Maltsev constraints

Ross Willard
University of Waterloo, CAN

Open Problems in Universal Algebra
Vanderbilt University
May 28, 2015

$(2,3)$-systems over a finite algebra

Let \mathbf{A} be a finite algebra. A $(2,3)$-system over \mathbf{A} is a triple

$$
\mathcal{J}=\left(V,\left(P_{x}: x \in V\right),\left(R_{x, y}: x, y \in V\right)\right)
$$

where

- V is a finite nonempty set.
- Each "potato" P_{x} is a nonempty subuniverse of \mathbf{A}.
- Each "edge relation" $R_{x, y} \leq_{s d} \mathbf{P}_{x} \times \mathbf{P}_{y}$.
- $R_{y, x}=\left(R_{x, y}\right)^{-1}$ and $R_{x, x}=0_{P_{x}}$.
- $R_{x, z} \subseteq R_{x, y} \circ R_{y, z}$ for all $x, y, z \in V$.
$\operatorname{Sol}(\mathcal{J})=\{$ all solutions to $\mathcal{J}\}$, where a solution is a function $s: V \rightarrow A$ satisfying $(s(x), s(y)) \in R_{x, y}$ for all $x, y \in V$.

$\operatorname{CSP}(\mathbf{A}, 2)$

Fix a finite algebra \mathbf{A}.
$\operatorname{CSP}(A, 2)$
Input: a (2,3)-system J over \mathbf{A}.
Question: Is $\operatorname{Sol}(\mathcal{J}) \neq \varnothing$?

Holy Grail
Prove that $\operatorname{CSP}(\mathbf{A}, 2)$ is in P whenever \mathbf{A} belongs to a Taylor variety.

Bulatov's theorem and improvements

Theorem (Bulatov 2002)
If \mathbf{A} is in a Maltsev variety, then $\operatorname{CSP}(\mathbf{A}, 2)$ is in P.

Theorem (Bulatov, Dalmau 2006)
Same result, (much) simpler algorithm.

Improvements, generalizations:

- Dalmau 2006
- Idziak et al 2007
- Barto (submitted)

Theorem
A version of the Bulatov-Dalmau algorithm solves $\operatorname{CSP}(\mathbf{A}, 2)$ whenever A belongs to a congruence modular variety.

The Bulatov-Dalmau algorithm

Main idea:

- Find a generating set for the algebra of solutions of one constraint $R_{x_{1}, y_{1}}$, then of two constraints $R_{x_{1}, y_{1}}, R_{x_{2}, y_{2}}, \ldots$

Positive features:

- Correctly solves $\operatorname{CSP}(\mathbf{A}, 2)$ in polynomial time.
- No algebra required.

Negative features:

- No hope of extending beyond the congruence modular setting.
- No algebra required.

Challenge

Challenge

Find a new algorithm solving $\operatorname{CSP}(\mathbf{A}, 2)$ when \mathbf{A} is in a Maltsev variety...

- With the possibility of generalization beyond the CM case.
- Exploiting algebraic knowledge of Maltsev varieties.

Intuition

- Propagation, search for inconsistency
- Local consistency + Gaussian elimination should be enough.

Abelian atoms in finite Taylor algebras

Let \mathbf{A} be a finite algebra in a Taylor variety.

Definition

1. $\operatorname{At}(\mathbf{A}):=\left\{\alpha \in \operatorname{Con}(\mathbf{A}): 0_{A} \prec \alpha, \alpha\right.$ is abelian $\}$.
2. For $\alpha, \beta \in \operatorname{At}(\mathbf{A})$, define $\alpha \approx \beta$ iff $\alpha=\beta$ or α, β are two of the three middle elements in an M_{3} in $\operatorname{Con}(\mathbf{A})$.

Geometrical congruences

Let \mathbf{A} be a finite algebra in a Taylor variety.

Lemma
\approx is an equivalence relation on $\operatorname{At}(\mathbf{A})$.

Definition
$\tau \in \operatorname{Con}(\mathbf{A})$ is geometrical if there exists $\Phi \subseteq \operatorname{At}(\mathbf{A})$ such that $\Phi \subseteq$ a single \approx-class, and $\tau=\bigvee \Phi$.

$\operatorname{Geom}(\mathbf{A}):=\{\tau \in \operatorname{Con}(\mathbf{A}): \tau$ is geometrical $\}$.

Coordinatization

Lemma

Suppose A is a finite algebra in a Taylor variety. TFAE:

1. τ is geometrical.
2. The interval $I\left[0_{A}, \tau\right]$ is isomorphic to the lattice of subspaces of a fin. dim. vector space V over some finite field \mathbb{F}_{q}.
When (2) holds, each τ-block can be "coordinatized" as a matrix power of V.

Corollary

For each $\tau \in \operatorname{Geom}(\mathbf{A}) \backslash\left\{0_{A}\right\}$ there exists a unique prime p such that $|a / \tau|=p^{n_{a}}$ for all $a \in A$.

Definition
$\operatorname{char}(\tau)=$ this prime p.

Application to $(2,3)$-systems

Suppose that, in a $(2,3)$-system $\mathcal{J}=(V, \ldots)$ over \mathbf{A}, we have

- A collection $\left\{\mathbf{P}_{x}: x \in C\right\}$ of potatoes $(C \subseteq V)$.
- For each $x \in C, \tau_{x} \in \operatorname{Geom}\left(\mathbf{P}_{x}\right)$
with $\operatorname{char}\left(\tau_{x}\right)=\operatorname{char}\left(\tau_{y}\right)=: p$ for all $x, y \in C$.

Notation

1. \mathcal{J}_{C} is the restriction of \mathcal{J} to potatoes from C.
2. $\left(\left.\mathcal{J}\right|_{C}\right) / \tau$ is the $(2,3)$-system with potatoes $\mathbf{P}_{x} / \tau_{x}(x \in C)$ and constraints $\overline{\mathbf{R}}_{x, y}:=\left\{\left(a / \tau_{x}, b / \tau_{y}\right):(a, b) \in R_{x, y}\right\}$.
(Thus if $\bar{s} \in \operatorname{Sol}((\mathcal{J} \mid C) / \tau)$ then \bar{s} names a τ_{x}-block for each $x \in C$.)
3. $\mathcal{J}[\bar{s}]$ is the restriction of $\left.\mathcal{J}\right|_{C}$ to the τ_{x}-blocks named by \bar{s}.

$$
C=\{x, y, z, w\}
$$

$\mathcal{J}[\bar{s}]=$ the restriction of $\left.\mathcal{J}\right|_{C}$ to the shaded regions given by \bar{s}.
Easy Fact
Each $\mathcal{J}[\bar{s}]$ can be encoded as a system of linear equations over \mathbb{F}_{p}.

Issues

On their own, such coordinatizations aren't particularly helpful.

1. $\left(\left.\mathcal{J}\right|_{C}\right) / \tau$ may have exponentially many distinct solutions \bar{s}. In the worst case we must solve every linear system $\mathfrak{J}[\bar{s}]$.
2. Focussing on C for which $\left|\operatorname{Sol}\left(\left(\left.\mathcal{J}\right|_{C}\right) / \tau\right)\right|$ is small (e.g., "following strands") may fail to capture inconsistency.

In the remainder of this lecture I discuss one response to these issues which can be formulated in difference term varieties.

Similarity

(Freese 1982; also Freese \& McKenzie 1987; cf. H. Neumann 1967) Let \mathcal{V} be a CM variety.

There is an equivalence relation \sim between SI members of \mathcal{V}.
Let \mathbf{A}, \mathbf{B} be Sls with abelian monoliths μ, ν. Let $\operatorname{ann}(\mu)=\left(0_{A}: \mu\right)$ and $\operatorname{ann}(\nu)=\left(0_{B}: \nu\right)$.

Rough Definition

$\mathbf{A} \sim \mathbf{B}$ means $\exists h: \mathbf{A} / \operatorname{ann}(\mu) \cong \mathbf{B} / \operatorname{ann}(\nu)$ such that

- The "module actions" of $\mathbf{A} / \operatorname{ann}(\mu)$ on μ-blocks, and of B $/ \operatorname{ann}(\nu)$ on ν-blocks, are compatible with h.

Generalizing similarity

We can generalize \sim :

- From Sls to pairs (A, α) where $\alpha \in \operatorname{At}(\mathbf{A})$.
- From CM varieties to Difference Term (DT) varieties

Moreover, the generalization plays nicely with (2,3)-systems.

Congruence Completeness

Let $\mathcal{J}=(V, \ldots)$ be a $(2,3)$-system.

Definition
If $x, y \in V$ and $\theta \in \operatorname{Con}\left(\mathbf{P}_{x}\right)$, write

$$
\mathbf{P}_{y} \equiv\left(\mathbf{P}_{x} \bmod \theta\right) \quad\left(\text { also } \quad h: \mathbf{P}_{y} \equiv\left(\mathbf{P}_{x} \bmod \theta\right)\right)
$$

to mean $R_{x, y}=\operatorname{graph}(h)$ where $h: \mathbf{P}_{x} \rightarrow \mathbf{P}_{y}$ and $\operatorname{ker}(h)=\theta$.

Definition
\mathcal{J} is congruence complete if for all $x \in V$ and $\theta \in \operatorname{Con}\left(\mathbf{P}_{x}\right)$ there exists $y \in V$ such that $\mathbf{P}_{y} \equiv\left(\mathbf{P}_{x} \bmod \theta\right)$.

Remark. We can always assume that \mathcal{J} is congruence complete.

Difference term varieties

Definition

\mathcal{V} is a difference term (DT) variety if it has a term $d(x, y, z)$
such that

- $d(x, x, y) \approx y$
- $d(a, b, b)=a$ whenever (a, b) belongs to an abelian congruence of a member of \mathcal{V}.

Recall

1. There is an idempotent linear Maltsev characterization.
2. $\mathrm{CM} \Rightarrow \mathrm{DT} \Rightarrow$ Taylor.

Fix $\mathcal{J}=(V, \ldots)$, cong. comp. $(2,3)$-system over \mathbf{A} in a DT variety.

Definition

1. $\operatorname{At}(\mathcal{J}):=\left\{(x, \alpha): x \in V, \alpha \in \operatorname{At}\left(\mathbf{P}_{x}\right)\right\}$.
2. Given $(x, \alpha),(y, \beta) \in \operatorname{At}(\mathcal{J})$, we write $(x, \alpha) \rightarrow(y, \beta)$ iff $h: \mathbf{P}_{y} \equiv\left(\mathbf{P}_{x} \bmod \delta\right)$ and $\left(0_{A}, \alpha\right) \nearrow(\delta, \bar{\beta})$ where $\bar{\beta}=h^{-1}(\beta)$.
$\mathbf{P}_{x} \xrightarrow{R_{x, y}} \mathbf{P}_{y} \quad$ and

3. Let \approx be the smallest equiv. relation on $\operatorname{At}(\mathcal{J})$ containing \rightarrow. Call this quasi-similarity.

Components

$\mathcal{J}=(V, \ldots)$, a cong. comp. $(2,3)$-system over \mathbf{A} in a DT variety.
Lemma
$(x, \alpha) \approx(x, \beta)$ iff $\alpha \approx \beta$ in $\operatorname{At}\left(\mathbf{P}_{x}\right)$.

Let C be a \approx-block and put $C_{1}:=\operatorname{proj}_{1}(C)$.
Corollary
If $x \in C_{1}$, then $\{\alpha:(x, \alpha) \in C\}$ is a \approx-block in $\operatorname{At}\left(\mathbf{P}_{x}\right)$.

Definition
For $x \in C_{1}$, let $\tau_{x}:=\bigvee\{\alpha:(x, \alpha) \in C\} . \quad\left(\tau_{x} \in \operatorname{Geom}\left(\mathbf{P}_{x}\right).\right)$

Call C_{1} a component of \mathcal{J}, with corresponding $\tau_{x}\left(x \in C_{1}\right)$.

Summary: each \approx-block C gives a component C_{1} and a family of geometric congruences τ_{x}.

Easy Fact $\operatorname{char}\left(\tau_{x}\right)=\operatorname{char}\left(\tau_{y}\right)$ for all $x, y \in C_{1}$.

Hence each $\mathcal{J}[\bar{s}]$ encodes a linear system, $\bar{s} \in \operatorname{Sol}\left(\left(\mathcal{J} \mid C_{1}\right) / \tau\right)$.

Fix a component C_{1} with $\left(\tau_{x}: x \in C_{1}\right)$.
For $x \in C_{1}$ define $\gamma_{x}:=\operatorname{ann}\left(\tau_{x}\right)$. (Blocks shown in red.)
Lemma
$\bar{R}_{x, y}: \mathbf{P}_{x} / \gamma_{x} \cong \mathbf{P}_{y} / \gamma_{y} \quad \forall x, y \in C_{1}$.

Conjecture
Suppose $\bar{s}, \bar{s}^{\prime}$ are solutions to $\left(\left.\mathcal{J}\right|_{C_{1}}\right) / \tau$ belonging to the same

Algorithm?

If the previous conjecture is true, then we can always reduce \mathcal{J} to a $(2,3)$-subsystem which is congruence complete and satisfies:

- For every component C_{1} and all $x, y \in C_{1}$,

$$
\operatorname{proj}_{x, y}\left(\operatorname{Sol}\left(\left.\mathcal{J}\right|_{C_{1}}\right)\right)=R_{x, y} .
$$

Definition

Say that \mathcal{J} is full on components if it has this property.

Wild Conjecture (DT)

If \mathcal{J} is congruence complete, full on components and nonempty, then $\operatorname{Sol}(\mathcal{J}) \neq \varnothing$.

I have a plan to prove this in the Maltsev case. The plan requires overcoming an obstacle.

Obstacle

Suppose \mathcal{J} is congruence complete (2,3)-system over a Maltsev template, is full on components, and nonempty. If:

1. $X \subseteq V$ and $u \in V$.
2. \mathbf{P}_{u} is subdirectly irreducible.
3. X "determines" u in the following sense: for all
$s, t \in \operatorname{Sol}\left(\left.\mathcal{J}\right|_{X \cup\{u\}}\right)$, if $\left.s\right|_{X}=\left.t\right|_{X}$ then $s(u)=t(u)$.
4. X is "minimal" with respect to item (3) in the following sense: for each $x \in X$, if
$[x]=\left\{y \in V: \mathbf{P}_{y} \equiv\left(\mathbf{P}_{x} \bmod \theta\right)\right.$ with $\left.\theta \neq 0\right\}$ and $X^{\prime}=(X \backslash\{x\}) \cup[x]$, then X^{\prime} fails to determine u.
5. $|X|>1$.

Prove that $X \cup\{u\}$ is contained in some component.

OK, I'd better stop ...

