[ai, bi, ci, di]
T ∈ Q. We compute

t
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So

t

([
a1

b1

]
,

[
a2

b2

]
, . . . ,

[
an
bn

])
∈ R, as desired.

�

We would like to prove that in the above situation R has a loop, but we can’t
do it. So we have

Problem 7. Prove or disprove that R must have a loop.



LOCAL MAL’CEV-LIKE CONDITIONS 3

We can prove Problem 7 when t is 3-ary:

Theorem 8. Let A :=

{[
x
y

]
,

[
y
x

]}
absorb the set B :=

{[
x
x

]
,

[
y
y

]}
into R via a

ternary idempotent operation t. Then R contains a loop.

Proof. Notation: to avoid even longer expressions, we will write (abc) for t(a, b, c).
Denote a = ((xyy)(xyx)(xxy)), b = ((yxx)(yxy)(xxy)) and c = ((yxx)(xyx)(yyx)).
We will force the loop at (abc). We do it by proving that [(abc), a]T ∈ R, [(abc), b]T ∈
R and [(abc), c]T ∈ R and then applying t to those three vectors (and using idem-

potence). Indeed,

[
(abc)
a

]
=(

((xyy) (xyx) (xxy)) ((yxx) (yxy) (xxy)) ((yxx) (xyx) (yyx))
( x y y ) ((xyx) (xyx) (xyx)) ((xxy) (xxy) (xxy))

)
.

Here the first three vector columns are in R since A absorbs B into R via t, while

the remaining six are in t applied to vectors in A. Similarly,

[
(abc)
b

]
=(

((xyy) (xyx) (xxy)) ((yxx) (yxy) (xxy)) ((yxx) (xyx) (yyx))
((yxx) (yxx) (yxx)) ( y x y ) ((xxy) (xxy) (xxy))

)
.

Here we apply absorption to the middle three vector columns. Finally,

[
(abc)
c

]
=(

((xyy) (xyx) (xxy)) ((yxx) (yxy) (xxy)) ((yxx) (xyx) (yyx))
((yxx) (yxx) (yxx)) ((xyx) (xyx) (xyx)) ( y y x )

)
.

�

As a side note, Libor was able to prove it using t of arity 5, however he needs to
to assume finiteness.

Note that R must contain an odd cycle. Indeed, let a0
1, . . . , a

0
n = x and for

0 < i ≤ n define aii = ai−1
i , while for j 6= i, if ai−1

j = x then aij = y, while if

ai−1
j = y then aij = x. Now compute

b0

b1

...
bn

 := t



a0

1

a1
1
...
an1

,

a0

2

a1
2
...
an2

, . . . ,

a0
n

a1
n
...
ann




For all 0 ≤ i < n, from Theorem 6 follows that [bi, bi+1]T ∈ R. Moreover, b0 = x
by idempotence and if n is odd, then bn = t(x, x, . . . , x) = x so we have an odd
cycle in R, while if n is even, then bn = t(y, y, . . . , y) = y and since [y, x]T ∈ R, we
get an odd cycle in R again.

Denote by R→k := R ◦R ◦ . . . ◦R (using k− 1 symbols ◦). Since there is an odd
cycle in R, and R is a symmetric relation, then R contains odd cycles of all except
finitely many lengths. Assume that R has no loop. Let k be maximal such that

R→3k

contains no loop. R→3k

contains a triangle. So, if we were able to prove that
triangle implies loop, we would be in business for Problem 7.

By assuming an additional absorption condition, we can complete this proof. We
will prove two statements by a simultaneous induction on the arity of the term n
which is used in the absorption.
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Theorem 9. Let R be binary, symmetric, contains a triangle a, b, c and let a+

absorb a. Then R has a loop.

Theorem 10. Let A be an algebra with a Taylor term t. Let R be a symmetric,
nonempty binary relation on A, RC∆A. Then R contains a loop.

Proof of the base case n = 1 of Theorem 9. The base case follows from idempotence.
Indeed, t(a) ∈ a+ by the fact that a+ absorbs a via t. Therefore, [a, a]T ∈ R is the
desired loop. �

Now come the inductive steps.

Proof of Theorem 9 assuming Theorem 10 for n− 1. : Let the arity n of t be greater
than 1. Define R′ := R ∩ a+ and A′ = {x ∈ a+ : x is not an isolated vertex in
R′}. We know that b, c ∈ A′ and [b, c]T ∈ R′. We define a new ”strong absorption”
by B CCA if there exists a term s in more than one variable such that whenever
at most two entries in a tuple a are in A, but the rest are in B, then s(a) ∈ B.
Finally, denote S := R′ ◦R′ ◦R′.

We claim that S CC (A′)2. We will put the vectors in (A′)2 on the outside to
be easier to see what we are doing but it should be obvious they can be on any
two positions in the term. We assume that [a1, d1]T , [an, dn]T ∈ (A′)2 and that for
all 1 < i < n, [ai, bi]

T , [bi, ci]
T , [ci, di]

T ∈ R′. We select any c1 and bn such that
[c1, d1]T , [an, bn]T ∈ R′ (we can because d1 and an are not isolated vertices).

t
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Note that b′, c′ ∈ a+ since a+ absorbs a and that none of a′, b′, c′, d′ are isolated.
So we have for the term t′ = t(x1, x2, . . . , xn−1, x1) that A′ and S satisfy that S
absorbs (A′)2 via t′. S is clearly nonempty and symmetric. Therefore we have more
than enough to apply Theorem 10 and deduce that the graph (A′, S) contains a
loop. This loop is a triangle a′, b′, c′ in (A′, R′). Together with a we get a complete
R-graph K4 on the vertices {a, a′, b′, c′}.

So with respect to the graph (A′, R′) we have all the same assumptions as in the
statement of Theorem 9. Note that since x+ absorbs x with x+ computed relative
to R, then x+ absorbs x with x+ computed relative to R′. This means that we can
continue and find a triangle in a′+ (computed with respect to R′) and therefore a
complete graph with 5 vertices in (A,R). Continuing like this, we get as large a
finite clique as we need in R, and we need the size n + 1. Let this clique be on the
vertices {a, x1, x2, . . . , xn}. Define y1 = t(a, x1, . . . , x1), y2 = t(x2, a, x2, . . . , x2)
and so on, till yn = t(xn, xn, . . . , xn, a). Then we claim [t(y1, y2, . . . , yn), yi]

T ∈ R
for all 1 ≤ i ≤ n. We show how this works for i = 2, you can imagine the analogous
arguments for other i:

t

([
t(a, x1, . . . , x1)

x2

]
,

[
t(x2, a, x2, . . . , x2)

a

]
, . . . ,

[
t(xn, xn, . . . , xn, a)

x2

])
∈ R,

using the fact that R absorbs the diagonal. Finally we prove that there is a loop
at t(y1, y2, . . . , yn) using idempotence. �

Now we turn to Theorem 10.
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Proof of Theorem 10 assuming Theorem 9 for n. First note that there exists an
odd cycle in R. If we just take an element c ∈ A which is not isolated in R
and if [c, d]T ∈ R, then the argument above the statement of Theorem 10 with c
playing the role of x and d playing the role of y proves that R has an odd cycle.
As noted before, since R is symmetric and contains an odd cycle, if there were no

loops in R, then there exists the largest k such that the power R→3k

contains no

loops. So, we may replace R by R→3k

and note that R→3k

still absorbs ∆A, it is
still symmetric and nonempty , but it also contains a 3-cycle. If we were to prove

that R→3k

contained a loop, we would be done by contradiction. The letter S will

from now on stand in place of R→3k

.
Let a ∈ F be such that a+ (with respect to S) is nonempty. Then we claim that

a+ absorbs a. Indeed, let t be the term of arity n modulo which S absorbs ∆A.
Then for any 1 ≤ i ≤ n and any b1, . . . , bi−1, bi+1, . . . , bn ∈ a+,

t

([
a
b1

]
, . . . ,

[
a

bi−1

]
,

[
a
a

]
,

[
a

bi+1

]
, . . . ,

[
an
bn

])
.

Hence, [a, t(b1, . . . , bi−1, a, bi+1, . . . , bn)]T∈S, so t(b1, . . . , bi−1, a, bi+1, . . . , bn) ∈ a+,
proving the desired absorption.

Finally we apply Theorem 9 to S to derive that the graph (A,S) has a loop. �


