Determining congruence n-permutability is hard ($n \geq 3$?)

Jonah Horowitz

Ryerson University

May 30, 2015

Outline

- Background
(2) Proof of Main Result
(Corollaries
(Limitations
(0) Questions

Background

Hagemann \& Mitschke 1973

Given $n \geq 2$, an algebra \mathbf{A} generates a congruence n-permutable variety if and only if there exist ternary term operations d_{0}, \ldots, d_{n} such that:

- $d_{0}(x, y, z) \approx x$,
- $d_{n}(x, y, z) \approx z$, and
- $d_{i}(x, x, y) \approx d_{i+1}(x, y, y)$ for all $i<n$.

Background

Hagemann \& Mitschke 1973

Given $n \geq 2$, an algebra \mathbf{A} generates a congruence n-permutable variety if and only if there exist ternary term operations d_{0}, \ldots, d_{n} such that:

- $d_{0}(x, y, z) \approx x$,
- $d_{n}(x, y, z) \approx z$, and
- $d_{i}(x, x, y) \approx d_{i+1}(x, y, y)$ for all $i<n$.

Freese \& Valeriote 2009

Gen-Clo': Given a finite set A, a finite set of operations \mathcal{F} on A, and a unary operation h on A, is $h \in\langle\mathcal{F}\rangle$?

Background

Hagemann \& Mitschke 1973

Given $n \geq 2$, an algebra \mathbf{A} generates a congruence n-permutable variety if and only if there exist ternary term operations d_{0}, \ldots, d_{n} such that:

- $d_{0}(x, y, z) \approx x$,
- $d_{n}(x, y, z) \approx z$, and
- $d_{i}(x, x, y) \approx d_{i+1}(x, y, y)$ for all $i<n$.

Freese \& Valeriote 2009

Gen-Clo': Given a finite set A, a finite set of operations \mathcal{F} on A, and a unary operation h on A, is $h \in\langle\mathcal{F}\rangle$?

Bergman, Juedes \& Slutzki 1999

Gen-Clo' is EXPTIME-complete.

Background

Hagemann \& Mitschke 1973

Given $n \geq 2$, an algebra \mathbf{A} generates a congruence n-permutable variety if and only if there exist ternary term operations d_{0}, \ldots, d_{n} such that:

- $d_{0}(x, y, z) \approx x$,
- $d_{n}(x, y, z) \approx z$, and
- $d_{i}(x, x, y) \approx d_{i+1}(x, y, y)$ for all $i<n$.

Freese \& Valeriote 2009

Gen-Clo': Given a finite set A, a finite set of operations \mathcal{F} on A, and a unary operation h on A, is $h \in\langle\mathcal{F}\rangle$?

Bergman, Juedes \& Slutzki 1999

Gen-Clo' is EXPTIME-complete.

H 2013

Given $g: A^{n} \rightarrow A$, say that g is a Constant-Projection Blend (CPB) if there exist $0 \in A$ and $i<n$ such that for every $\bar{x} \in A^{n}, g(\bar{x}) \in\left\{0, x_{i}\right\}$.

Background

Hagemann \& Mitschke 1973

Given $n \geq 2$, an algebra \mathbf{A} generates a congruence n-permutable variety if and only if there exist ternary term operations d_{0}, \ldots, d_{n} such that:

- $d_{0}(x, y, z) \approx x$,
- $d_{n}(x, y, z) \approx z$, and
- $d_{i}(x, x, y) \approx d_{i+1}(x, y, y)$ for all $i<n$.

Freese \& Valeriote 2009

Gen-Clo': Given a finite set A, a finite set of operations \mathcal{F} on A, and a unary operation h on A, is $h \in\langle\mathcal{F}\rangle$?

Bergman, Juedes \& Slutzki 1999

Gen-Clo' is EXPTIME-complete.

H 2013

Given $g: A^{n} \rightarrow A$, say that g is a Constant-Projection Blend (CPB) if there exist $0 \in A$ and $i<n$ such that for every $\bar{x} \in A^{n}, g(\bar{x}) \in\left\{0, x_{i}\right\}$.
In this case say that g is CPB_{0} (on coordinate i).

Proof Outline

Main Result

Determining if a finite algebra generates a congruence n-permutable variety (for fixed $n \geq 3$) is EXPTIME-complete.

Proof Outline

Main Result

Determining if a finite algebra generates a congruence n-permutable variety (for fixed $n \geq 3$) is EXPTIME-complete.
(1) Let \mathcal{F} be a finite set of operations on a finite set A and let h be a unary operation on A.

Proof Outline

Main Result

Determining if a finite algebra generates a congruence n-permutable variety (for fixed $n \geq 3$) is EXPTIME-complete.
(1) Let \mathcal{F} be a finite set of operations on a finite set A and let h be a unary operation on A.
(2) Define $B=A \cup\{0,1\}$ where $0,1 \notin A$.

Proof Outline

Main Result

Determining if a finite algebra generates a congruence n-permutable variety (for fixed $n \geq 3$) is EXPTIME-complete.
(1) Let \mathcal{F} be a finite set of operations on a finite set A and let h be a unary operation on A.
(2) Define $B=A \cup\{0,1\}$ where $0,1 \notin A$.
(3) For each operation $g: A^{n} \rightarrow A$ define $g^{\prime}: B^{n} \rightarrow B$ such that $\left.g^{\prime}\right|_{A}=g$ and $g^{\prime}(\bar{x})=0$ whenever $\bar{x} \notin A^{n}$.

Proof Outline

Main Result

Determining if a finite algebra generates a congruence n-permutable variety (for fixed $n \geq 3$) is EXPTIME-complete.
(1) Let \mathcal{F} be a finite set of operations on a finite set A and let h be a unary operation on A.
(2) Define $B=A \cup\{0,1\}$ where $0,1 \notin A$.
(3) For each operation $g: A^{n} \rightarrow A$ define $g^{\prime}: B^{n} \rightarrow B$ such that $\left.g^{\prime}\right|_{A}=g$ and $g^{\prime}(\bar{x})=0$ whenever $\bar{x} \notin A^{n}$.
(9) Let \mathcal{U} be a finite set of idempotent CPB_{0} operations on B.

Proof Outline

Main Result

Determining if a finite algebra generates a congruence n-permutable variety (for fixed $n \geq 3$) is EXPTIME-complete.
(1) Let \mathcal{F} be a finite set of operations on a finite set A and let h be a unary operation on A.
(2) Define $B=A \cup\{0,1\}$ where $0,1 \notin A$.
(3) For each operation $g: A^{n} \rightarrow A$ define $g^{\prime}: B^{n} \rightarrow B$ such that $\left.g^{\prime}\right|_{A}=g$ and $g^{\prime}(\bar{x})=0$ whenever $\bar{x} \notin A^{n}$.
(1) Let \mathcal{U} be a finite set of idempotent CPB_{0} operations on B.
(0) For each $g \in \mathcal{U}$ (with arity n), define $t_{g}: B^{n+1} \rightarrow B$ to be

$$
t_{g}\left(x_{0}, \ldots, x_{n}\right)= \begin{cases}g\left(x_{1}, \ldots, x_{n}\right) & \text { if } x_{0}=h^{\prime}\left(x_{1}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Proof Outline

Main Result

Determining if a finite algebra generates a congruence n-permutable variety (for fixed $n \geq 3$) is EXPTIME-complete.
(1) Let \mathcal{F} be a finite set of operations on a finite set A and let h be a unary operation on A.
(2) Define $B=A \cup\{0,1\}$ where $0,1 \notin A$.
(3) For each operation $g: A^{n} \rightarrow A$ define $g^{\prime}: B^{n} \rightarrow B$ such that $\left.g^{\prime}\right|_{A}=g$ and $g^{\prime}(\bar{x})=0$ whenever $\bar{x} \notin A^{n}$.
(1) Let \mathcal{U} be a finite set of idempotent CPB_{0} operations on B.
(0) For each $g \in \mathcal{U}$ (with arity n), define $t_{g}: B^{n+1} \rightarrow B$ to be

$$
t_{g}\left(x_{0}, \ldots, x_{n}\right)= \begin{cases}g\left(x_{1}, \ldots, x_{n}\right) & \text { if } x_{0}=h^{\prime}\left(x_{1}\right) \\ 0 & \text { otherwise }\end{cases}
$$

(0) Define $\Gamma=\left\{f^{\prime} \mid f \in \mathcal{F}\right\} \cup\left\{t_{g} \mid g \in \mathcal{U}\right\}$.

Proof Outline

Main Result

Determining if a finite algebra generates a congruence n-permutable variety (for fixed $n \geq 3$) is EXPTIME-complete.
(1) Let \mathcal{F} be a finite set of operations on a finite set A and let h be a unary operation on A.
(2) Define $B=A \cup\{0,1\}$ where $0,1 \notin A$.
(3) For each operation $g: A^{n} \rightarrow A$ define $g^{\prime}: B^{n} \rightarrow B$ such that $\left.g^{\prime}\right|_{A}=g$ and $g^{\prime}(\bar{x})=0$ whenever $\bar{x} \notin A^{n}$.
(9) Let \mathcal{U} be a finite set of idempotent CPB_{0} operations on B.
(0) For each $g \in \mathcal{U}$ (with arity n), define $t_{g}: B^{n+1} \rightarrow B$ to be

$$
t_{g}\left(x_{0}, \ldots, x_{n}\right)= \begin{cases}g\left(x_{1}, \ldots, x_{n}\right) & \text { if } x_{0}=h^{\prime}\left(x_{1}\right) \\ 0 & \text { otherwise }\end{cases}
$$

(3) Define $\Gamma=\left\{f^{\prime} \mid f \in \mathcal{F}\right\} \cup\left\{t_{g} \mid g \in \mathcal{U}\right\}$.
(1) Prove that if $h \in\langle\mathcal{F}\rangle$ then $\mathcal{U} \subseteq\langle\Gamma\rangle$.

Proof Outline

Main Result

Determining if a finite algebra generates a congruence n-permutable variety (for fixed $n \geq 3$) is EXPTIME-complete.
(1) Let \mathcal{F} be a finite set of operations on a finite set A and let h be a unary operation on A.
(2) Define $B=A \cup\{0,1\}$ where $0,1 \notin A$.
(3) For each operation $g: A^{n} \rightarrow A$ define $g^{\prime}: B^{n} \rightarrow B$ such that $\left.g^{\prime}\right|_{A}=g$ and $g^{\prime}(\bar{x})=0$ whenever $\bar{x} \notin A^{n}$.
(1) Let \mathcal{U} be a finite set of idempotent CPB_{0} operations on B.
(0) For each $g \in \mathcal{U}$ (with arity n), define $t_{g}: B^{n+1} \rightarrow B$ to be

$$
t_{g}\left(x_{0}, \ldots, x_{n}\right)= \begin{cases}g\left(x_{1}, \ldots, x_{n}\right) & \text { if } x_{0}=h^{\prime}\left(x_{1}\right) \\ 0 & \text { otherwise }\end{cases}
$$

(3) Define $\Gamma=\left\{f^{\prime} \mid f \in \mathcal{F}\right\} \cup\left\{t_{g} \mid g \in \mathcal{U}\right\}$.
(3) Prove that if $h \in\langle\mathcal{F}\rangle$ then $\mathcal{U} \subseteq\langle\Gamma\rangle$.
(3) Prove that if $h \notin\langle\mathcal{F}\rangle$ then $\langle\Gamma\rangle$ has no idempotent operations which depend on more than one variable.

Proof Outline

Main Result

Determining if a finite algebra generates a congruence n-permutable variety (for fixed $n \geq 3$) is EXPTIME-complete.
(1) Let \mathcal{F} be a finite set of operations on a finite set A and let h be a unary operation on A.
(2) Define $B=A \cup\{0,1\}$ where $0,1 \notin A$.
(3) For each operation $g: A^{n} \rightarrow A$ define $g^{\prime}: B^{n} \rightarrow B$ such that $\left.g^{\prime}\right|_{A}=g$ and $g^{\prime}(\bar{x})=0$ whenever $\bar{x} \notin A^{n}$.
(4) Let \mathcal{U} be a finite set of idempotent CPB_{0} operations on B.
(5) For each $g \in \mathcal{U}$ (with arity n), define $t_{g}: B^{n+1} \rightarrow B$ to be

$$
t_{g}\left(x_{0}, \ldots, x_{n}\right)= \begin{cases}g\left(x_{1}, \ldots, x_{n}\right) & \text { if } x_{0}=h^{\prime}\left(x_{1}\right) \\ 0 & \text { otherwise }\end{cases}
$$

(6) Define $\Gamma=\left\{f^{\prime} \mid f \in \mathcal{F}\right\} \cup\left\{t_{g} \mid g \in \mathcal{U}\right\}$.
(7) Prove that if $h \in\langle\mathcal{F}\rangle$ then $\mathcal{U} \subseteq\langle\Gamma\rangle$.
(8) Prove that if $h \notin\langle\mathcal{F}\rangle$ then $\langle\Gamma\rangle$ has no idempotent operations which depend on more than one variable.
(9) Prove that generating a congruence n-permutable variety (for fixed $n \geq 3$) is satisfiable by $C P B_{0}$ operations.

Step 7

(Freese \& Valeriote 2009) Lemma

' distributes over functional composition.

Step 7

(Freese \& Valeriote 2009) Lemma

' distributes over functional composition.
Proof Sketch: Let $g(\bar{x})=p\left(q_{1}(\bar{x}), \ldots, q_{n}(\bar{x})\right)$.

- If $\bar{x} \in A^{m}$ then $g^{\prime}(\bar{x})=p^{\prime}\left(q_{1}^{\prime}(\bar{x}), \ldots, q_{n}^{\prime}(\bar{x})\right)=p\left(q_{1}(\bar{x}), \ldots, q_{n}(\bar{x})\right)=g(\bar{x})$.

Step 7

(Freese \& Valeriote 2009) Lemma

' distributes over functional composition.
Proof Sketch: Let $g(\bar{x})=p\left(q_{1}(\bar{x}), \ldots, q_{n}(\bar{x})\right)$.

- If $\bar{x} \in A^{m}$ then $g^{\prime}(\bar{x})=p^{\prime}\left(q_{1}^{\prime}(\bar{x}), \ldots, q_{n}^{\prime}(\bar{x})\right)=p\left(q_{1}(\bar{x}), \ldots, q_{n}(\bar{x})\right)=g(\bar{x})$.
- If $\bar{x} \notin A^{m}$ then there is an i such that $q_{i}^{\prime}(\bar{x})=0$, so $\overline{q^{\prime}}(\bar{x}) \notin A^{n}$, therefore $g^{\prime}(\bar{x})=0=p^{\prime}\left(\overline{q^{\prime}}(\bar{x})\right)$.

Step 7

(Freese \& Valeriote 2009) Lemma

' distributes over functional composition.
Proof Sketch: Let $g(\bar{x})=p\left(q_{1}(\bar{x}), \ldots, q_{n}(\bar{x})\right)$.

- If $\bar{x} \in A^{m}$ then $g^{\prime}(\bar{x})=p^{\prime}\left(q_{1}^{\prime}(\bar{x}), \ldots, q_{n}^{\prime}(\bar{x})\right)=p\left(q_{1}(\bar{x}), \ldots, q_{n}(\bar{x})\right)=g(\bar{x})$.
- If $\bar{x} \notin A^{m}$ then there is an i such that $q_{i}^{\prime}(\bar{x})=0$, so $\overline{q^{\prime}}(\bar{x}) \notin A^{n}$, therefore $g^{\prime}(\bar{x})=0=p^{\prime}\left(\overline{q^{\prime}}(\bar{x})\right)$.

Therefore if $h \in\langle\mathcal{F}\rangle$ then $h^{\prime} \in\left\langle\left\{f^{\prime} \mid f \in \mathcal{F}\right\}\right\rangle \subseteq\langle\Gamma\rangle$.

Step 7

(Freese \& Valeriote 2009) Lemma

' distributes over functional composition.
Proof Sketch: Let $g(\bar{x})=p\left(q_{1}(\bar{x}), \ldots, q_{n}(\bar{x})\right)$.

- If $\bar{x} \in A^{m}$ then $g^{\prime}(\bar{x})=p^{\prime}\left(q_{1}^{\prime}(\bar{x}), \ldots, q_{n}^{\prime}(\bar{x})\right)=p\left(q_{1}(\bar{x}), \ldots, q_{n}(\bar{x})\right)=g(\bar{x})$.
- If $\bar{x} \notin A^{m}$ then there is an i such that $q_{i}^{\prime}(\bar{x})=0$, so $\overline{q^{\prime}}(\bar{x}) \notin A^{n}$, therefore $g^{\prime}(\bar{x})=0=p^{\prime}\left(\overline{q^{\prime}}(\bar{x})\right)$.

Therefore if $h \in\langle\mathcal{F}\rangle$ then $h^{\prime} \in\left\langle\left\{f^{\prime} \mid f \in \mathcal{F}\right\}\right\rangle \subseteq\langle\Gamma\rangle$.
So If $h^{\prime} \in\langle\Gamma\rangle$ then for every $g \in \mathcal{U}, g\left(x_{1}, \ldots, x_{n}\right)=t_{g}\left(h^{\prime}\left(x_{1}\right), x_{1}, \ldots, x_{n}\right) \in\langle\Gamma\rangle$.

Step 8

Lemma

If $f \in\langle\Gamma\rangle$ and $f\left(A^{m}\right) \subseteq A$ then there is a $g \in\langle\mathcal{F}\rangle$ such that $\left.f\right|_{A}=g$.

Step 8

Lemma

If $f \in\langle\Gamma\rangle$ and $f\left(A^{m}\right) \subseteq A$ then there is a $g \in\langle\mathcal{F}\rangle$ such that $\left.f\right|_{A}=g$.
Proof Sketch: If there is a $v \in \mathcal{F}$ such that $f=v^{\prime}\left(f_{1}, \ldots, f_{n}\right)$ then by induction choose $g_{1}, \ldots, g_{n} \in\langle\mathcal{F}\rangle$, therefore $\left.f\right|_{A}=v\left(g_{1}, \ldots, g_{n}\right)$.

Step 8

Lemma

If $f \in\langle\Gamma\rangle$ and $f\left(A^{m}\right) \subseteq A$ then there is a $g \in\langle\mathcal{F}\rangle$ such that $\left.f\right|_{A}=g$.
Proof Sketch: If there is a $v \in \mathcal{F}$ such that $f=v^{\prime}\left(f_{1}, \ldots, f_{n}\right)$ then by induction choose $g_{1}, \ldots, g_{n} \in\langle\mathcal{F}\rangle$, therefore $\left.f\right|_{A}=v\left(g_{1}, \ldots, g_{n}\right)$.
If there is a $g \in \mathcal{U}$ such that $f=t_{g}\left(f_{0}, f_{1}, \ldots, f_{n}\right)$ then $f(\bar{x}) \in\left\{0, f_{1}(\bar{x})\right\}$, so choose $g_{0}, \ldots, g_{n} \in\langle\mathcal{F}\rangle$ and since $f\left(A^{m}\right) \subseteq A,\left.f\right|_{A}=\left.f_{1}\right|_{A}=g_{1}$.

Step 8

Lemma

If $f \in\langle\Gamma\rangle$ and $f\left(A^{m}\right) \subseteq A$ then there is a $g \in\langle\mathcal{F}\rangle$ such that $\left.f\right|_{A}=g$.
Proof Sketch: If there is a $v \in \mathcal{F}$ such that $f=v^{\prime}\left(f_{1}, \ldots, f_{n}\right)$ then by induction choose $g_{1}, \ldots, g_{n} \in\langle\mathcal{F}\rangle$, therefore $\left.f\right|_{A}=v\left(g_{1}, \ldots, g_{n}\right)$.
If there is a $g \in \mathcal{U}$ such that $f=t_{g}\left(f_{0}, f_{1}, \ldots, f_{n}\right)$ then $f(\bar{x}) \in\left\{0, f_{1}(\bar{x})\right\}$, so choose $g_{0}, \ldots, g_{n} \in\langle\mathcal{F}\rangle$ and since $f\left(A^{m}\right) \subseteq A,\left.f\right|_{A}=\left.f_{1}\right|_{A}=g_{1}$.

Lemma

If $h \notin\langle\mathcal{F}\rangle$ then $\langle\Gamma\rangle$ contains no idempotent term operations which depend on more than one variable.

Step 8

Lemma

If $f \in\langle\Gamma\rangle$ and $f\left(A^{m}\right) \subseteq A$ then there is a $g \in\langle\mathcal{F}\rangle$ such that $\left.f\right|_{A}=g$.
Proof Sketch: If there is a $v \in \mathcal{F}$ such that $f=v^{\prime}\left(f_{1}, \ldots, f_{n}\right)$ then by induction choose $g_{1}, \ldots, g_{n} \in\langle\mathcal{F}\rangle$, therefore $\left.f\right|_{A}=v\left(g_{1}, \ldots, g_{n}\right)$.
If there is a $g \in \mathcal{U}$ such that $f=t_{g}\left(f_{0}, f_{1}, \ldots, f_{n}\right)$ then $f(\bar{x}) \in\left\{0, f_{1}(\bar{x})\right\}$, so choose $g_{0}, \ldots, g_{n} \in\langle\mathcal{F}\rangle$ and since $f\left(A^{m}\right) \subseteq A,\left.f\right|_{A}=\left.f_{1}\right|_{A}=g_{1}$.

Lemma

If $h \notin\langle\mathcal{F}\rangle$ then $\langle\Gamma\rangle$ contains no idempotent term operations which depend on more than one variable.
Proof Sketch: Suppose that $f \in\langle\Gamma\rangle$ is idempotent.

- Then for some $g \in \mathcal{U}, f=t_{g}\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ where $v_{i} \in\langle\Gamma\rangle$. (WLOG $g\left(x_{1}, \ldots, x_{n}\right) \in\left\{0, x_{1}\right\}$.)

Step 8

Lemma

If $f \in\langle\Gamma\rangle$ and $f\left(A^{m}\right) \subseteq A$ then there is a $g \in\langle\mathcal{F}\rangle$ such that $\left.f\right|_{A}=g$.
Proof Sketch: If there is a $v \in \mathcal{F}$ such that $f=v^{\prime}\left(f_{1}, \ldots, f_{n}\right)$ then by induction choose $g_{1}, \ldots, g_{n} \in\langle\mathcal{F}\rangle$, therefore $\left.f\right|_{A}=v\left(g_{1}, \ldots, g_{n}\right)$.
If there is a $g \in \mathcal{U}$ such that $f=t_{g}\left(f_{0}, f_{1}, \ldots, f_{n}\right)$ then $f(\bar{x}) \in\left\{0, f_{1}(\bar{x})\right\}$, so choose $g_{0}, \ldots, g_{n} \in\langle\mathcal{F}\rangle$ and since $f\left(A^{m}\right) \subseteq A,\left.f\right|_{A}=\left.f_{1}\right|_{A}=g_{1}$.

Lemma

If $h \notin\langle\mathcal{F}\rangle$ then $\langle\Gamma\rangle$ contains no idempotent term operations which depend on more than one variable.
Proof Sketch: Suppose that $f \in\langle\Gamma\rangle$ is idempotent.

- Then for some $g \in \mathcal{U}, f=t_{g}\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ where $v_{i} \in\langle\Gamma\rangle$. (WLOG $g\left(x_{1}, \ldots, x_{n}\right) \in\left\{0, x_{1}\right\}$.)
- Then $f\left(x^{m}\right)=t_{g}\left(v_{0}\left(x^{m}\right), v_{1}\left(x^{m}\right), \ldots, v_{n}\left(x^{m}\right)\right) \in\left\{0, v_{1}\left(x^{m}\right)\right\}$ for all x.

Step 8

Lemma

If $f \in\langle\Gamma\rangle$ and $f\left(A^{m}\right) \subseteq A$ then there is a $g \in\langle\mathcal{F}\rangle$ such that $\left.f\right|_{A}=g$.
Proof Sketch: If there is a $v \in \mathcal{F}$ such that $f=v^{\prime}\left(f_{1}, \ldots, f_{n}\right)$ then by induction choose $g_{1}, \ldots, g_{n} \in\langle\mathcal{F}\rangle$, therefore $\left.f\right|_{A}=v\left(g_{1}, \ldots, g_{n}\right)$.
If there is a $g \in \mathcal{U}$ such that $f=t_{g}\left(f_{0}, f_{1}, \ldots, f_{n}\right)$ then $f(\bar{x}) \in\left\{0, f_{1}(\bar{x})\right\}$, so choose $g_{0}, \ldots, g_{n} \in\langle\mathcal{F}\rangle$ and since $f\left(A^{m}\right) \subseteq A,\left.f\right|_{A}=\left.f_{1}\right|_{A}=g_{1}$.

Lemma

If $h \notin\langle\mathcal{F}\rangle$ then $\langle\Gamma\rangle$ contains no idempotent term operations which depend on more than one variable.
Proof Sketch: Suppose that $f \in\langle\Gamma\rangle$ is idempotent.

- Then for some $g \in \mathcal{U}, f=t_{g}\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ where $v_{i} \in\langle\Gamma\rangle$. (WLOG $g\left(x_{1}, \ldots, x_{n}\right) \in\left\{0, x_{1}\right\}$.)
- Then $f\left(x^{m}\right)=t_{g}\left(v_{0}\left(x^{m}\right), v_{1}\left(x^{m}\right), \ldots, v_{n}\left(x^{m}\right)\right) \in\left\{0, v_{1}\left(x^{m}\right)\right\}$ for all x.
- By idempotence, $v_{1}\left(x^{m}\right)=x$ for all $x \neq 0$ and so $v_{0}\left(x^{m}\right)=h^{\prime}(x)$ for all $x \neq 0$.

Step 8

Lemma

If $f \in\langle\Gamma\rangle$ and $f\left(A^{m}\right) \subseteq A$ then there is a $g \in\langle\mathcal{F}\rangle$ such that $\left.f\right|_{A}=g$.
Proof Sketch: If there is a $v \in \mathcal{F}$ such that $f=v^{\prime}\left(f_{1}, \ldots, f_{n}\right)$ then by induction choose $g_{1}, \ldots, g_{n} \in\langle\mathcal{F}\rangle$, therefore $\left.f\right|_{A}=v\left(g_{1}, \ldots, g_{n}\right)$.
If there is a $g \in \mathcal{U}$ such that $f=t_{g}\left(f_{0}, f_{1}, \ldots, f_{n}\right)$ then $f(\bar{x}) \in\left\{0, f_{1}(\bar{x})\right\}$, so choose $g_{0}, \ldots, g_{n} \in\langle\mathcal{F}\rangle$ and since $f\left(A^{m}\right) \subseteq A,\left.f\right|_{A}=\left.f_{1}\right|_{A}=g_{1}$.

Lemma

If $h \notin\langle\mathcal{F}\rangle$ then $\langle\Gamma\rangle$ contains no idempotent term operations which depend on more than one variable.
Proof Sketch: Suppose that $f \in\langle\Gamma\rangle$ is idempotent.

- Then for some $g \in \mathcal{U}, f=t_{g}\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ where $v_{i} \in\langle\Gamma\rangle$. (WLOG $g\left(x_{1}, \ldots, x_{n}\right) \in\left\{0, x_{1}\right\}$.)
- Then $f\left(x^{m}\right)=t_{g}\left(v_{0}\left(x^{m}\right), v_{1}\left(x^{m}\right), \ldots, v_{n}\left(x^{m}\right)\right) \in\left\{0, v_{1}\left(x^{m}\right)\right\}$ for all x.
- By idempotence, $v_{1}\left(x^{m}\right)=x$ for all $x \neq 0$ and so $v_{0}\left(x^{m}\right)=h^{\prime}(x)$ for all $x \neq 0$.
- By Lemma then, $h \in\langle\mathcal{F}\rangle$.

Result

Definition

Say that an idempotent Mal'cev condition is easily CPB-satisfiable if there is a polynomial-time algorithm which takes as input a finite set A with distinguished element 0 and produces a set \mathcal{U} of idempotent CPB_{0} operations on A such that $\langle A, \mathcal{U}\rangle$ satisfies the Mal'cev condition.

Result

Definition

Say that an idempotent Mal'cev condition is easily CPB-satisfiable if there is a polynomial-time algorithm which takes as input a finite set A with distinguished element 0 and produces a set \mathcal{U} of idempotent CPB_{0} operations on A such that $\langle A, \mathcal{U}\rangle$ satisfies the Mal'cev condition.

Theorem

Given an easily CPB-satisfiable idempotent Mal'cev condition, determining whether or not a finite algebra satisfies this Mal'cev condition is EXPTIME-hard.

Result

Definition

Say that an idempotent Mal'cev condition is easily CPB-satisfiable if there is a polynomial-time algorithm which takes as input a finite set A with distinguished element 0 and produces a set \mathcal{U} of idempotent CPB_{0} operations on A such that $\langle A, \mathcal{U}\rangle$ satisfies the Mal'cev condition.

Theorem

Given an easily CPB-satisfiable idempotent Mal'cev condition, determining whether or not a finite algebra satisfies this Mal'cev condition is EXPTIME-hard.

Proof Sketch: If there is a polynomial-time algorithm which produces idempotent CPB_{0} operations which satisfy the Mal'cev condition, then the construction which preceded the previous lemmas is a polynomial-time construction which reduces Gen-Clo' to the Mal'cev condition in question.

Result

Definition

Say that an idempotent Mal'cev condition is easily CPB-satisfiable if there is a polynomial-time algorithm which takes as input a finite set A with distinguished element 0 and produces a set \mathcal{U} of idempotent CPB_{0} operations on A such that $\langle A, \mathcal{U}\rangle$ satisfies the Mal'cev condition.

Theorem

Given an easily CPB-satisfiable idempotent Mal'cev condition, determining whether or not a finite algebra satisfies this Mal'cev condition is EXPTIME-hard.

Proof Sketch: If there is a polynomial-time algorithm which produces idempotent CPB_{0} operations which satisfy the Mal'cev condition, then the construction which preceded the previous lemmas is a polynomial-time construction which reduces Gen-Clo' to the Mal'cev condition in question.
(In fact, this result is not restricted to Mal'cev conditions.)

Corollary

H 2013

For fixed $n \geq 3$, determining whether or not finite algebra \mathbf{A} generates a congruence n-permutable variety is EXPTIME-hard.

Corollary

H 2013

For fixed $n \geq 3$, determining whether or not finite algebra \mathbf{A} generates a congruence n-permutable variety is EXPTIME-hard.
Proof: Given a set A with distinguished element 0 and fixed $n \geq 3$ define idempotent ternary operations f_{1}, f_{2} by

$$
\begin{aligned}
f_{1}(x, y, z) & =\left\{\begin{array}{ll}
x & \text { if } y=z \\
0 & \text { otherwise }
\end{array}\right. \text { and } \\
f_{2}(x, y, z) & = \begin{cases}z & \text { if } x=y \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Corollary

H 2013

For fixed $n \geq 3$, determining whether or not finite algebra \mathbf{A} generates a congruence n-permutable variety is EXPTIME-hard.
Proof: Given a set A with distinguished element 0 and fixed $n \geq 3$ define idempotent ternary operations f_{1}, f_{2} by

$$
\begin{aligned}
f_{1}(x, y, z) & =\left\{\begin{array}{ll}
x & \text { if } y=z \\
0 & \text { otherwise }
\end{array}\right. \text { and } \\
f_{2}(x, y, z) & = \begin{cases}z & \text { if } x=y \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Clearly this is a polynomial-time construction. Notice that $\left\langle A,\left\{f_{1}, f_{2}\right\}\right\rangle$ generates a congruence 3 -permutable (and therefore congruence n-permutable) variety and that f_{1} and f_{2} are CPB_{0}. Therefore the preceding result applies and the Mal'cev condition of generating a congruence n-permutable variety is EXPTIME-hard.

Consequences

Corollary

The following questions are EXPTIME-complete to answer with respect to a finite algebra A.

- Does A generate a $C D(n)$ variety (for fixed $n \geq 3$)?
- Does \mathbf{A} generate a congruence distributive variety?
- Does A generate a congruence modular variety?
- Does A generate a congruence n-permutable variety (for fixed $n \geq 3$)?
- Does \mathbf{A} generate a variety which omits types $\{1\}$? $\{1,2\}$? $\{1,5\}$? $\{1,2,5\}$? $\{1,4,5\}$? $\{1,2,4,5\}$?
- Does \mathbf{A} support a weak near unanimity term operation of arity n (for fixed $n \geq 3$)?
- Does A support an idempotent cyclic term operation of arity n (for fixed $n \geq 3$)?
- Does A support a semilattice term operation?

Red text indicates H's 2013 additions to Freese \& Valeriote's 2009 list.

Limitations

Definition

Let Γ be a set of columns of x 's and y 's of the same height, and let \bar{v} be the column of the same height which consists entirely of x 's. Say that $t: A\ulcorner\rightarrow A$ is a Γ-special cube term if

$$
t(\Gamma) \approx \bar{v}
$$

Limitations

Definition

Let Γ be a set of columns of x 's and y 's of the same height, and let \bar{v} be the column of the same height which consists entirely of x 's. Say that $t: A\ulcorner\rightarrow A$ is a Γ-special cube term if

$$
t(\Gamma) \approx \bar{v}
$$

Example

A Mal'cev term is a term f satisfying the equations

$$
f\left(\begin{array}{lll}
x & y & y \\
y & y & x
\end{array}\right) \approx\binom{x}{x}
$$

Limitations

Definition

Let Γ be a set of columns of x 's and y 's of the same height, and let \bar{v} be the column of the same height which consists entirely of x 's. Say that $t: A^{\ulcorner } \rightarrow A$ is a Γ-special cube term if

$$
t(\Gamma) \approx \bar{v}
$$

Example

A Mal'cev term is a term f satisfying the equations

$$
f\left(\begin{array}{lll}
x & y & y \\
y & y & x
\end{array}\right) \approx\binom{x}{x}
$$

Note: For any particular Г, TFAE
(1) Possessing a Γ-special cube term is CPB-satisfiable,
(2) Some projection is also a Γ-special cube term, and
(3) 「 contains a column of x 's.

Questions

Is it EXPTIME-complete to determine if an algebra has a Mal'cev term? A majority term? A near unanimity term? An edge term?

Questions

Is it EXPTIME-complete to determine if an algebra has a Mal'cev term? A majority term? A near unanimity term? An edge term?

Are there any (linear) idempotent Mal'cev conditions which are not CPB-satisfiable but are also not special cube terms?

Questions

Is it EXPTIME-complete to determine if an algebra has a Mal'cev term? A majority term? A near unanimity term? An edge term?

Are there any (linear) idempotent Mal'cev conditions which are not CPB-satisfiable but are also not special cube terms?

Are there idempotent Mal'cev conditions which are CPB-satisfiable but not easily CPB-satisfiable?

Thank you!

