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(2,3)-systems over a finite algebra

Let A be a finite algebra. A (2,3)-system over A is a triple

I = (V , (Px : x ∈ V ), (Rx ,y : x , y ∈ V ))

where

I V is a finite nonempty set.

I Each “potato” Px is a nonempty subuniverse of A.

I Each “edge relation” Rx ,y ≤sd Px × Py .

I Ry ,x = (Rx ,y )−1 and Rx ,x = 0Px .

I Rx ,z ⊆ Rx ,y ◦ Ry ,z for all x , y , z ∈ V .

Sol(I) = {all solutions to I}, where a solution is a function
s : V → A satisfying (s(x), s(y)) ∈ Rx ,y for all x , y ∈ V .



CSP(A, 2)

Fix a finite algebra A.

CSP(A,2)

Input: a (2,3)-system I over A.
Question: Is Sol(I) 6= ∅?

Holy Grail

Prove that CSP(A, 2) is in P whenever A belongs to a Taylor
variety.



Bulatov’s theorem and improvements

Theorem (Bulatov 2002)

If A is in a Maltsev variety, then CSP(A, 2) is in P.

Theorem (Bulatov, Dalmau 2006)

Same result, (much) simpler algorithm.

Improvements, generalizations:

I Dalmau 2006

I Idziak et al 2007

I Barto (submitted)

Theorem
A version of the Bulatov-Dalmau algorithm solves CSP(A, 2)
whenever A belongs to a congruence modular variety.



The Bulatov-Dalmau algorithm

Main idea:

I Find a generating set for the algebra of solutions of one
constraint Rx1,y1 , then of two constraints Rx1,y1 ,Rx2,y2 , . . .

Positive features:

I Correctly solves CSP(A, 2) in polynomial time.

I No algebra required.

Negative features:

I No hope of extending beyond the congruence modular setting.

I No algebra required.



Challenge

Challenge

Find a new algorithm solving CSP(A, 2) when A is in a Maltsev
variety . . .

I With the possibility of generalization beyond the CM case.

I Exploiting algebraic knowledge of Maltsev varieties.

Intuition

I Propagation, search for inconsistency

I Local consistency + Gaussian elimination should be enough.



Abelian atoms in finite Taylor algebras

Let A be a finite algebra in a Taylor variety.

Definition

1. At(A) := {α ∈ Con(A) : 0A ≺ α, α is abelian}.
2. For α, β ∈ At(A), define α m β iff α = β or α, β are two of

the three middle elements in an M3 in Con(A).

0A

α = β or

0A

α β θ

α ∨ β



Geometrical congruences
Let A be a finite algebra in a Taylor variety.

Lemma
m is an equivalence relation on At(A).

Definition
τ ∈ Con(A) is geometrical if there exists Φ ⊆ At(A) such that
Φ ⊆ a single m-class, and τ =

∨
Φ.

E.g.,

0A

α β θ

τ

Geom(A) := {τ ∈ Con(A) : τ is geometrical}.



Coordinatization

Lemma
Suppose A is a finite algebra in a Taylor variety. TFAE:

1. τ is geometrical.

2. The interval I [0A, τ ] is isomorphic to the lattice of subspaces
of a fin. dim. vector space V over some finite field Fq.

When (2) holds, each τ -block can be “coordinatized” as a matrix
power of V .

Corollary

For each τ ∈ Geom(A) \ {0A} there exists a unique prime p such
that |a/τ | = pna for all a ∈ A.

Definition
char(τ) = this prime p.



Application to (2,3)-systems

Suppose that, in a (2,3)-system I = (V , . . .) over A, we have

I A collection {Px : x ∈ C} of potatoes (C ⊆ V ).

I For each x ∈ C , τx ∈ Geom(Px)

with char(τx) = char(τy ) =: p for all x , y ∈ C .

Notation

1. I|C is the restriction of I to potatoes from C .

2. (I|C )/τ is the (2,3)-system with potatoes Px/τx (x ∈ C ) and
constraints Rx ,y := {(a/τx , b/τy ) : (a, b) ∈ Rx ,y}.

(Thus if s ∈ Sol((I|C )/τ) then s names a τx -block for each x ∈ C .)

3. I[s] is the restriction of I|C to the τx -blocks named by s.



Px

Py Pz

Pw

τx

τy

τw

τz

C = {x , y , z ,w}

s(x)

s(y)

s(z)

s(w)

I[s] = the restriction of I|C to the shaded regions given by s.

Easy Fact

Each I[s] can be encoded as a system of linear equations over Fp.



Issues

On their own, such coordinatizations aren’t particularly helpful.

1. (I|C )/τ may have exponentially many distinct solutions s.

In the worst case we must solve every linear system I[s].

2. Focussing on C for which |Sol((I|C )/τ)| is small (e.g.,
“following strands”) may fail to capture inconsistency.

In the remainder of this lecture I discuss one response to these
issues which can be formulated in difference term varieties.



Similarity
(Freese 1982; also Freese & McKenzie 1987; cf. H. Neumann 1967)

Let V be a CM variety.

There is an equivalence relation ∼ between SI members of V.

Let A,B be SIs with abelian monoliths µ, ν. Let ann(µ) = (0A : µ)
and ann(ν) = (0B : ν).

0A
0B

1A 1B

µ
ν

ann(µ) ann(ν)Con(A)= Con(B)=

Rough Definition

A ∼ B means ∃h : A/ann(µ) ∼= B/ann(ν) such that

I The “module actions” of A/ann(µ) on µ-blocks, and of
B/ann(ν) on ν-blocks, are compatible with h.



Generalizing similarity

We can generalize ∼ :

I From SIs to pairs (A, α) where α ∈ At(A).

I From CM varieties to Difference Term (DT) varieties

Moreover, the generalization plays nicely with (2,3)-systems.



Congruence Completeness

Let I = (V , . . .) be a (2,3)-system.

Definition
If x , y ∈ V and θ ∈ Con(Px), write

Py ≡ (Px mod θ) (also h : Py ≡ (Px mod θ) )

to mean Rx ,y = graph(h) where h : Px � Py and ker(h) = θ.

Definition
I is congruence complete if for all x ∈ V and θ ∈ Con(Px) there
exists y ∈ V such that Py ≡ (Px mod θ).

Remark. We can always assume that I is congruence complete.



Difference term varieties

Definition
V is a difference term (DT) variety if it has a term d(x , y , z)
such that

I d(x , x , y) ≈ y

I d(a, b, b) = a whenever (a, b) belongs to an abelian
congruence of a member of V.

Recall

1. There is an idempotent linear Maltsev characterization.

2. CM ⇒ DT ⇒ Taylor.



Fix I = (V , . . .), cong. comp. (2,3)-system over A in a DT variety.

Definition

1. At(I) := {(x , α) : x ∈ V , α ∈ At(Px)}.

2. Given (x , α), (y , β) ∈ At(I), we write (x , α)→ (y , β) iff

h : Py ≡ (Px mod δ) and (0A, α)↗ (δ, β) where β = h−1(β).

Px
Rx,y−→ Py and

α

β

δ

β

Con(Px)

Con(Py )

3. Let ≈ be the smallest equiv. relation on At(I) containing →.
Call this quasi-similarity.



Components

I = (V , . . .), a cong. comp. (2,3)-system over A in a DT variety.

Lemma
(x , α) ≈ (x , β) iff α m β in At(Px).

Let C be a ≈-block and put C1 := proj1(C ).

Corollary

If x ∈ C1, then {α : (x , α) ∈ C} is a m-block in At(Px).

Definition
For x ∈ C1, let τx :=

∨
{α : (x , α) ∈ C}. (τx ∈ Geom(Px).)

Call C1 a component of I, with corresponding τx (x ∈ C1).



Summary: each ≈-block C gives a component C1 and a family of
geometric congruences τx .

Px Py Pz

τx–blocks τy–blocks τz–blocks

C1

Easy Fact

char(τx) = char(τy ) for all x , y ∈ C1.

Hence each I[s] encodes a linear system, s ∈ Sol((I|C1)/τ).



γx γy γz

Px Py Pz

τx–blocks τy–blocks τz–blocks

C1

Fix a component C1 with (τx : x ∈ C1).

For x ∈ C1 define γx := ann(τx). (Blocks shown in red.)

Lemma
Rx ,y : Px/γx ∼= Py/γy ∀x , y ∈ C1.

Conjecture

Suppose s, s ′ are solutions to (I|C1)/τ belonging to the same

γ-blocks. Then Sol(I[s]) 6= ∅ iff Sol(I[s ′]) 6= ∅.



Algorithm?

If the previous conjecture is true, then we can always reduce I to a
(2,3)-subsystem which is congruence complete and satisfies:

I For every component C1 and all x , y ∈ C1,

projx ,y (Sol(I|C1)) = Rx ,y .

Definition
Say that I is full on components if it has this property.

Wild Conjecture (DT)

If I is congruence complete, full on components and nonempty,
then Sol(I) 6= ∅.

I have a plan to prove this in the Maltsev case. The plan requires
overcoming an obstacle.



Obstacle
Suppose I is congruence complete (2,3)-system over a Maltsev
template, is full on components, and nonempty. If:

1. X ⊆ V and u ∈ V .

2. Pu is subdirectly irreducible.

3. X “determines” u in the following sense: for all
s, t ∈ Sol(I|X∪{u}), if s|X = t|X then s(u) = t(u).

4. X is “minimal” with respect to item (3) in the following
sense: for each x ∈ X , if
[x ] = {y ∈ V : Py ≡ (Px mod θ) with θ 6= 0} and
X ′ = (X \ {x}) ∪ [x ], then X ′ fails to determine u.

5. |X | > 1.

Prove that X ∪ {u} is contained in some component.

OK, I’d better stop . . .


