Determining congruence *n*-permutability is hard ($n \ge 3$?)

Jonah Horowitz

Ryerson University

May 30, 2015

- Background
- Proof of Main Result
- Orollaries
- Limitations
- Questions

Hagemann & Mitschke 1973

Given $n \ge 2$, an algebra **A** generates a congruence *n*-permutable variety if and only if there exist ternary term operations d_0, \ldots, d_n such that:

- $d_0(x, y, z) \approx x$,
- $d_n(x, y, z) \approx z$, and
- $d_i(x, x, y) \approx d_{i+1}(x, y, y)$ for all i < n.

Hagemann & Mitschke 1973

Given $n \ge 2$, an algebra **A** generates a congruence *n*-permutable variety if and only if there exist ternary term operations d_0, \ldots, d_n such that:

- $d_0(x, y, z) \approx x$,
- $d_n(x, y, z) \approx z$, and
- $d_i(x, x, y) \approx d_{i+1}(x, y, y)$ for all i < n.

Freese & Valeriote 2009

GEN-CLO': Given a finite set *A*, a finite set of operations \mathcal{F} on *A*, and a unary operation *h* on *A*, is $h \in \langle \mathcal{F} \rangle$?

Hagemann & Mitschke 1973

Given $n \ge 2$, an algebra **A** generates a congruence *n*-permutable variety if and only if there exist ternary term operations d_0, \ldots, d_n such that:

- $d_0(x, y, z) \approx x$,
- $d_n(x, y, z) \approx z$, and
- $d_i(x, x, y) \approx d_{i+1}(x, y, y)$ for all i < n.

Freese & Valeriote 2009

GEN-CLO': Given a finite set *A*, a finite set of operations \mathcal{F} on *A*, and a unary operation *h* on *A*, is $h \in \langle \mathcal{F} \rangle$?

Bergman, Juedes & Slutzki 1999

GEN-CLO' is EXPTIME-complete.

Hagemann & Mitschke 1973

Given $n \ge 2$, an algebra **A** generates a congruence *n*-permutable variety if and only if there exist ternary term operations d_0, \ldots, d_n such that:

- $d_0(x, y, z) \approx x$,
- $d_n(x, y, z) \approx z$, and
- $d_i(x, x, y) \approx d_{i+1}(x, y, y)$ for all i < n.

Freese & Valeriote 2009

GEN-CLO': Given a finite set *A*, a finite set of operations \mathcal{F} on *A*, and a unary operation *h* on *A*, is $h \in \langle \mathcal{F} \rangle$?

Bergman, Juedes & Slutzki 1999

GEN-CLO' is EXPTIME-complete.

H 2013

Given $g: A^n \to A$, say that g is a Constant-Projection Blend (CPB) if there exist $0 \in A$ and i < n such that for every $\overline{x} \in A^n$, $g(\overline{x}) \in \{0, x_i\}$.

Hagemann & Mitschke 1973

Given $n \ge 2$, an algebra **A** generates a congruence *n*-permutable variety if and only if there exist ternary term operations d_0, \ldots, d_n such that:

- $d_0(x, y, z) \approx x$,
- $d_n(x, y, z) \approx z$, and
- $d_i(x, x, y) \approx d_{i+1}(x, y, y)$ for all i < n.

Freese & Valeriote 2009

GEN-CLO': Given a finite set *A*, a finite set of operations \mathcal{F} on *A*, and a unary operation *h* on *A*, is $h \in \langle \mathcal{F} \rangle$?

Bergman, Juedes & Slutzki 1999

GEN-CLO' is EXPTIME-complete.

H 2013

Given $g: A^n \to A$, say that g is a Constant-Projection Blend (CPB) if there exist $0 \in A$ and i < n such that for every $\overline{x} \in A^n$, $g(\overline{x}) \in \{0, x_i\}$. In this case say that g is CPB₀ (on coordinate *i*).

Main Result

Main Result

Determining if a finite algebra generates a congruence *n*-permutable variety (for fixed $n \ge 3$) is EXPTIME-complete.

• Let \mathcal{F} be a finite set of operations on a finite set A and let h be a unary operation on A.

Main Result

- Let \mathcal{F} be a finite set of operations on a finite set A and let h be a unary operation on A.
- 2 Define $B = A \cup \{0, 1\}$ where $0, 1 \notin A$.

Main Result

- Let \mathcal{F} be a finite set of operations on a finite set A and let h be a unary operation on A.
- 2 Define $B = A \cup \{0, 1\}$ where $0, 1 \notin A$.
- So For each operation $g: A^n \to A$ define $g': B^n \to B$ such that $g'|_A = g$ and $g'(\overline{x}) = 0$ whenever $\overline{x} \notin A^n$.

Main Result

- Let \mathcal{F} be a finite set of operations on a finite set A and let h be a unary operation on A.
- 2 Define $B = A \cup \{0, 1\}$ where $0, 1 \notin A$.
- So For each operation $g: A^n \to A$ define $g': B^n \to B$ such that $g'|_A = g$ and $g'(\overline{x}) = 0$ whenever $\overline{x} \notin A^n$.
- Let \mathcal{U} be a finite set of idempotent CPB₀ operations on B.

Main Result

- Let F be a finite set of operations on a finite set A and let h be a unary operation on A.
- 2 Define $B = A \cup \{0, 1\}$ where $0, 1 \notin A$.
- So For each operation $g: A^n \to A$ define $g': B^n \to B$ such that $g'|_A = g$ and $g'(\overline{x}) = 0$ whenever $\overline{x} \notin A^n$.
- Let \mathcal{U} be a finite set of idempotent CPB₀ operations on *B*.
- **(**) For each $g \in U$ (with arity *n*), define $t_g : B^{n+1} \to B$ to be

$$t_g(x_0,\ldots,x_n) = \begin{cases} g(x_1,\ldots,x_n) & \text{if } x_0 = h'(x_1) \\ 0 & \text{otherwise} \end{cases}$$

Main Result

Determining if a finite algebra generates a congruence *n*-permutable variety (for fixed $n \ge 3$) is EXPTIME-complete.

- Let F be a finite set of operations on a finite set A and let h be a unary operation on A.
- 2 Define $B = A \cup \{0, 1\}$ where $0, 1 \notin A$.
- So For each operation $g: A^n \to A$ define $g': B^n \to B$ such that $g'|_A = g$ and $g'(\overline{x}) = 0$ whenever $\overline{x} \notin A^n$.
- Let \mathcal{U} be a finite set of idempotent CPB₀ operations on B.
- **(**) For each $g \in U$ (with arity *n*), define $t_g \colon B^{n+1} \to B$ to be

$$t_g(x_0,\ldots,x_n) = \begin{cases} g(x_1,\ldots,x_n) & \text{if } x_0 = h'(x_1) \\ 0 & \text{otherwise} \end{cases}$$

• Define $\Gamma = \{ f' \mid f \in \mathcal{F} \} \cup \{ t_g \mid g \in \mathcal{U} \}.$

Main Result

- Let \mathcal{F} be a finite set of operations on a finite set A and let h be a unary operation on A.
- 2 Define $B = A \cup \{0, 1\}$ where $0, 1 \notin A$.
- So For each operation $g: A^n \to A$ define $g': B^n \to B$ such that $g'|_A = g$ and $g'(\overline{x}) = 0$ whenever $\overline{x} \notin A^n$.
- Solution Let \mathcal{U} be a finite set of idempotent CPB₀ operations on *B*.
- **(**) For each $g \in U$ (with arity *n*), define $t_g : B^{n+1} \to B$ to be

$$t_g(x_0,\ldots,x_n) = \begin{cases} g(x_1,\ldots,x_n) & \text{if } x_0 = h'(x_1) \\ 0 & \text{otherwise} \end{cases}$$

Main Result

- Let \mathcal{F} be a finite set of operations on a finite set A and let h be a unary operation on A.
- 2 Define $B = A \cup \{0, 1\}$ where $0, 1 \notin A$.
- So For each operation $g: A^n \to A$ define $g': B^n \to B$ such that $g'|_A = g$ and $g'(\overline{x}) = 0$ whenever $\overline{x} \notin A^n$.
- Let \mathcal{U} be a finite set of idempotent CPB₀ operations on *B*.
- **(**) For each $g \in U$ (with arity *n*), define $t_g : B^{n+1} \to B$ to be

$$t_g(x_0,\ldots,x_n) = \begin{cases} g(x_1,\ldots,x_n) & \text{if } x_0 = h'(x_1) \\ 0 & \text{otherwise} \end{cases}$$

- **o** Define $\Gamma = \{ f' \mid f \in \mathcal{F} \} \cup \{ t_g \mid g \in \mathcal{U} \}.$
- **O** Prove that if $h \in \langle \mathcal{F} \rangle$ then $\mathcal{U} \subseteq \langle \Gamma \rangle$.
- Prove that if h ∉ ⟨F⟩ then ⟨Γ⟩ has no idempotent operations which depend on more than one variable.

Main Result

- Let \mathcal{F} be a finite set of operations on a finite set A and let h be a unary operation on A.
- 2 Define $B = A \cup \{0, 1\}$ where $0, 1 \notin A$.
- So For each operation $g: A^n \to A$ define $g': B^n \to B$ such that $g'|_A = g$ and $g'(\overline{x}) = 0$ whenever $\overline{x} \notin A^n$.
- Let \mathcal{U} be a finite set of idempotent CPB₀ operations on *B*.
- **(**) For each $g \in \mathcal{U}$ (with arity *n*), define $t_g \colon B^{n+1} \to B$ to be

$$t_g(x_0,\ldots,x_n) = \begin{cases} g(x_1,\ldots,x_n) & \text{if } x_0 = h'(x_1) \\ 0 & \text{otherwise} \end{cases}$$

- **o** Define $\Gamma = \{ f' \mid f \in \mathcal{F} \} \cup \{ t_g \mid g \in \mathcal{U} \}.$
- **O** Prove that if $h \in \langle \mathcal{F} \rangle$ then $\mathcal{U} \subseteq \langle \Gamma \rangle$.
- Prove that if h ∉ ⟨F⟩ then ⟨Γ⟩ has no idempotent operations which depend on more than one variable.
- Prove that generating a congruence *n*-permutable variety (for fixed *n* ≥ 3) is satisfiable by *CPB*₀ operations.

' distributes over functional composition.

' distributes over functional composition. Proof Sketch: Let $g(\overline{x}) = p(q_1(\overline{x}), \dots, q_n(\overline{x}))$.

• If $\overline{x} \in A^m$ then $g'(\overline{x}) = p'(q'_1(\overline{x}), \dots, q'_n(\overline{x})) = p(q_1(\overline{x}), \dots, q_n(\overline{x})) = g(\overline{x})$.

' distributes over functional composition. Proof Sketch: Let $g(\overline{x}) = p(q_1(\overline{x}), \dots, q_n(\overline{x}))$.

- If $\overline{x} \in A^m$ then $g'(\overline{x}) = p'(q'_1(\overline{x}), \dots, q'_n(\overline{x})) = p(q_1(\overline{x}), \dots, q_n(\overline{x})) = g(\overline{x})$.
- If $\overline{x} \notin A^m$ then there is an *i* such that $q'_i(\overline{x}) = 0$, so $\overline{q'}(\overline{x}) \notin A^n$, therefore $g'(\overline{x}) = 0 = p'(\overline{q'}(\overline{x}))$.

' distributes over functional composition. Proof Sketch: Let $g(\overline{x}) = p(q_1(\overline{x}), \dots, q_n(\overline{x}))$.

- If $\overline{x} \in A^m$ then $g'(\overline{x}) = p'(q'_1(\overline{x}), \dots, q'_n(\overline{x})) = p(q_1(\overline{x}), \dots, q_n(\overline{x})) = g(\overline{x})$.
- If $\overline{x} \notin A^m$ then there is an *i* such that $q'_i(\overline{x}) = 0$, so $\overline{q'}(\overline{x}) \notin A^n$, therefore $g'(\overline{x}) = 0 = p'(\overline{q'}(\overline{x}))$.

Therefore if $h \in \langle \mathcal{F} \rangle$ then $h' \in \langle \{ f' \mid f \in \mathcal{F} \} \rangle \subseteq \langle \Gamma \rangle$.

' distributes over functional composition. Proof Sketch: Let $g(\overline{x}) = p(q_1(\overline{x}), \dots, q_n(\overline{x}))$.

- If $\overline{x} \in A^m$ then $g'(\overline{x}) = p'(q'_1(\overline{x}), \dots, q'_n(\overline{x})) = p(q_1(\overline{x}), \dots, q_n(\overline{x})) = g(\overline{x})$.
- If $\overline{x} \notin A^m$ then there is an *i* such that $q'_i(\overline{x}) = 0$, so $\overline{q'}(\overline{x}) \notin A^n$, therefore $g'(\overline{x}) = 0 = p'(\overline{q'}(\overline{x}))$.

Therefore if $h \in \langle \mathcal{F} \rangle$ then $h' \in \langle \{f' \mid f \in \mathcal{F}\} \rangle \subseteq \langle \Gamma \rangle$. So If $h' \in \langle \Gamma \rangle$ then for every $g \in \mathcal{U}$, $g(x_1, \ldots, x_n) = t_g(h'(x_1), x_1, \ldots, x_n) \in \langle \Gamma \rangle$.

If $f \in \langle \Gamma \rangle$ and $f(A^m) \subseteq A$ then there is a $g \in \langle \mathcal{F} \rangle$ such that $f|_A = g$.

If $f \in \langle \Gamma \rangle$ and $f(A^m) \subseteq A$ then there is a $g \in \langle \mathcal{F} \rangle$ such that $f|_A = g$. Proof Sketch: If there is a $v \in \mathcal{F}$ such that $f = v'(f_1, \ldots, f_n)$ then by induction choose $g_1, \ldots, g_n \in \langle \mathcal{F} \rangle$, therefore $f|_A = v(g_1, \ldots, g_n)$.

If $f \in \langle \Gamma \rangle$ and $f(A^m) \subseteq A$ then there is a $g \in \langle \mathcal{F} \rangle$ such that $f|_A = g$. Proof Sketch: If there is a $v \in \mathcal{F}$ such that $f = v'(f_1, \ldots, f_n)$ then by induction choose $g_1, \ldots, g_n \in \langle \mathcal{F} \rangle$, therefore $f|_A = v(g_1, \ldots, g_n)$. If there is a $g \in \mathcal{U}$ such that $f = t_g(f_0, f_1, \ldots, f_n)$ then $f(\overline{x}) \in \{0, f_1(\overline{x})\}$, so choose $g_0, \ldots, g_n \in \langle \mathcal{F} \rangle$ and since $f(A^m) \subseteq A$, $f|_A = f_1|_A = g_1$.

If $f \in \langle \Gamma \rangle$ and $f(A^m) \subseteq A$ then there is a $g \in \langle \mathcal{F} \rangle$ such that $f|_A = g$. Proof Sketch: If there is a $v \in \mathcal{F}$ such that $f = v'(f_1, \ldots, f_n)$ then by induction choose $g_1, \ldots, g_n \in \langle \mathcal{F} \rangle$, therefore $f|_A = v(g_1, \ldots, g_n)$. If there is a $g \in \mathcal{U}$ such that $f = t_g(f_0, f_1, \ldots, f_n)$ then $f(\overline{x}) \in \{0, f_1(\overline{x})\}$, so choose $g_0, \ldots, g_n \in \langle \mathcal{F} \rangle$ and since $f(A^m) \subseteq A$, $f|_A = f_1|_A = g_1$.

Lemma

If $h \notin \langle \mathcal{F} \rangle$ then $\langle \Gamma \rangle$ contains no idempotent term operations which depend on more than one variable.

If $f \in \langle \Gamma \rangle$ and $f(A^m) \subseteq A$ then there is a $g \in \langle \mathcal{F} \rangle$ such that $f|_A = g$. Proof Sketch: If there is a $v \in \mathcal{F}$ such that $f = v'(f_1, \ldots, f_n)$ then by induction choose $g_1, \ldots, g_n \in \langle \mathcal{F} \rangle$, therefore $f|_A = v(g_1, \ldots, g_n)$. If there is a $g \in \mathcal{U}$ such that $f = t_g(f_0, f_1, \ldots, f_n)$ then $f(\overline{x}) \in \{0, f_1(\overline{x})\}$, so choose $g_0, \ldots, g_n \in \langle \mathcal{F} \rangle$ and since $f(A^m) \subseteq A$, $f|_A = f_1|_A = g_1$.

Lemma

If $h \notin \langle \mathcal{F} \rangle$ then $\langle \Gamma \rangle$ contains no idempotent term operations which depend on more than one variable.

Proof Sketch: Suppose that $f \in \langle \Gamma \rangle$ is idempotent.

• Then for some $g \in \mathcal{U}$, $f = t_g(v_0, v_1, \dots, v_n)$ where $v_i \in \langle \Gamma \rangle$. (WLOG $g(x_1, \dots, x_n) \in \{0, x_1\}$.)

If $f \in \langle \Gamma \rangle$ and $f(A^m) \subseteq A$ then there is a $g \in \langle \mathcal{F} \rangle$ such that $f|_A = g$. Proof Sketch: If there is a $v \in \mathcal{F}$ such that $f = v'(f_1, \ldots, f_n)$ then by induction choose $g_1, \ldots, g_n \in \langle \mathcal{F} \rangle$, therefore $f|_A = v(g_1, \ldots, g_n)$. If there is a $g \in \mathcal{U}$ such that $f = t_g(f_0, f_1, \ldots, f_n)$ then $f(\overline{x}) \in \{0, f_1(\overline{x})\}$, so choose $g_0, \ldots, g_n \in \langle \mathcal{F} \rangle$ and since $f(A^m) \subseteq A$, $f|_A = f_1|_A = g_1$.

Lemma

If $h \notin \langle \mathcal{F} \rangle$ then $\langle \Gamma \rangle$ contains no idempotent term operations which depend on more than one variable.

Proof Sketch: Suppose that $f \in \langle \Gamma \rangle$ is idempotent.

• Then for some $g \in U$, $f = t_g(v_0, v_1, ..., v_n)$ where $v_i \in \langle \Gamma \rangle$. (WLOG $g(x_1, ..., x_n) \in \{0, x_1\}$.)

• Then
$$f(x^m) = t_g(v_0(x^m), v_1(x^m), \dots, v_n(x^m)) \in \{0, v_1(x^m)\}$$
 for all x .

If $f \in \langle \Gamma \rangle$ and $f(A^m) \subseteq A$ then there is a $g \in \langle \mathcal{F} \rangle$ such that $f|_A = g$. Proof Sketch: If there is a $v \in \mathcal{F}$ such that $f = v'(f_1, \ldots, f_n)$ then by induction choose $g_1, \ldots, g_n \in \langle \mathcal{F} \rangle$, therefore $f|_A = v(g_1, \ldots, g_n)$. If there is a $g \in \mathcal{U}$ such that $f = t_g(f_0, f_1, \ldots, f_n)$ then $f(\overline{x}) \in \{0, f_1(\overline{x})\}$, so choose $g_0, \ldots, g_n \in \langle \mathcal{F} \rangle$ and since $f(A^m) \subseteq A$, $f|_A = f_1|_A = g_1$.

Lemma

If $h \notin \langle \mathcal{F} \rangle$ then $\langle \Gamma \rangle$ contains no idempotent term operations which depend on more than one variable.

Proof Sketch: Suppose that $f \in \langle \Gamma \rangle$ is idempotent.

- Then for some $g \in U$, $f = t_g(v_0, v_1, ..., v_n)$ where $v_i \in \langle \Gamma \rangle$. (WLOG $g(x_1, ..., x_n) \in \{0, x_1\}$.)
- Then $f(x^m) = t_g(v_0(x^m), v_1(x^m), \dots, v_n(x^m)) \in \{0, v_1(x^m)\}$ for all x.
- By idempotence, $v_1(x^m) = x$ for all $x \neq 0$ and so $v_0(x^m) = h'(x)$ for all $x \neq 0$.

If $f \in \langle \Gamma \rangle$ and $f(A^m) \subseteq A$ then there is a $g \in \langle \mathcal{F} \rangle$ such that $f|_A = g$. Proof Sketch: If there is a $v \in \mathcal{F}$ such that $f = v'(f_1, \ldots, f_n)$ then by induction choose $g_1, \ldots, g_n \in \langle \mathcal{F} \rangle$, therefore $f|_A = v(g_1, \ldots, g_n)$. If there is a $g \in \mathcal{U}$ such that $f = t_g(f_0, f_1, \ldots, f_n)$ then $f(\overline{x}) \in \{0, f_1(\overline{x})\}$, so choose $g_0, \ldots, g_n \in \langle \mathcal{F} \rangle$ and since $f(A^m) \subseteq A$, $f|_A = f_1|_A = g_1$.

Lemma

If $h \notin \langle \mathcal{F} \rangle$ then $\langle \Gamma \rangle$ contains no idempotent term operations which depend on more than one variable.

Proof Sketch: Suppose that $f \in \langle \Gamma \rangle$ is idempotent.

- Then for some $g \in U$, $f = t_g(v_0, v_1, ..., v_n)$ where $v_i \in \langle \Gamma \rangle$. (WLOG $g(x_1, ..., x_n) \in \{0, x_1\}$.)
- Then $f(x^m) = t_g(v_0(x^m), v_1(x^m), \dots, v_n(x^m)) \in \{0, v_1(x^m)\}$ for all x.
- By idempotence, $v_1(x^m) = x$ for all $x \neq 0$ and so $v_0(x^m) = h'(x)$ for all $x \neq 0$.
- By Lemma then, $h \in \langle \mathcal{F} \rangle$.

Say that an idempotent Mal'cev condition is **easily CPB-satisfiable** if there is a polynomial-time algorithm which takes as input a finite set *A* with distinguished element 0 and produces a set \mathcal{U} of idempotent CPB₀ operations on *A* such that $\langle A, \mathcal{U} \rangle$ satisfies the Mal'cev condition.

Say that an idempotent Mal'cev condition is **easily CPB-satisfiable** if there is a polynomial-time algorithm which takes as input a finite set *A* with distinguished element 0 and produces a set \mathcal{U} of idempotent CPB₀ operations on *A* such that $\langle A, \mathcal{U} \rangle$ satisfies the Mal'cev condition.

Theorem

Given an easily CPB-satisfiable idempotent Mal'cev condition, determining whether or not a finite algebra satisfies this Mal'cev condition is EXPTIME-hard.

Say that an idempotent Mal'cev condition is **easily CPB-satisfiable** if there is a polynomial-time algorithm which takes as input a finite set *A* with distinguished element 0 and produces a set \mathcal{U} of idempotent CPB₀ operations on *A* such that $\langle A, \mathcal{U} \rangle$ satisfies the Mal'cev condition.

Theorem

Given an easily CPB-satisfiable idempotent Mal'cev condition, determining whether or not a finite algebra satisfies this Mal'cev condition is EXPTIME-hard.

Proof Sketch: If there is a polynomial-time algorithm which produces idempotent CPB_0 operations which satisfy the Mal'cev condition, then the construction which preceded the previous lemmas is a polynomial-time construction which reduces GEN-CLO' to the Mal'cev condition in question.

Say that an idempotent Mal'cev condition is **easily CPB-satisfiable** if there is a polynomial-time algorithm which takes as input a finite set *A* with distinguished element 0 and produces a set \mathcal{U} of idempotent CPB₀ operations on *A* such that $\langle A, \mathcal{U} \rangle$ satisfies the Mal'cev condition.

Theorem

Given an easily CPB-satisfiable idempotent Mal'cev condition, determining whether or not a finite algebra satisfies this Mal'cev condition is EXPTIME-hard.

Proof Sketch: If there is a polynomial-time algorithm which produces idempotent CPB_0 operations which satisfy the Mal'cev condition, then the construction which preceded the previous lemmas is a polynomial-time construction which reduces GEN-CLO' to the Mal'cev condition in question.

(In fact, this result is not restricted to Mal'cev conditions.)

H 2013

For fixed $n \ge 3$, determining whether or not finite algebra **A** generates a congruence *n*-permutable variety is EXPTIME-hard.

H 2013

For fixed $n \ge 3$, determining whether or not finite algebra **A** generates a congruence *n*-permutable variety is EXPTIME-hard.

Proof: Given a set A with distinguished element 0 and fixed $n \ge 3$ define idempotent ternary operations f_1, f_2 by

$$f_1(x, y, z) = \begin{cases} x & ext{if } y = z \\ 0 & ext{otherwise} \end{cases}$$
 and $f_2(x, y, z) = \begin{cases} z & ext{if } x = y \\ 0 & ext{otherwise} \end{cases}$.

H 2013

For fixed $n \ge 3$, determining whether or not finite algebra **A** generates a congruence *n*-permutable variety is EXPTIME-hard.

Proof: Given a set A with distinguished element 0 and fixed $n \ge 3$ define idempotent ternary operations f_1, f_2 by

$$f_1(x,y,z) = \begin{cases} x & \text{if } y = z \\ 0 & \text{otherwise} \end{cases}$$
 and

$$f_2(x,y,z) = \begin{cases} z & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$

Clearly this is a polynomial-time construction. Notice that $\langle A, \{f_1, f_2\} \rangle$ generates a congruence 3-permutable (and therefore congruence *n*-permutable) variety and that f_1 and f_2 are CPB₀. Therefore the preceding result applies and the Mal'cev condition of generating a congruence *n*-permutable variety is EXPTIME-hard.

Corollary

The following questions are EXPTIME-complete to answer with respect to a finite algebra **A**.

- Does **A** generate a CD(n) variety (for fixed $n \ge 3$)?
- Does A generate a congruence distributive variety?
- Does A generate a congruence modular variety?
- Does **A** generate a congruence *n*-permutable variety (for fixed $n \ge 3$)?
- Does A generate a variety which omits types {1}? {1,2}? {1,5}? {1,2,5}? {1,4,5}? {1,2,4,5}?
- Does A support a weak near unanimity term operation of arity *n* (for fixed $n \ge 3$)?
- Does A support an idempotent cyclic term operation of arity *n* (for fixed $n \ge 3$)?
- Does A support a semilattice term operation?

Red text indicates H's 2013 additions to Freese & Valeriote's 2009 list.

Let Γ be a set of columns of *x*'s and *y*'s of the same height, and let \overline{v} be the column of the same height which consists entirely of *x*'s. Say that $t: A^{\Gamma} \to A$ is a Γ -special cube term if

 $t(\Gamma) \approx \overline{v}$

Let Γ be a set of columns of *x*'s and *y*'s of the same height, and let \overline{v} be the column of the same height which consists entirely of *x*'s. Say that $t: A^{\Gamma} \to A$ is a Γ -special cube term if

 $t(\Gamma) \approx \overline{v}$

Example

A Mal'cev term is a term f satisfying the equations

$$f\left(\begin{array}{ccc} x & y & y \\ y & y & x \end{array}\right) \approx \left(\begin{array}{ccc} x \\ x \end{array}\right)$$

Let Γ be a set of columns of *x*'s and *y*'s of the same height, and let \overline{v} be the column of the same height which consists entirely of *x*'s. Say that $t: A^{\Gamma} \to A$ is a Γ -special cube term if

 $t(\Gamma) \approx \overline{v}$

Example

A Mal'cev term is a term f satisfying the equations

$$f\left(\begin{array}{ccc} x & y & y \\ y & y & x \end{array}\right) \approx \left(\begin{array}{ccc} x \\ x \end{array}\right)$$

Note: For any particular Γ, TFAE

- Some projection is also a Γ-special cube term, and
- **I** contains a column of x's.

Is it EXPTIME-complete to determine if an algebra has a Mal'cev term? A majority term? A near unanimity term? An edge term?

Is it EXPTIME-complete to determine if an algebra has a Mal'cev term? A majority term? A near unanimity term? An edge term?

Are there any (linear) idempotent Mal'cev conditions which are not CPB-satisfiable but are also not special cube terms?

Is it EXPTIME-complete to determine if an algebra has a Mal'cev term? A majority term? A near unanimity term? An edge term?

Are there any (linear) idempotent Mal'cev conditions which are not CPB-satisfiable but are also not special cube terms?

Are there idempotent Mal'cev conditions which are CPB-satisfiable but not easily CPB-satisfiable?

Thank you!