Deciding Maltsev Conditions

Matt Valeriote
McMaster University

30 May 2015

Maltsev Conditions

Definition

- A strong Maltsev condition \mathcal{S} consists of a finite set of function symbols $\left\{f_{i}\right\}_{i \in I}$ of various arities along with a finite set of equations Σ involving terms over the f_{i}.
- An algebra \mathbf{A} satisfies \mathcal{M} if it has terms $\left\{t_{i}\right\}_{i \in I}$ such that

$$
\left\langle A,\left\{t_{i}^{\mathbf{A}}\right\}_{i \in I}\right\rangle \models \Sigma .
$$

- A Maltsev condition \mathcal{M} consists of a sequence $\mathcal{S}_{i}, i \geq 1$, of strong Maltsev conditions such that for all i, the condition \mathcal{S}_{i} is stronger than the condition \mathcal{S}_{i+1}. An algebra satisfies \mathcal{M} if it satisfies \mathcal{S}_{i} for some i.
- A Maltsev condition is linear if none of the equations used to define it involve compositions.
- A Maltsev condition is idempotent if the equations defining it imply that all of the functions that appear in the definition are idempotent.
- A Maltsev condition is special if it is strong, idempotent, and linear.

Congruence Distributivity

Definition

For $k>1$, let $C D(k)$ be the special Maltsev condition defined by the equations:

$$
\begin{aligned}
& p_{0}(x, y, z) \approx x \\
& p_{i}(x, y, x) \approx x \text { for all } i \\
& p_{i}(x, x, y) \approx p_{i+1}(x, x, y) \text { for all } i \text { even } \\
& p_{i}(x, y, y) \approx p_{i+1}(x, y, y) \text { for all } i \text { odd } \\
& p_{k}(x, y, z) \approx z
\end{aligned}
$$

Theorem (Jónsson)

\mathcal{V} is congruence distributive $(C D)$ if and only if it satisfies $C D(k)$ for some $k>1$.

Testing for Maltsev conditions

Three decision problems

Let \mathcal{M} be a Maltsev condition.

- (SAT \mathcal{M}) Instance: A finite algebra A.

Question: Does \mathbf{A} satisfy \mathcal{M} ?
 Question: Does \mathbf{A} satisfy \mathcal{M} ?

- (Rel-Sat ${ }_{\mathcal{M}}$) Instance: A finite relational structure \mathbb{B}. Question: Does $\langle B, \operatorname{Pol}(\mathbb{B})\rangle$ satisfy \mathcal{M} ?

Related questions

For a Maltsev condition \mathcal{M}, what are the computational complexities of the three decision problems $\mathrm{SAT}_{\mathcal{M}},{\operatorname{Id}-\mathrm{Sat}_{\mathcal{M}}}$, and $\operatorname{Rel}^{\text {Sat }}{ }_{\mathcal{M}}$?

Back to congruence distributivity

Remark

There is a straightforward algorithm that demonstrates that for any $k>1$, $S A T_{C D(k)}$ and $S A T_{C D}$ are in EXP-TIME: Compute the free algebra in $\mathbf{V}(\mathbf{A})$ generated by $\{x, y, z\}$ and look for a sequence of terms that satisfy the condition.

Theorem (Freese-Val., Horowitz ($k=3$ case))

- SAT ${ }_{C D}$ is EXP-TIME complete.
- For a fixed $k>2, S A T_{C D(k)}$ is EXP-TIME complete

The Clone Membership Problem

Remark

The principle tool that we use to establish hardness is the following EXP-TIME complete problem (shown by Bergman, Juedes, and Slutzki and also by H. Friedman).

Theorem (Clone Membership Problem)

The following decision problem is EXP-TIME complete:

- Instance: A finite algebra $\mathbf{A}=\left(A, f_{1}, \ldots, f_{k}\right)$ and a function g on A.
- Question: Is g in the clone of operations on A generated by $\left\{f_{1}, \ldots, f_{k}\right\}$, i.e., can g be obtained by composing the f_{i} in some fashion?

A general purpose construction

Remark

We came up with a construction that takes an instance I of the Clone Membership Problem and builds a finite algebra $\mathbf{A}_{\text {I }}$ such that:

- If I is a no instance, then $\mathbf{A}_{\text {I }}$ has no non-trivial idempotent term operations, and
- If I is a yes instance, then \mathbf{A}_{I} has a flat semi-lattice term operation and also the operation $(x \wedge y) \vee(x \wedge z)$.

Theorem

Testing for any of the following conditions is an EXP-TIME complete: Given a finite algebra A:

- Does A have a nontrivial idempotent term operation or a Taylor (or Siggers) term?
- Does A have a (flat) semi-lattice term operation?
- Does A generate a variety that is $C D$ or $C M$ or $S D(\vee)$ or $S D(\wedge)$?

Is SAT ${ }_{\mathcal{M}}$ always hard?

Remarks

- For any strong Maltsev condition \mathcal{M}, SAT $_{\mathcal{M}}$ is in EXP-TIME (just look for suitable terms by building the appropriate free algebras).
- Challenge: Find some strong, idempotent, non-trivial Maltsev condition \mathcal{M} such that $S_{\mathcal{M}}$ is not EXP-TIME complete.

Problems

- What is the complexity of testing for a Maltsev term or a majority term or a Pixley term?
- If \mathcal{M} is a non-trivial special Maltsev condition, is SAT $_{\mathcal{M}}$ EXP-TIME complete?

The idempotent case

Remark

It turns out that for many familiar idempotent linear Maltsev conditions \mathcal{M}, it can be shown that $I d-S A T_{\mathcal{M}}$ is in \mathbf{P}.

Theorem

Id-SAT $T_{\mathcal{M}}$ is in \mathbf{P} for \mathcal{M} any one of the following Maltsev conditions:

- (Bulatov) Having a Taylor term (or omitting the unary type),
- (Freese, Val.) one of the other five "type omitting" conditions from tame congruence theory,
- (Freese, Val.) CM, CD, having a majority or Maltsev term,
- (Val., Willard) for a fixed $k>2$, congruence k-permutability,
- (Kazda, Val.) for a fixed $k>1, C D(k)$ and $C M(k)$,
- (BKMMN) for a fixed $k>1$, having a cyclic term of arity k,
- (Horowitz) for a fixed $k>1$, having a k-edge term.

The Idempotent Case

Remarks

- A number of the results from the previous theorem can be proved by "localizing" a failure of the condition in a small subalgebra of a small power of the given idempotent algebra.
- For example, a finite idempotent algebra A generates a $C D(k)$ variety if and only if every 3-generated subalgebra of $\mathbf{A}^{2 k-1}$ is congruence distributive.

Theorem (Bulatov)

If \mathbf{A} is a finite idempotent algebra, then \mathbf{A} has a Taylor term if and only if the class $\mathbf{H S}(\mathbf{A})$ does not contain a 2-element set.

Omitting the unary type

Proof.

- By Taylor's result, if \mathbf{A} fails to have a Taylor term then $\mathbf{V}(\mathbf{A})$ contains an algebra that is essentially a set, so it contains a 2-element set T, considered as an algebra.
- Choose n minimal so that T is isomorphic to a quotient of a subalgebra of \mathbf{A}^{n}, say $T \approx \mathbf{S} / \theta$ for some $\theta \in \operatorname{Con}(\mathbf{S})$ and $\mathbf{S} \leq \mathbf{A}^{n}$.
- For $a \in A$, let $S_{a}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S: a_{1}=a\right\} \leq S$.
- If for some $a \in A, S_{a}$ is not contained in a θ-class, then $\mathbf{S}_{a} / \theta \approx T$, and we can reduce n by 1 .
- Otherwise, $\pi_{1} \subseteq \theta$ and so \mathbf{T} is isomorphic to a quotient of \mathbf{A}.

Testing for Maltsev Conditions: An Example

Cyclic Terms

A term t is cyclic if it is idempotent and satisfies the identity $t\left(x_{1}, x_{2}, \ldots, x_{n}\right) \approx t\left(x_{2}, x_{3}, \ldots, x_{n}, x_{1}\right)$.

Theorem (BKMMN)

For $n>1$ there is a polynomial time algorithm to determine if a given finite idempotent algebra has an n-ary cyclic term.

The case $n=4$

Remark

We need to determine if our finite idempotent algebra \mathbf{A} has a 4-ary term operation $c(x, y, z, w)$ such that for all $\vec{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in A^{4}$,

$$
c\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=c\left(a_{2}, a_{3}, a_{4}, a_{1}\right)=\cdots=c\left(a_{4}, a_{1}, a_{2}, a_{3}\right) .
$$

Definition

- A 4-ary term operation c is cyclic for a tuple $\vec{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in A^{4}$, if $c\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=c\left(a_{2}, a_{3}, a_{4}, a_{1}\right)=\cdots=c\left(a_{4}, a_{1}, a_{2}, a_{3}\right)$.
- For $S \subseteq A^{4}$, the term operation c is cyclic for S if it is cyclic for each member of S.

Remark

So, A has a cyclic term if and only if it has a term that is cyclic for A^{4}.

The case $n=4$

Lemma

If for each $\vec{a} \in A^{4}, \mathbf{A}$ has a term that is cyclic for \vec{a} then it has a cyclic term.

Proof.

- We show by induction on $|S|$, for $S \subseteq A^{4}$, that \mathbf{A} has a term that is cyclic for S. The case $|S|=1$ is given.
- Suppose that $S^{\prime}=S \cup\{\vec{a}\}$ and c_{S} is cyclic for S.
- Set $b_{1}=c_{S}\left(a_{1}, a_{2}, a_{3}, a_{4}\right), b_{2}=c_{S}\left(a_{2}, a_{3}, a_{4}, a_{1}\right)$, $b_{3}=c_{S}\left(a_{3}, a_{4}, a_{1}, a_{2}\right)$, and $b_{4}=c_{S}\left(a_{4}, a_{1}, a_{2}, a_{3}\right)$.
- Let $c_{\vec{b}}$ be cyclic for \vec{b} and set $c\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ to be the term operation

$$
c_{\vec{b}}\left(c_{S}\left(x_{1}, x_{2}, x_{3}, x_{4}\right), c_{S}\left(x_{2}, x_{3}, x_{4}, x_{1}\right), \ldots, c_{S}\left(x_{4}, x_{1}, x_{2}, x_{3}\right)\right)
$$

- Then c is cyclic for S^{\prime}.

The case $n=4$

Remark

So, to determine if \mathbf{A} has a 4-ary cyclic term operation, it suffices to determine if, for each $\vec{a} \in A^{4}$, it has a term operation that is cyclic for \vec{a}.

Lemma

For $\vec{a} \in A^{4}, \mathbf{A}$ has a term that is cyclic for \vec{a} if and only if the subalgebra of \mathbf{A}^{4} generated by

$$
\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right),\left(a_{2}, a_{3}, a_{4}, a_{1}\right), \ldots,\left(a_{4}, a_{1}, a_{2}, a_{3}\right)\right\}
$$

contains a constant 4-tuple.

Corollary

There is a polynomial time algorithm to determine if a given finite idempotent algebra has a 4-ary cyclic term operation.

Is Id-SAT \mathcal{M} always easy?

Remarks

- There is a lot of evidence to support the claim (conjecture!!!) that if \mathcal{M} is a special Maltsev condition, then Id-SAT \mathcal{M} is in \mathbf{P}, but,
- there are a lot of gaps in our knowledge.
- Challenge: Find some special Maltsev condition \mathcal{M} such that $I d-S A T_{\mathcal{M}}$ is not in \mathbf{P}.

Problems

For \mathbf{A} a finite idempotent algebra,

- what is the complexity of testing for a minority term?
- what is the complexity of testing, for a fixed $k>2$, for a k-ary totally symmetric term?

A non-linear example

Remarks

- One of the simplest strong, idempotent non-linear Maltsev conditions is that of having a semi-lattice term.
- What is the complexity of testing for this condition?
- Recall that in general, this is an EXP-TIME complete problem, and even checking for a flat semi-lattice operation is EXP-TIME complete.

Guess

Even for idempotent algebras, this problem is EXP-TIME complete.

Wild Guess

If \mathcal{M} is a strong idempotent non-linear Maltsev condition that is not equivalent to a special Maltsev condition, then Id-SAT \mathcal{M} is EXP-TIME complete.

The semi-lattice case

Example (Freese, Nation, Val.)

For each $n>1$, we build an idempotent (conservative!) algebra \mathbf{A}_{n} of size $2 n$ such that for each subset $S \subset A_{n}$ of size $2 n-1$ there is a term $b_{S}(x, y)$ of \mathbf{A}_{n} such that when restricted to S, b_{S} is a semi-lattice operation with respect to a linear ordering on S, but \mathbf{A}_{n} does not have a semi-lattice term operation.

Partial Results

- The problem of deciding if a finite idempotent algebra has a flat semi-lattice term operation is in \mathbf{P}.
- The problem of deciding if a finite idempotent algebra has an " M_{n} " semi-lattice operation is EXP-TIME complete.

The Relational case

Remarks

- For \mathcal{M} a strong Maltsev condition, the problem Rel-Sat $_{\mathcal{M}}$ is always in NP.
- For some special Maltsev conditions, there is a close association with the CSP.

Theorem

Let \mathcal{M} be a special Maltsev condition that implies $S D(\wedge)$. Then Rel-Sat $_{\mathcal{M}}$ is in \mathbf{P}.

Corollary

For relational structures, testing for a majority polymorphism, or, for a fixed $k>2$, a k-ary near unanimity polymorphism, is in \mathbf{P}.

Special Maltsev conditions that imply $\mathrm{SD}(\wedge)$

Proof of the majority case

- Given a finite relational structure \mathbb{A}, we may assume that it contains, for each $a \in A$, the singleton unary relation $\{a\}$.
- Let $/$ be the instance of $\operatorname{CSP}(\mathbb{A})$ with variables A^{3} and with the following constraints:
- for $a, b \in A,\langle((a, a, b)),\{a\}\rangle,\langle((a, b, a)),\{a\}\rangle,\langle((b, a, a)),\{a\}\rangle$,
- for each k-ary relation R of \mathbb{A} and tuples $\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \overrightarrow{u_{3}} \in R$, $\left\langle\left(\left(u_{1}^{1}, u_{2}^{1}, u_{3}^{1}\right), \ldots,\left(u_{1}^{k}, u_{2}^{k}, u_{3}^{k}\right)\right), R\right\rangle$.
- Then \mathbb{A} has a majority term polymorphism if and only if I has a solution.
- Now, we run the $\operatorname{SD}(\wedge)$ CSP algorithm on I.
- If the algorithm determines that I doesn't have a solution, then \mathbb{A} doesn't have a majority term polymorphism.

Special Maltsev conditions that imply $\operatorname{SD}(\wedge)$

Proof of the majority case

- If the algorithm determines that there is a solution, this may not be true, if \mathbb{A} doesn't have an $\mathrm{SD}(\wedge)$ polymorphism.
- Choose some triple $\vec{u} \in A^{3}$ and some $d \in A$ and add the constraint $\langle(\vec{u}),\{d\}\rangle$ to I. Then rerun the CSP algorithm on I.
- If it determines that there is no solution, then choose some other element in place of d and rerun the algorithm.
- If no choice of d yields a positive result, then we conclude that \mathbb{A} has no majority polymorphism.
- If some value of d works, then move on to another triple \vec{u}^{\prime} from A^{3} and augment I with a constraint $\langle(\vec{u}),\{d\}\rangle$ for some $d \in A$ and rerun the algorithm.
- In the end, after all triples have been considered, we will end up with a ternary function on A that will be a majority operation on A that is a polymorphism of \mathbb{A} if and only if \mathbb{A} has one.

The Relational case

Remark

Any special Maltsev condition can be coded up as a particular instance of $\operatorname{CSP}(\mathbb{A})$ but this appears to break down for conditions that are not linear.

Maltsev polymorphism

- If there is a uniform, polynomial-time algorithm to solve instances of the CSP over Maltsev templates (Willard, 2016???) then the above ideas can be used to prove that the problem of deciding if a finite relational structure has a Maltsev polymorphism is in \mathbf{P}.
- Conversely, if there is an algorithm which, given a finite relational structure, produces a Maltsev polymorphism of it, if it has one, then there is a uniform polynomial-time algorithm to solve instances of the CSP over Maltsev templates.

More Problems

Problems

- For $\mathcal{M}=$ omitting the unary type, what is the complexity of Rel-Sat ${ }_{\mathcal{M}}$?
- If \mathcal{M} is a special Maltsev condition, is $\operatorname{Rel}^{-S a t}{ }_{\mathcal{M}}$ in \mathbf{P} ?
- What about when \mathcal{M} is not linear?
- When $\mathcal{M}=$ having a semi-lattice term?

UACALC

Remarks

- Over the past 20 years a package of computational tools for investigating finite algebras and the varieties that they generate has been developed.
- It is currently being maintained by Ralph Freese and William DeMeo and can be freely downloaded from the website http://uacalc.org.
- In addition to the program, a large library of java code is also available.
- Contributions and suggestions from the community are always welcome.

