Maltsev constraints

Ross Willard

University of Waterloo, CAN

Open Problems in Universal Algebra Vanderbilt University May 28, 2015

(2,3)-systems over a finite algebra

Let A be a finite algebra. A (2,3)-system over A is a triple

$$\mathfrak{I} = (V, (P_x : x \in V), (R_{x,y} : x, y \in V))$$

where

- V is a finite nonempty set.
- Each "potato" P_x is a nonempty subuniverse of **A**.
- ▶ Each "edge relation" $R_{x,y} \leq_{sd} \mathbf{P}_x \times \mathbf{P}_y$.

•
$$R_{y,x} = (R_{x,y})^{-1}$$
 and $R_{x,x} = 0_{P_x}$.

• $R_{x,z} \subseteq R_{x,y} \circ R_{y,z}$ for all $x, y, z \in V$.

Sol(\mathfrak{I}) = {all solutions to \mathfrak{I} }, where a **solution** is a function $s : V \to A$ satisfying $(s(x), s(y)) \in R_{x,y}$ for all $x, y \in V$.

CSP(A, 2)

Fix a finite algebra **A**.

CSP(A,2)

Input: a (2,3)-system \mathcal{I} over **A**. Question: Is $Sol(\mathcal{I}) \neq \emptyset$?

Holy Grail

Prove that $CSP(\mathbf{A}, 2)$ is in P whenever **A** belongs to a Taylor variety.

Bulatov's theorem and improvements

Theorem (Bulatov 2002) If **A** is in a Maltsev variety, then CSP(**A**, 2) is in P.

Theorem (Bulatov, Dalmau 2006) Same result, (much) simpler algorithm.

Improvements, generalizations:

- Dalmau 2006
- Idziak et al 2007
- Barto (submitted)

Theorem

A version of the Bulatov-Dalmau algorithm solves CSP(A, 2) whenever **A** belongs to a congruence modular variety.

The Bulatov-Dalmau algorithm

Main idea:

► Find a generating set for the algebra of solutions of one constraint R_{x1,y1}, then of two constraints R_{x1,y1}, R_{x2,y2},...

Positive features:

- ► Correctly solves CSP(A, 2) in polynomial time.
- No algebra required.

Negative features:

- No hope of extending beyond the congruence modular setting.
- No algebra required.

Challenge

Challenge

Find a new algorithm solving $\mathsf{CSP}(\mathbf{A},2)$ when \mathbf{A} is in a Maltsev variety \ldots

- ▶ With the possibility of generalization beyond the CM case.
- Exploiting algebraic knowledge of Maltsev varieties.

Intuition

- Propagation, search for inconsistency
- Local consistency + Gaussian elimination should be enough.

Abelian atoms in finite Taylor algebras

Let **A** be a finite algebra in a Taylor variety.

Definition

- 1. At(\mathbf{A}) := { $\alpha \in Con(\mathbf{A}) : \mathbf{0}_{\mathbf{A}} \prec \alpha, \alpha \text{ is abelian}$ }.
- 2. For $\alpha, \beta \in At(\mathbf{A})$, define $\alpha \approx \beta$ iff $\alpha = \beta$ or α, β are two of the three middle elements in an M_3 in Con(**A**).

Geometrical congruences

Let **A** be a finite algebra in a Taylor variety.

Lemma

 \Rightarrow is an equivalence relation on At(A).

Definition $\tau \in \operatorname{Con}(\mathbf{A})$ is geometrical if there exists $\Phi \subseteq \operatorname{At}(\mathbf{A})$ such that $\Phi \subseteq$ a single \approx -class, and $\tau = \bigvee \Phi$.

 $\operatorname{Geom}(\mathbf{A}) := \{ \tau \in \operatorname{Con}(\mathbf{A}) \, : \, \tau \text{ is geometrical} \}.$

Coordinatization

Lemma

Suppose A is a finite algebra in a Taylor variety. TFAE:

1. τ is geometrical.

 The interval I[0_A, τ] is isomorphic to the lattice of subspaces of a fin. dim. vector space V over some finite field F_q.
 When (2) holds, each τ-block can be "coordinatized" as a matrix power of V.

Corollary

For each $\tau \in \text{Geom}(\mathbf{A}) \setminus \{\mathbf{0}_A\}$ there exists a unique prime p such that $|a/\tau| = p^{n_a}$ for all $a \in A$.

Definition $char(\tau) = this prime p.$

Application to (2,3)-systems

Suppose that, in a (2,3)-system $\mathcal{I} = (V, \ldots)$ over **A**, we have

• A collection $\{\mathbf{P}_x : x \in C\}$ of potatoes $(C \subseteq V)$.

▶ For each
$$x \in C$$
, $\tau_x \in \text{Geom}(\mathbf{P}_x)$

with $char(\tau_x) = char(\tau_y) =: p$ for all $x, y \in C$.

Notation

- 1. $\mathcal{I}|_{C}$ is the restriction of \mathcal{I} to potatoes from C.
- 2. $(\mathfrak{I}|_{\mathcal{C}})/\tau$ is the (2,3)-system with potatoes \mathbf{P}_{x}/τ_{x} ($x \in \mathcal{C}$) and constraints $\overline{\mathbf{R}}_{x,y} := \{(a/\tau_{x}, b/\tau_{y}) : (a, b) \in R_{x,y}\}.$

(Thus if $\overline{s} \in \operatorname{Sol}((\mathfrak{I}|_{\mathcal{C}})/\tau)$ then \overline{s} names a τ_x -block for each $x \in \mathcal{C}$.)

3. $\mathcal{I}[\overline{s}]$ is the restriction of $\mathcal{I}|_{C}$ to the τ_{x} -blocks named by \overline{s} .

 $\mathbb{J}[\overline{s}]$ = the restriction of $\mathbb{J}|_{\mathcal{C}}$ to the shaded regions given by \overline{s} .

Easy Fact

Each $\mathcal{I}[\overline{s}]$ can be encoded as a system of linear equations over \mathbb{F}_p .

Issues

On their own, such coordinatizations aren't particularly helpful.

- 1. $(\mathcal{I}|_{\mathcal{C}})/\tau$ may have exponentially many distinct solutions \overline{s} . In the worst case we must solve every linear system $\mathcal{I}[\overline{s}]$.
- 2. Focussing on C for which $|Sol((\mathcal{I}|_C)/\tau)|$ is small (e.g., "following strands") may fail to capture inconsistency.

In the remainder of this lecture I discuss one response to these issues which can be formulated in **difference term varieties**.

Similarity

(Freese 1982; also Freese & McKenzie 1987; cf. H. Neumann 1967)

Let \mathcal{V} be a CM variety.

There is an equivalence relation \sim between SI members of $\mathcal{V}.$

Let **A**, **B** be SIs with <u>abelian</u> monoliths μ, ν . Let $\operatorname{ann}(\mu) = (0_A : \mu)$ and $\operatorname{ann}(\nu) = (0_B : \nu)$.

Rough Definition

 $\mathbf{A} \sim \mathbf{B}$ means $\exists h : \mathbf{A}/\mathrm{ann}(\mu) \cong \mathbf{B}/\mathrm{ann}(\nu)$ such that

 The "module actions" of A/ann(μ) on μ-blocks, and of B/ann(ν) on ν-blocks, are compatible with h.

Generalizing similarity

We can generalize \sim :

- From SIs to pairs (\mathbf{A}, α) where $\alpha \in \operatorname{At}(\mathbf{A})$.
- From CM varieties to Difference Term (DT) varieties

Moreover, the generalization plays nicely with (2,3)-systems.

Congruence Completeness

Let
$$\mathfrak{I} = (V, \ldots)$$
 be a (2,3)-system.

Definition If $x, y \in V$ and $\theta \in Con(\mathbf{P}_x)$, write $\mathbf{P}_y \equiv (\mathbf{P}_x \mod \theta)$ (also $h : \mathbf{P}_y \equiv (\mathbf{P}_x \mod \theta)$)

to mean $R_{x,y} = \operatorname{graph}(h)$ where $h : \mathbf{P}_x \twoheadrightarrow \mathbf{P}_y$ and $\ker(h) = \theta$.

Definition

 \mathfrak{I} is congruence complete if for all $x \in V$ and $\theta \in \operatorname{Con}(\mathbf{P}_x)$ there exists $y \in V$ such that $\mathbf{P}_y \equiv (\mathbf{P}_x \mod \theta)$.

Remark. We can always assume that \mathcal{I} is congruence complete.

Difference term varieties

Definition

 \mathcal{V} is a **difference term** (DT) variety if it has a term d(x, y, z) such that

- $d(x, x, y) \approx y$
- ► d(a, b, b) = a whenever (a, b) belongs to an abelian congruence of a member of 𝒱.

Recall

- 1. There is an idempotent linear Maltsev characterization.
- 2. $CM \Rightarrow DT \Rightarrow Taylor.$

Fix $\mathcal{I} = (V, ...)$, cong. comp. (2,3)-system over **A** in a DT variety.

Definition

- 1. At(\mathfrak{I}) := {(x, α) : $x \in V$, $\alpha \in At(\mathbf{P}_x)$ }.
- 2. Given $(x, \alpha), (y, \beta) \in \operatorname{At}(\mathcal{I})$, we write $(x, \alpha) \to (y, \beta)$ iff

 $h : \mathbf{P}_y \equiv (\mathbf{P}_x \mod \delta) \text{ and } (\mathbf{0}_A, \alpha) \nearrow (\delta, \overline{\beta}) \text{ where } \overline{\beta} = h^{-1}(\beta).$

3. Let \approx be the smallest equiv. relation on At(\mathcal{I}) containing \rightarrow . Call this **quasi-similarity**.

Components

 $\mathfrak{I} = (V, \ldots)$, a cong. comp. (2,3)-system over **A** in a DT variety.

Lemma $(x, \alpha) \approx (x, \beta)$ iff $\alpha \Rightarrow \beta$ in $At(\mathbf{P}_x)$.

Let C be a \approx -block and put $C_1 := \operatorname{proj}_1(C)$.

Corollary If $x \in C_1$, then $\{\alpha : (x, \alpha) \in C\}$ is a \Rightarrow -block in $At(\mathbf{P}_x)$.

Definition

For $x \in C_1$, let $\tau_x := \bigvee \{ \alpha : (x, \alpha) \in C \}$. $(\tau_x \in \text{Geom}(\mathbf{P}_x))$.

Call C_1 a **component** of \mathcal{I} , with corresponding τ_x ($x \in C_1$).

Summary: each \approx -block *C* gives a component *C*₁ and a family of geometric congruences τ_x .

Easy Fact $\operatorname{char}(\tau_x) = \operatorname{char}(\tau_y)$ for all $x, y \in C_1$.

Hence each $\mathbb{I}[\overline{s}]$ encodes a linear system, $\overline{s} \in \mathrm{Sol}((\mathbb{I}|_{C_1})/\tau)$.

Fix a component C_1 with $(\tau_x : x \in C_1)$. For $x \in C_1$ define $\gamma_x := \operatorname{ann}(\tau_x)$. (Blocks shown in red.)

Lemma $\overline{R}_{x,y}: \mathbf{P}_x/\gamma_x \cong \mathbf{P}_y/\gamma_y \quad \forall x, y \in C_1.$

Conjecture

Suppose $\overline{s}, \overline{s}'$ are solutions to $(\mathfrak{I}|_{C_1})/\tau$ belonging to the same γ -blocks. Then $\mathrm{Sol}(\mathfrak{I}[\overline{s}]) \neq \emptyset$ iff $\mathrm{Sol}(\mathfrak{I}[\overline{s}']) \neq \emptyset$.

Algorithm?

If the previous conjecture is true, then we can always reduce ${\mathbb J}$ to a (2,3)-subsystem which is congruence complete and satisfies:

• For every component C_1 and all $x, y \in C_1$,

$$\operatorname{proj}_{x,y}(\operatorname{Sol}(\mathcal{I}|_{C_1})) = R_{x,y}.$$

Definition

Say that $\ensuremath{\mathbb{I}}$ is full on components if it has this property.

Wild Conjecture (DT)

If \mathfrak{I} is congruence complete, full on components and nonempty, then $\mathrm{Sol}(\mathfrak{I})\neq \varnothing.$

I have a plan to prove this in the Maltsev case. The plan requires overcoming an obstacle.

Obstacle

Suppose \mathcal{I} is congruence complete (2,3)-system over a Maltsev template, is full on components, and nonempty. If:

- 1. $X \subseteq V$ and $u \in V$.
- 2. \mathbf{P}_u is subdirectly irreducible.
- 3. X "determines" u in the following sense: for all $s, t \in \text{Sol}(\mathcal{I}|_{X \cup \{u\}})$, if $s|_X = t|_X$ then s(u) = t(u).
- 4. X is "minimal" with respect to item (3) in the following sense: for each x ∈ X, if

 [x] = {y ∈ V : P_y ≡ (P_x mod θ) with θ ≠ 0} and
 X' = (X \ {x}) ∪ [x], then X' fails to determine u.

 5. |X| > 1.

Prove that $X \cup \{u\}$ is contained in some component.

OK, I'd better stop ...