CSPs of Finite Commutative Idempotent Binars

William DeMeo

williamdemeo@gmail.com Iowa State University
joint work with
Cliff Bergman
Jiali Li

Shanks Workshop
Vanderbilt University
May 30, 2015

General Problem: Find Maltsev conditions that characterize the complexity of CSPs of universal algebras.

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...
$\operatorname{CSP}(\mathbf{A})$ is tractable $\Longrightarrow \mathbf{A}$ has a weak-nu term operation $\quad \checkmark$
The left-to-right direction is known.

General Problem: Find Maltsev conditions that characterize the complexity of CSPs of universal algebras.

CSP DICHOTOMY CONJECTURE
For a (finite, idempotent) algebra A...
$\operatorname{CSP}(\mathbf{A})$ is tractable $\Longleftrightarrow \mathbf{A}$ has a weak-nu term operation

General Problem: Find Maltsev conditions that characterize the complexity of CSPs of universal algebras.

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...
$\operatorname{CSP}(\mathbf{A})$ is tractable $\Longleftarrow \mathbf{A}$ has a weak-nu term operation (?
The right-to-left direction is open.

General Problem: Find Maltsev conditions that characterize the complexity of CSPs of universal algebras.

CSP DICHOTOMY CONJECTURE
For a (finite, idempotent) algebra A...

$$
\operatorname{CSP}(\mathbf{A}) \text { is tractable } \Longleftarrow \mathbf{A} \text { has a weak-nu term operation }
$$

A weak near unanimity (weak-nu) term operation is one that satisfies

$$
\begin{aligned}
& t(x, x, \ldots, x) \approx x \quad \text { (idempotent) } \\
& t(y, x, \ldots, x) \approx t(x, y, \ldots, x) \approx \cdots \approx t(x, x, \ldots, y)
\end{aligned}
$$

A binary operation $t(x, y)$ is weak-nu if

$$
\begin{aligned}
& t(x, x) \approx x \quad \text { (idempotent) } \\
& t(y, x) \approx t(x, y) \quad \text { (commutative) }
\end{aligned}
$$

So let's try to prove (?) for commutative idempotent binars.

General CASE

SOME WELL KNOWN FACTS
Let \mathbf{A} be a finite idempotent algebra. Let \mathbf{S}_{2} be the 2-elt semilattice.

$$
\begin{aligned}
\mathrm{V}(\mathbf{A}) \text { is } \mathrm{CP} & \Longleftrightarrow \mathrm{~A} \text { has Malcev term } \\
& \Longrightarrow \mathrm{A} \text { has cube term } \\
& \Longrightarrow \mathrm{V}(\mathbf{A}) \text { is } \mathrm{CM} \\
& \Longrightarrow \mathbf{S}_{2} \text { is not in } \mathrm{V}(\mathbf{A})
\end{aligned}
$$

COMMUTATIVE IDEMPOTENT BINARS

A CIB is an algebra $\mathbf{A}=\langle A, \cdot\rangle$ satisfying $x \cdot y \approx y \cdot x$ and $x \cdot x \approx x$.
QUestion
Is every finite commutative idempotent binar tractable?

First Example: a semilattice is an associative CIB.
Semilattices are tractable.

Pause to consider more general case for a minute...

Recent results

$\mathrm{A}=\mathrm{a}$ finite idempotent algebra

$S_{2}=$ the 2-elt semilattice.
$\mathrm{V}(\mathbf{A})$ is $\mathrm{CP} \Longleftrightarrow \mathbf{A}$ has a Malcev term

$$
\begin{aligned}
& \Longrightarrow \quad \mathbf{A} \text { has a cube term } \\
& \Longrightarrow \quad V(\mathbf{A}) \text { is } \mathrm{CM}
\end{aligned}
$$

$$
\Longrightarrow \quad \mathbf{S}_{2} \text { is not in } \mathrm{V}(\mathbf{A})
$$

- cube term $\Longrightarrow \mathrm{CM}$
(Berman, Idziak, Marković, McKenzie, Valeriote, Willard 2010)
$■ \mathrm{CM} \Longrightarrow \mathbf{S}_{2}$ is not in $\mathrm{V}(\mathbf{A})$
Proof: $\mathbf{S}_{2} \in \mathrm{~V}(\mathbf{A}) \Rightarrow \mathbf{S}_{2}^{2} \in \mathrm{~V}(\mathbf{A})$;
Con $\left(\mathbf{S}_{2}^{2}\right)$ is not modular.

RECENT RESULTS
A = a finite CIB
$\mathbf{S}_{2}=$ the 2-elt semilattice.
$\mathrm{V}(\mathbf{A})$ is $\mathrm{CP} \Longleftrightarrow \mathbf{A}$ has a Malcev term
$\Longrightarrow \quad \mathbf{A}$ has a cube term
$\Longrightarrow \quad V(\mathbf{A})$ is CM
$\Longrightarrow \mathbf{S}_{2}$ is not in $\mathrm{V}(\mathbf{A})$

RECENT RESULTS

$A=$ a finite CIB
$S_{2}=$ the 2-elt semilattice.
$V(\mathbf{A})$ is $C P \Longleftrightarrow \mathbf{A}$ has a Malcev term

$\Longrightarrow \mathbf{A}$ has a cube term

$\Longrightarrow \quad V(A)$ is $C M$
$\Longrightarrow \mathbf{S}_{2}$ is not in $V(\mathbf{A})$
$\Longrightarrow \mathbf{A}$ has a cube term
$\Longrightarrow V(A)$ is $C P$

RECENT RESULTS

A = a finite CIB
$\mathbf{S}_{2}=$ the 2-elt semilattice.
$\mathrm{V}(\mathbf{A})$ is $\mathrm{CP} \Longleftrightarrow \mathbf{A}$ has a Malcev term
$\Longrightarrow A$ has a cube term
$\Longrightarrow V(A)$ is CM
$\Longrightarrow \mathbf{S}_{2}$ is not in $\mathrm{V}(\mathbf{A})$
$\Longrightarrow \mathbf{A}$ has a cube term

CIB case

- 1st reduction by cube-term blockers.

First Reduction
by Cube-Term Blockers

Marković, M. Maróti, McKenzie (M^{4})
"Finitely related clones and algebras with cube terms" (2012)
A cube-term blocker (CTB) is a pair (C, B) of subuniverses satisfying $0<C<B \leqslant A$ and for every $t\left(x_{1}, \ldots, x_{n}\right)$ there is an index $i \in[n]$ with

$$
\left(\forall\left(b_{1}, \ldots, b_{n}\right) \in B^{n}\right)\left(b_{i} \in C \longrightarrow t\left(b_{1}, \ldots, b_{n}\right) \in C\right)
$$

M^{4} prove a finite idempotent algebra has a cube term iff it has no CTB.

Lemma
A finite CIB A has a CTB if and only if $\mathbf{S}_{2} \in \mathrm{HS}(\mathbf{A})$.
Proof.
(C, B) a CTB implies $\theta=C^{2} \cup(B-C)^{2}$ a congruence with $\mathbf{B} / \theta \cong \mathbf{S}_{2}$.
Conversely, suppose $\mathbf{S}_{2} \in \mathrm{HS}(\mathbf{A})$, and \mathbf{B} is a subalgebra of \mathbf{A} with \mathbf{B} / θ a meet-SL for some θ. Let C / θ be the bottom of \mathbf{B} / θ, then (C, B) is a CTB.

Kearnes and Tschantz

"Automorphism groups of squares and of free algebras" (2007)
LEMMA
If V is an idempotent variety that is not congruence permutable, then there are subuniverses U and W of $\mathbf{F}:=\mathbf{F}_{V}\{x, y\}$ satisfying

1. $x \in U \cap W$
2. $y \in U^{c} \cap W^{c}$
3. $(U \times F) \cup(F \times W) \leqslant \mathbf{F}^{2}$

For CIB's, either U or W will be an ideal.
This implies a CTB and a semilattice.

EXAMPLES

Cliff's idea: replace basic binary operation

	0	1	2	3
0	0	0	0	1
1	0	1	3	2
2	0	3	2	1
3	1	2	1	3
t	0	1	2	3
0	0	0	0	0
1	0	1	3	2
2	0	3	2	1
3	0	2	1	3

with a term from $\operatorname{Clo}(\mathbf{A})$, say
$t(x, y)=(x \cdot(x \cdot y)) \cdot(y \cdot(x \cdot y))$.
If $\langle A, t\rangle$ tractable, then so is $\mathbf{A}=\langle A, \cdot\rangle$.
$\{t\} \subseteq \operatorname{Clo}(\mathbf{A}) \Longrightarrow \operatorname{Rel}(\operatorname{Clo}(\mathbf{A})) \subseteq \operatorname{Rel}(\{t\})$ $\Longrightarrow \quad \operatorname{CSP}(\mathbf{A}) \leqslant p \operatorname{CSP}\langle A, t)$
$\langle A, t\rangle$ tractable $\Longrightarrow \mathbf{A}$ tractable

REMAINING QUESTIONS FOR FINITE CIBS

CONCLUSION

Let \mathbf{A} be a finite CIB. Then

$S_{2} \notin \mathrm{HS}(\mathbf{A})$ if and only if $\mathrm{V}(\mathbf{A})$ is congruence permutable.
(so $\operatorname{CSP}(\mathbf{A})$ tractable in this case)

Open Question
Let A be a finite CIB with \mathbf{S}_{2} in $\mathrm{HS}(\mathbf{A})$. Is $\operatorname{CSP}(\mathbf{A})$ tractable?
Recall, if $\mathrm{V}(\mathbf{A})$ is $\operatorname{SD}_{\wedge}$, then $\operatorname{CSP}(\mathbf{A})$ is tractable.
REvised Question
Let \mathbf{A} be a finite CIB with \mathbf{S}_{2} in $\mathrm{HS}(\mathbf{A})$, and $\mathrm{V}(\mathbf{A})$ not $\mathrm{SD}_{\text {A }}$.
Is $\operatorname{CSP}(\mathbf{A})$ tractable?

ExAMPLES

	0	1	2	3	
0	0	0	1	1	
1	0	1	3	2	Let $t_{2}(x, y)=x \cdot(x \cdot(x \cdot y)) \cdot y \cdot(y \cdot(x, y))$.
2	1	3	2	1	
3	1	2	1	3	
t_{2}	0	1	2	3	
0	0	0	0	1	
1	0	1	3	2	
2	0	3	2	1	
3	1	2	1	3	

ExAmples

0	0	1	2	3	
1	0	0	2	1	
2	2	3	2	1	Let $t_{3}(x, y)=\ldots ?$
3	1	2	1	3	Let $t_{3}(x, y, z)=\ldots ?$

...and about 25 others.

To see them, load UACalc with files from the Bergman directory at
https://github.com/UACalc/AlgebraFiles
Thank you for listening!

