The lattice of linear Mal'cev conditions

Jakub Opršal

Charles University in Prague

Nashville, May 29, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

A Mal'cev condition is a condition of the form there exists some terms satisfying some equations.

Mal'cev conditions are naturally ordered by implication. A stronger condition is *larger* then a weaker one.

A Mal'cev condition is a condition of the form there exists some terms satisfying some equations.

Mal'cev conditions are naturally ordered by implication. A stronger condition is *larger* then a weaker one.

A clone homomorphism (or interpretation) from a clone \mathcal{A} to a clone \mathcal{B} is a map $i: \mathcal{A} \to \mathcal{B}$ mapping *n*-ary operations to *n*-operations, and preserving composition and projections.

Interpretation from a variety \mathcal{V} to a variety \mathcal{W} is a functor $I: \mathcal{W} \to \mathcal{V}$ that is commuting with forgetful functors.

A Mal'cev condition is a condition of the form there exists some terms satisfying some equations.

Mal'cev conditions are naturally ordered by implication. A stronger condition is *larger* then a weaker one.

A clone homomorphism (or interpretation) from a clone \mathcal{A} to a clone \mathcal{B} is a map $i: \mathcal{A} \to \mathcal{B}$ mapping *n*-ary operations to *n*-operations, and preserving composition and projections.

Interpretation from a variety \mathcal{V} to a variety \mathcal{W} is a functor $I: \mathcal{W} \to \mathcal{V}$ that is commuting with forgetful functors.

Interpretability form quasi-order. By a standard technique, we can get the corresponding partial order (we factor by equi-interpretability).

(Garcia, Taylor: The lattice of interpretability types of varieties, 1984.)

Join of two varieties \mathcal{V} and \mathcal{W} in can be described as the variety $\mathcal{V} \lor \mathcal{W}$ whose operations are operations of both varieties (taken as a discrete union of operations of \mathcal{V} and operations \mathcal{W}), and whose identities are all identities of both varieties.

Join of two varieties \mathcal{V} and \mathcal{W} in can be described as the variety $\mathcal{V} \lor \mathcal{W}$ whose operations are operations of both varieties (taken as a discrete union of operations of \mathcal{V} and operations \mathcal{W}), and whose identities are all identities of both varieties.

In the other worlds, we can describe algebras in $\mathcal{V} \lor \mathcal{W}$ as $(A, F \cup G)$ where $(A, F) \in \mathcal{V}$ and $(A, G) \in \mathcal{W}$.

Join of two varieties \mathcal{V} and \mathcal{W} in can be described as the variety $\mathcal{V} \lor \mathcal{W}$ whose operations are operations of both varieties (taken as a discrete union of operations of \mathcal{V} and operations \mathcal{W}), and whose identities are all identities of both varieties.

In the other worlds, we can describe algebras in $\mathcal{V} \lor \mathcal{W}$ as $(A, F \cup G)$ where $(A, F) \in \mathcal{V}$ and $(A, G) \in \mathcal{W}$.

イロト 不得 トイヨ トイヨ うらくろ

Examples

- Mal'cev \lor Jónsson terms = Pixley term,
- Jónsson terms \lor cube term = near unanimity.
- Gumm terms \lor SD(\lor) = Jónsson terms.

$$(\mathcal{A} imes \mathcal{B})^{[n]} = \mathcal{A}^{[n]} imes \mathcal{B}^{[n]}$$

with the obvious composition, and obvious projections.

$$(\mathcal{A} imes \mathcal{B})^{[n]} = \mathcal{A}^{[n]} imes \mathcal{B}^{[n]}$$

with the obvious composition, and obvious projections.

For varieties \mathcal{V}_1 and \mathcal{V}_2 the meet is described as the variety $\mathcal{V}_1\times\mathcal{V}_2$ that is defined in such a way that

1. its signature is disjoint union of signtures of \mathcal{V}_1 and \mathcal{W} with a new binary symbol $\cdot,$

$$(\mathcal{A} imes \mathcal{B})^{[n]} = \mathcal{A}^{[n]} imes \mathcal{B}^{[n]}$$

with the obvious composition, and obvious projections.

For varieties \mathcal{V}_1 and \mathcal{V}_2 the meet is described as the variety $\mathcal{V}_1\times\mathcal{V}_2$ that is defined in such a way that

- 1. its signature is disjoint union of signtures of \mathcal{V}_1 and \mathcal{W} with a new binary symbol $\cdot,$
- 2. it has two subvarieties \mathcal{V}'_1 and \mathcal{V}'_2 that are equi-interpretable with \mathcal{V}_1 , \mathcal{V}_2 respectively (\mathcal{V}_i satisfies $x_1 \cdot x_2 \approx x_i$),

$$(\mathcal{A} imes \mathcal{B})^{[n]} = \mathcal{A}^{[n]} imes \mathcal{B}^{[n]}$$

with the obvious composition, and obvious projections.

For varieties V_1 and V_2 the meet is described as the variety $V_1 \times V_2$ that is defined in such a way that

- 1. its signature is disjoint union of signtures of \mathcal{V}_1 and \mathcal{W} with a new binary symbol $\cdot,$
- 2. it has two subvarieties \mathcal{V}'_1 and \mathcal{V}'_2 that are equi-interpretable with \mathcal{V}_1 , \mathcal{V}_2 respectively (\mathcal{V}_i satisfies $x_1 \cdot x_2 \approx x_i$),
- 3. every algebra in $\mathcal{V}_1 \times \mathcal{V}_2$ is a product of an algebra from \mathcal{V}'_1 and an algebra from \mathcal{V}'_2 .

$$f(x_{i_1},\ldots,x_{i_n}) \approx g(x_{j_1},\ldots,x_{i_m}), \quad \text{or} \quad f(x_{i_1},\ldots,x_{i_n}) \approx x_j$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

are allowed.

$$f(x_{i_1},\ldots,x_{i_n}) \approx g(x_{j_1},\ldots,x_{i_m}), \quad \text{or} \quad f(x_{i_1},\ldots,x_{i_n}) \approx x_j$$

are allowed.

Examples

Mal'cev term, Pixley term, Day terms, Gumm terms, near unanimity, cube term, Jónsson terms, etc.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$f(x_{i_1},\ldots,x_{i_n}) \approx g(x_{j_1},\ldots,x_{i_m}), \quad \text{or} \quad f(x_{i_1},\ldots,x_{i_n}) \approx x_j$$

are allowed.

Examples

Mal'cev term, Pixley term, Day terms, Gumm terms, near unanimity, cube term, Jónsson terms, etc.

イロト 不得 トイヨ トイヨ うらくろ

Not examples

group terms, lattice terms, semilattice term, congruence uniformity, congruence singularity?.

$$f(x_{i_1},\ldots,x_{i_n}) \approx g(x_{j_1},\ldots,x_{i_m}), \quad \text{or} \quad f(x_{i_1},\ldots,x_{i_n}) \approx x_j$$

are allowed.

Examples

Mal'cev term, Pixley term, Day terms, Gumm terms, near unanimity, cube term, Jónsson terms, etc.

Not examples

group terms, lattice terms, semilattice term, congruence uniformity, congruence singularity[?].

Linear Mal'cev condition forms a subposet of the lattice of all Mal'cev conditions.

$$f(x_{i_1},\ldots,x_{i_n}) \approx g(x_{j_1},\ldots,x_{i_m}), \quad \text{or} \quad f(x_{i_1},\ldots,x_{i_n}) \approx x_j$$

are allowed.

Examples

Mal'cev term, Pixley term, Day terms, Gumm terms, near unanimity, cube term, Jónsson terms, etc.

Not examples

group terms, lattice terms, semilattice term, congruence uniformity, congruence singularity[?].

Linear Mal'cev condition forms a subposet of the lattice of all Mal'cev conditions.

イロト 不得 トイヨ トイヨ うらくろ

But, the subposet is not a sublattice!

Proposition

Meet of Mal'cev term and congruence distributivity is not equivalent to any linear Mal'cev condition.

Proposition

Meet of Mal'cev term and congruence distributivity is not equivalent to any linear Mal'cev condition.

Definition (Barto, Pinsker)

An algebra **A** is said to be a retract of **B** if there are two maps $a: B \to A$ and $b: A \to B$ such that $ab = 1_A$, and for every basic operation f we have

$$f_{\mathbf{A}}(a_1,\ldots,a_n)=af_{\mathbf{B}}(b(a_1),\ldots,b(a_n)).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition

Meet of Mal'cev term and congruence distributivity is not equivalent to any linear Mal'cev condition.

Definition (Barto, Pinsker)

An algebra **A** is said to be a retract of **B** if there are two maps $a: B \to A$ and $b: A \to B$ such that $ab = 1_A$, and for every basic operation f we have

$$f_{\mathbf{A}}(a_1,\ldots,a_n)=af_{\mathbf{B}}(b(a_1),\ldots,b(a_n)).$$

Observation

If A is a retract of B then A satisfies all the linear equations that B does.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• \mathcal{V}_1 be the variety with single ternary Mal'cev operation q,

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへぐ

• \mathcal{V}_1 be the variety with single ternary Mal'cev operation q,

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへぐ

• \mathcal{V}_2 be the variety with the majority operation m,

- \mathcal{V}_1 be the variety with single ternary Mal'cev operation q,
- \mathcal{V}_2 be the variety with the majority operation m,
- ▶ W a variety equi-interpretable with $V_1 \times V_2$ that is defined by linear equations.

- \mathcal{V}_1 be the variety with single ternary Mal'cev operation q,
- \mathcal{V}_2 be the variety with the majority operation m,
- ▶ W a variety equi-interpretable with $V_1 \times V_2$ that is defined by linear equations.

We choose algebra in \mathcal{V}_1' that has no Jónsson terms, and similarly algebra in \mathcal{V}_2' that has no Mal'cev term.

- \mathcal{V}_1 be the variety with single ternary Mal'cev operation q,
- V_2 be the variety with the majority operation m,
- ▶ W a variety equi-interpretable with $V_1 \times V_2$ that is defined by linear equations.

We choose algebra in \mathcal{V}_1' that has no Jónsson terms, and similarly algebra in \mathcal{V}_2' that has no Mal'cev term. For example

- $\mathbf{A} = (\{0,1\}, x + y + z, \text{proj}_1^3, \text{proj}_1^2)$, and
- ▶ $\mathbf{B} = (\{0,1\}, \operatorname{proj}_1^3, (x \lor y) \land (y \lor z) \land (x \lor z), \operatorname{proj}_2^2).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへぐ

Finally, let \mathbf{C}' be the interpretation of \mathbf{C} in $\mathcal{V}_1 \times \mathcal{V}_2$.

Finally, let C' be the interpretation of C in $\mathcal{V}_1 \times \mathcal{V}_2$. Then

1. Both $B' = \{0, 1\}$ and $A' = \{1, 2\}$ are subuniverses of **C**', Clo **A**' is a reduct of Clo **A**, and Clo **B**' is a reduct of Clo **B**,

Finally, let C' be the interpretation of C in $\mathcal{V}_1 \times \mathcal{V}_2$. Then

1. Both $B' = \{0, 1\}$ and $A' = \{1, 2\}$ are subuniverses of **C**', Clo **A**' is a reduct of Clo **A**, and Clo **B**' is a reduct of Clo **B**,

イロト 不得 トイヨ トイヨ うらくろ

2. |C'| = 3 which is a prime! So, either $C' \in \mathcal{V}'_1$, or $C' \in \mathcal{V}'_2$,

Finally, let C' be the interpretation of C in $\mathcal{V}_1 \times \mathcal{V}_2$. Then

- 1. Both $B' = \{0, 1\}$ and $A' = \{1, 2\}$ are subuniverses of **C**', Clo **A**' is a reduct of Clo **A**, and Clo **B**' is a reduct of Clo **B**,
- 2. |C'| = 3 which is a prime! So, either $C' \in \mathcal{V}'_1$, or $C' \in \mathcal{V}'_2$,
- 3. but neither is possible since **A** has no majority term, and **B** has no Mal'cev term!

Finally, let C' be the interpretation of C in $\mathcal{V}_1 \times \mathcal{V}_2$. Then

- 1. Both $B' = \{0, 1\}$ and $A' = \{1, 2\}$ are subuniverses of **C**', Clo **A**' is a reduct of Clo **A**, and Clo **B**' is a reduct of Clo **B**,
- 2. |C'| = 3 which is a prime! So, either $C' \in \mathcal{V}'_1$, or $C' \in \mathcal{V}'_2$,
- 3. but neither is possible since **A** has no majority term, and **B** has no Mal'cev term!

・ロト ・ 「 ・ ・ モ ト ・ モ ・ う へ つ く

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 - のへで

they are not closed under infinite joins,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - わへぐ

- they are not closed under infinite joins,
- there is not a largest linear Mal'cev condition interpretable in some clone (or non-linear Mal'cev condition).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

- they are not closed under infinite joins,
- there is not a largest linear Mal'cev condition interpretable in some clone (or non-linear Mal'cev condition).

These problems can be solved by taking all linear varieties instead. (We lose Mal'cev conditions that are not strong.)

・ロト ・ 「 ・ ・ モ ト ・ モ ・ う へ つ く

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶

(Sequeira, Barto) Let X be a given set of variables, and $A \subseteq Eq(X)$. We say that variety \mathcal{V} is A-colorable if there is a map $c \colon F_{\mathcal{V}}(X) \to X$ such that

- 1. c(x) = x for all $x \in X$, and
- 2. for every $\alpha \in A$ whenever $f \sim_{\hat{\alpha}} g$ then $c(f) \sim_{\alpha} c(g)$

where $\hat{\alpha}$ denotes the congruence of the free algebra over X generated by α .

(Sequeira, Barto) Let X be a given set of variables, and $A \subseteq Eq(X)$. We say that variety \mathcal{V} is A-colorable if there is a map $c \colon F_{\mathcal{V}}(X) \to X$ such that

- 1. c(x) = x for all $x \in X$, and
- 2. for every $\alpha \in A$ whenever $f \sim_{\hat{\alpha}} g$ then $c(f) \sim_{\alpha} c(g)$

where $\hat{\alpha}$ denotes the congruence of the free algebra over X generated by α . We say that Mal'cev condition \mathcal{P} satisfies coloring condition A if variety \mathcal{V} satisfies \mathcal{P} if and only if \mathcal{V} is not A-colorable.

(Sequeira, Barto) Let X be a given set of variables, and $A \subseteq Eq(X)$. We say that variety \mathcal{V} is A-colorable if there is a map $c \colon F_{\mathcal{V}}(X) \to X$ such that

- 1. c(x) = x for all $x \in X$, and
- 2. for every $\alpha \in A$ whenever $f \sim_{\hat{\alpha}} g$ then $c(f) \sim_{\alpha} c(g)$

where $\hat{\alpha}$ denotes the congruence of the free algebra over X generated by α . We say that Mal'cev condition \mathcal{P} satisfies coloring condition A if variety \mathcal{V} satisfies \mathcal{P} if and only if \mathcal{V} is not A-colorable.

Many of Mal'cev conditions that are suspected to be prime satisfy some coloring condition. Namely

(Sequeira, Barto) Let X be a given set of variables, and $A \subseteq Eq(X)$. We say that variety \mathcal{V} is A-colorable if there is a map $c \colon F_{\mathcal{V}}(X) \to X$ such that

- 1. c(x) = x for all $x \in X$, and
- 2. for every $\alpha \in A$ whenever $f \sim_{\hat{\alpha}} g$ then $c(f) \sim_{\alpha} c(g)$

where $\hat{\alpha}$ denotes the congruence of the free algebra over X generated by α . We say that Mal'cev condition \mathcal{P} satisfies coloring condition A if variety \mathcal{V} satisfies \mathcal{P} if and only if \mathcal{V} is not A-colorable.

Many of Mal'cev conditions that are suspected to be prime satisfy some coloring condition. Namely

- congruence n-permutability,
- congruence modularity,
- satisfying non-trivial congruence identity,
- n-cube terms,
- triviality $(x \approx y)$.

Congruence modularity, n-permutability, satisfying non-trivial congruence identity, and n-cube term are prime with respect to varieties axiomatized by linear equations.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Congruence modularity, n-permutability, satisfying non-trivial congruence identity, and n-cube term are prime with respect to varieties axiomatized by linear equations.

Theorem (O.)

A Mal'cev condition \mathcal{M} satisfy coloring condition A if and only if for every linear variety \mathcal{V} we have that either \mathcal{V} satisfies \mathcal{M} , or \mathcal{V} is interpretable in Pol(X, A)

Congruence modularity, n-permutability, satisfying non-trivial congruence identity, and n-cube term are prime with respect to varieties axiomatized by linear equations.

Theorem (O.)

A Mal'cev condition \mathcal{M} satisfy coloring condition A if and only if for every linear variety \mathcal{V} we have that either \mathcal{V} satisfies \mathcal{M} , or \mathcal{V} is interpretable in Pol(X, A)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof.

Congruence modularity, n-permutability, satisfying non-trivial congruence identity, and n-cube term are prime with respect to varieties axiomatized by linear equations.

Theorem (O.)

A Mal'cev condition \mathcal{M} satisfy coloring condition A if and only if for every linear variety \mathcal{V} we have that either \mathcal{V} satisfies \mathcal{M} , or \mathcal{V} is interpretable in Pol(X, A)

Proof.

Suppose that \mathcal{V} is linear and A-colorable ($A \subseteq Eq X$). Then we define an interpretation $i: \mathcal{V} \to Pol(X, A)$ as

$$i(f)(x_0,\ldots,x_n)=c(f(x_0,x_1,\ldots,x_n))$$

for every basic operation f, and extend to terms.

Congruence modularity, n-permutability, satisfying non-trivial congruence identity, and n-cube term are prime with respect to varieties axiomatized by linear equations.

Theorem (O.)

A Mal'cev condition \mathcal{M} satisfy coloring condition A if and only if for every linear variety \mathcal{V} we have that either \mathcal{V} satisfies \mathcal{M} , or \mathcal{V} is interpretable in Pol(X, A)

Proof.

Suppose that \mathcal{V} is linear and A-colorable ($A \subseteq Eq X$). Then we define an interpretation $i: \mathcal{V} \to Pol(X, A)$ as

$$i(f)(x_0,\ldots,x_n)=c(f(x_0,x_1,\ldots,x_n))$$

for every basic operation f, and extend to terms.

We say that two subsets of elements A, and B split a lattice if for every element x of the lattice we have either $a \le x$ for some $a \in A$, or $x \le b$ for some $b \in B$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

We say that two subsets of elements A, and B split a lattice if for every element x of the lattice we have either $a \le x$ for some $a \in A$, or $x \le b$ for some $b \in B$.

Theorem (Valeriote, Willard, 2014)

n-*permutability and idempotent polymorhisms of two-element poset split the lattice of idempotent varieties.*

イロト 不得 トイヨ トイヨ うらくろ

We say that two subsets of elements A, and B split a lattice if for every element x of the lattice we have either $a \le x$ for some $a \in A$, or $x \le b$ for some $b \in B$.

Theorem (Valeriote, Willard, 2014)

n-permutability and idempotent polymorhisms of two-element poset split the lattice of idempotent varieties.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへぐ

Theorem (Kiss, Kearnes, 2013)

Satisfying a non-trivial congruence identity and the set {Pol(L) : L is a semilattice} split the lattice of idempotent varieties.

Find a satisfactory description of linear meet.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Find a satisfactory description of linear meet.

Problem

Is CM the linear meet of Mal'cev and CD?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

Find a satisfactory description of linear meet.

Problem

Is CM the linear meet of Mal'cev and CD?

Problem

Does every prime element of the linear lattice satisfy some coloring condition? (Need to consider a little generalized conditions.)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Find a satisfactory description of linear meet.

Problem

Is CM the linear meet of Mal'cev and CD?

Problem

Does every prime element of the linear lattice satisfy some coloring condition? (Need to consider a little generalized conditions.)

Problem

Are the Mal'cev conditions that satisfy some coloring condition prime? (Known for Mal'cev, cyclic terms, not known for everything else.)

イロト 不得 トイヨ トイヨ うらくろ

Find a satisfactory description of linear meet.

Problem

Is CM the linear meet of Mal'cev and CD?

Problem

Does every prime element of the linear lattice satisfy some coloring condition? (Need to consider a little generalized conditions.)

Problem

Are the Mal'cev conditions that satisfy some coloring condition prime? (Known for Mal'cev, cyclic terms, not known for everything else.)

Thank you for your attention!