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Posets of Mal’cev conditions and interpretability types

A Mal’cev condition is a condition of the form there exists some terms
satisfying some equations.

Mal’cev conditions are naturally ordered by implication. A stronger
condition is larger then a weaker one.

A clone homomorphism (or interpretation) from a clone A to a clone B is
a map i : A → B mapping n-ary operations to n-operations, and
preserving composition and projections.

Interpretation from a variety V to a variety W is a functor I : W → V that
is commuting with forgetful functors.

Interpretability form quasi-order. By a standard technique, we can get
the corresponding partial order (we factor by equi-interpretability).

(Garcia, Taylor: The lattice of interpretability types of varieties, 1984.)
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Joins

Join of two Mal’cev conditions is the condition given by conjuction of the
two.

Join of two varieties V and W in can be described as the variety V ∨W
whose operations are operations of both varieties (taken as a discrete
union of operations of V and operations W), and whose identities are all
identities of both varieties.

In the other worlds, we can describe algebras in V ∨W as (A,F ∪ G )
where (A,F ) ∈ V and (A,G ) ∈ W.

Examples

I Mal’cev ∨ Jónsson terms = Pixley term,

I Jónsson terms ∨ cube term = near unanimity.

I Gumm terms ∨ SD(∨) = Jónsson terms.
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Meets

Meet of two abstract clones A and B is a clone A×B (the product in the
category of clones) that is described by

(A× B)[n] = A[n] × B[n]

with the obvious composition, and obvious projections.

For varieties V1 and V2 the meet is described as the variety V1 ×V2 that is
defined in such a way that

1. its signature is disjoint union of signtures of V1 and W with a new
binary symbol ·,

2. it has two subvarieties V ′1 and V ′2 that are equi-interpretable with V1,
V2 respectively (Vi satisfies x1 · x2 ≈ xi ),

3. every algebra in V1 × V2 is a product of an algebra from V ′1 and
an algebra from V ′2.
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Poset of linear Mal’cev conditions

A linear Mal’cev condition is a condition that do not include term
composition, i.e., only equations of the form

f (xi1 , . . . , xin) ≈ g(xj1 , . . . , xim), or f (xi1 , . . . , xin) ≈ xj

are allowed.

Examples

Mal’cev term, Pixley term, Day terms, Gumm terms, near unanimity, cube
term, Jónsson terms, etc.

Not examples

group terms, lattice terms, semilattice term, congruence uniformity,
congruence singularity?.

Linear Mal’cev condition forms a subposet of the lattice of all Mal’cev
conditions.

But, the subposet is not a sublattice!
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Meet of linear conditions

Proposition

Meet of Mal’cev term and congruence distributivity is not equivalent to
any linear Mal’cev condition.

Definition (Barto, Pinsker)

An algebra A is said to be a retract of B if there are two maps a : B → A
and b : A→ B such that ab = 1A, and for every basic operation f we have

fA(a1, . . . , an) = afB(b(a1), . . . , b(an)).

Observation

If A is a retract of B then A satisfies all the linear equations that B does.
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Meet of linear conditions (cont.)

We will show that meet of Mal’cev and majority is not linear.

Let

I V1 be the variety with single ternary Mal’cev operation q,

I V2 be the variety with the majority operation m,

I W a variety equi-interpretable with V1 × V2 that is defined by linear
equations.

We choose algebra in V ′1 that has no Jónsson terms, and similarly algebra
in V ′2 that has no Mal’cev term. For example

I A = ({0, 1}, x + y + z , proj31, proj21), and

I B = ({0, 1}, proj31, (x ∨ y) ∧ (y ∨ z) ∧ (x ∨ z), proj22).
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Meet of linear conditions (cont.)

Consider the interpretation of A× B in W, and take its retract C via

(0,0)

(0,1)

(1,0)

(1,1)

0

1

2

Finally, let C′ be the interpretation of C in V1 × V2. Then

1. Both B ′ = {0, 1} and A′ = {1, 2} are subuniverses of C′, CloA′ is
a reduct of CloA, and CloB′ is a reduct of CloB,

2. |C ′| = 3 which is a prime! So, either C′ ∈ V ′1, or C′ ∈ V ′2,

3. but neither is possible since A has no majority term, and B has no
Mal’cev term!
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Lattice of linear varieties

Problems with Mal’cev conditions

I they are not closed under infinite joins,

I there is not a largest linear Mal’cev condition interpretable in some
clone (or non-linear Mal’cev condition).

These problems can be solved by taking all linear varieties instead. (We
lose Mal’cev conditions that are not strong.)
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Prime elements of the lattice

(Sequeira, Barto) Let X be a given set of variables, and A ⊆ Eq(X ). We
say that variety V is A-colorable if there is a map c : FV(X )→ X such
that

1. c(x) = x for all x ∈ X , and

2. for every α ∈ A whenever f ∼α̂ g then c(f ) ∼α c(g)

where α̂ denotes the congruence of the free algebra over X generated by α.

We say that Mal’cev condition P satisfies coloring condition A if variety V
satisfies P if and only if V is not A-colorable.

Many of Mal’cev conditions that are suspected to be prime satisfy some
coloring condition. Namely

I congruence n-permutability,

I congruence modularity,

I satisfying non-trivial congruence identity,

I n-cube terms,

I triviality (x ≈ y).
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Prime elements of the lattice (cont.)

Theorem (Sequeira; Bentz-Sequeira)

Congruence modularity, n-permutability, satisfying non-trivial congruence
identity, and n-cube term are prime with respect to varieties axiomatized
by linear equations.

Theorem (O.)

A Mal’cev condition M satisfy coloring condition A if and only if for every
linear variety V we have that either V satisfies M, or V is interpretable in
Pol(X ,A)

Proof.

Suppose that V is linear and A-colorable (A ⊆ Eq X ). Then we define an
interpretation i : V → Pol(X ,A) as

i(f )(x0, . . . , xn) = c(f (x0, x1, . . . , xn))

for every basic operation f , and extend to terms.
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Splitting of other lattices

We say that two subsets of elements A, and B split a lattice if for every
element x of the lattice we have either a ≤ x for some a ∈ A, or x ≤ b for
some b ∈ B.

Theorem (Valeriote, Willard, 2014)

n-permutability and idempotent polymorhisms of two-element poset split
the lattice of idempotent varieties.

Theorem (Kiss, Kearnes, 2013)

Satisfying a non-trivial congruence identity and the set
{Pol(L) : L is a semilattice} split the lattice of idempotent varieties.
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Some open problems. . .

Problem

Find a satisfactory description of linear meet.

Problem

Is CM the linear meet of Mal’cev and CD?

Problem

Does every prime element of the linear lattice satisfy some coloring
condition? (Need to consider a little generalized conditions.)

Problem

Are the Mal’cev conditions that satisfy some coloring condition prime?
(Known for Mal’cev, cyclic terms, not known for everything else.)

Thank you for your attention!
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