▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

Cube-Absorption: Some Properties, Many Questions

Alexander Wires

University of Waterloo Department of Pure Math

May 2015 Vanderbilt University, Nashville

motivations

- Barto,Kozik "Robust Satisfiability of Constraint Satisfaction Problems"
- Barto "Dichotomy for Conservative Constraint Satisfaction Problems Revisited"
- A has cube term(edge term) iff no cube term blocker $C < D \le A$

Taylor cube terms

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

motivations

- Barto,Kozik "Robust Satisfiability of Constraint Satisfaction Problems"
- Barto "Dichotomy for Conservative Constraint Satisfaction Problems Revisited"
- A has cube term(edge term) iff no cube term blocker $C < D \leq A$

SD(∧) near-unanimity absorption pointing terms pointed elements

Taylor

cube terms cube absorption cubing terms cubed elements

motivations

- Barto,Kozik "Robust Satisfiability of Constraint Satisfaction Problems"
- Barto "Dichotomy for Conservative Constraint Satisfaction Problems Revisited"
- A has cube term(edge term) iff no cube term blocker $C < D \leq A$

$SD(\wedge)$	Taylor		
near-unanimity	cube terms		
absorption	cube absorptior		
pointing terms	cubing terms		
pointed elements	cubed elements		

• (*C*,*D*) cube term blocker: σ : terms ightarrow \mathbb{N} ,

 $f(d_1,...,d_n) \in C$ when $d_{\sigma(f)} \in C, \{d_1,...,d_n\} \subseteq D$

• $\langle \{0,1\}, \wedge \rangle$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ の

Better behaved Taylor algebras?

Cyclic terms make semilattices from cube term blockers (C, D):

- $\langle A, c \rangle$, $c(x_1, ..., x_n) \approx c(x_2, ..., x_n, x_1)$
- $\theta_C = (C \times C) \cup \Delta_D \in \operatorname{Con} D, \ d \in D \setminus C$
- $\operatorname{Clo}(C \cup \{d\})/\theta_C \approx \operatorname{Clo}(\{0,1\}, \wedge)$
- $\operatorname{cyc} A$ is generated by the cyclic terms of A

Better behaved Taylor algebras?

Cyclic terms make semilattices from cube term blockers (C, D):

- $\langle A, c \rangle$, $c(x_1, ..., x_n) \approx c(x_2, ..., x_n, x_1)$
- $\theta_C = (C \times C) \cup \Delta_D \in \text{Con } D, \ d \in D \setminus C$
- $\operatorname{Clo}(C \cup \{d\})/\theta_C \approx \operatorname{Clo}(\{0,1\}, \wedge)$
- cycA is generated by the cyclic terms of A

Theorem

Let A be a finite idempotent Taylor algebra. Then

- Q cycA has an edge term iff V(cycA) has Hobby-McKenzie terms (V(cycA) omits types {1,5});
- **2** cycA has an near-unanimity term iff $\mathcal{V}(cycA)$ is congruence join-semidistributive ($\mathcal{V}(cycA)$ omits types {1,2,5}).

Better behaved Taylor algebras?

Cyclic terms make semilattices from cube term blockers (C, D):

- $\langle A, c \rangle$, $c(x_1, ..., x_n) \approx c(x_2, ..., x_n, x_1)$
- $\theta_C = (C \times C) \cup \Delta_D \in \text{Con } D, \ d \in D \setminus C$
- $\operatorname{Clo}(C \cup \{d\})/\theta_C \approx \operatorname{Clo}(\{0,1\}, \wedge)$
- cyc A is generated by the cyclic terms of A

Theorem

Let A be a finite idempotent Taylor algebra. Then

- Q cycA has an edge term iff V(cycA) has Hobby-McKenzie terms (V(cycA) omits types {1,5});
- **2** cycA has an near-unanimity term iff $\mathcal{V}(cycA)$ is congruence join-semidistributive ($\mathcal{V}(cycA)$ omits types {1,2,5}).

Problem

- Understand cyc A when type $\{5\} \subseteq \mathcal{V}(cyc A) \subseteq \{3,4,5\}.$
- Understand cycA when $\mathcal{V}(cycA)$ admits types $\{2,5\}$.
- When is cyc A finitely related; in particular, if A is finitely related, when is cyc A finitely related?

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二直 - のへで

Better behaved Taylor algebras?

$A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	•	0	1	а	b
	0	0	1	b	1
	1	1	0	1	1
	а	b	1	а	а
	b	1	1	а	b

- $\bullet~\{0,1\}$ abelian
- $\{a, b\}$ semilattice
- A simple, type A = 3
- $\{0,1\} \triangleleft_{(xy)(zw)} A$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

Better behaved Taylor algebras?

$A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	•	0	1	а	b
	0	0	1	b	1
	1	1	0	1	1
	а	b	1	а	а
	b	1	1	а	b

- $\bullet~\{0,1\}$ abelian
- $\{a, b\}$ semilattice
- A simple, type A = 3
- $\{0,1\} \triangleleft_{(xy)(zw)} A$
- How much better is cyc A from A?

Better behaved Taylor algebras?

$A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	•	0	1	а	b
	0	0	1	b	1
	1	1	0	1	1
	а	b	1	а	а
	b	1	1	а	b

- $\{0,1\}$ abelian
- $\{a, b\}$ semilattice
- A simple, type A = 3
- $\{0,1\} \triangleleft_{(xy)(zw)} A$
- How much better is cyc A from A?

Theorem

Let A be a finite idempotent Taylor algebra. Then either

- A has proper absorption, or
- type $(\alpha, 1_A) \subseteq \{2, 3\}$ for any maximal $\alpha \in \text{Con } A$.

Def I

Definition

Let $B \leq A$. We say B is *cube-absorbing* subset of A, and write $B \prec A$, if there exists a term $m(x_1,...,x_n)$ and tuples $u_1,...,u_k : \{x_1,...,x_n\} \rightarrow \{x,y\}$ such that for every $i \leq n$ there exists $j \leq k$ such that $u_j(x_i) = y$ and $m(u_i)[B,a] \subseteq B$ for each $a \in A$ and $i \leq k$. The maps u_i are absorption identities for $m(x_1,...,x_n)$.

Def I

Definition

Let $B \leq A$. We say B is *cube-absorbing* subset of A, and write $B \prec A$, if there exists a term $m(x_1,...,x_n)$ and tuples $u_1,...,u_k : \{x_1,...,x_n\} \rightarrow \{x,y\}$ such that for every $i \leq n$ there exists $j \leq k$ such that $u_j(x_i) = y$ and $m(u_i)[B,a] \subseteq B$ for each $a \in A$ and $i \leq k$. The maps u_i are absorption identities for $m(x_1,...,x_n)$.

Example

Consider $B \prec_m A$ for $m(x_1, x_2, x_3, x_4, x_5)$ with absorption identities $u_1 = (xyyxy), u_2 = (xyxyx), u_3 = (yyyxx)$. Then $\forall a \in A$, the absorption inclusions $m(u_i)[B, a] \subseteq B$ are

$$\begin{array}{rcl} m(B,a,a,B,a) &\subseteq & B \\ m(B,a,B,a,B) &\subseteq & B \\ m(a,a,a,B,B) &\subseteq & B. \end{array}$$

Def I

Definition

Let $B \subseteq A$. We say B is *cube-absorbing* subset of A, and write $B \prec A$, if there exists a term $m(x_1,...,x_n)$ and tuples $u_1,...,u_k : \{x_1,...,x_n\} \rightarrow \{x,y\}$ such that for every $i \leq n$ there exists $j \leq k$ such that $u_j(x_i) = y$ and $m(u_i)[B,a] \subseteq B$ for each $a \in A$ and $i \leq k$. The maps u_i are *absorption identities* for $m(x_1,...,x_n)$.

Example

- $B \triangleleft A$
- A has edge term iff every $a \prec A$ (finite idempotent)
- (C,D) cube-term blocker: $C \triangleleft_{cyclic} D$

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

Existence and Hereditary Characterization non-examples

Lemma

Let A be a finite idempotent algebra. If $\mathcal{V}(A)$ is a Taylor variety, then there exists a cube-absorbing pair $C \prec B \leq A$.

Existence and Hereditary Characterization non-examples

Lemma

Let A be a finite idempotent algebra. If $\mathcal{V}(A)$ is a Taylor variety, then there exists a cube-absorbing pair $C \prec B \leq A$.

- Hereditary existence of cube-absorbing pairs (∀B ≤ A, ∃C ≺ D ≤ B) does not imply V(A) Taylor: On {1,2,3} define c(xyz), p(xyz), q(xyz) by
 - Set 2 = c(233) = c(332), 3 = c(322) = c(223) and let c(xyz) be first projection otherwise
 - Set 3 = f(122) = f(133), 2 = g(122) = g(133) and let f(xyz), g(xyz) be second projection otherwise.
- Hereditary existence of cube absorption (∀B ≤ A, ∃C ≺ B) implies
 𝒱(A) is Taylor
 - Converse: groupoid for directed 3-cycle

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

Hereditary Singleton Cube Absorption

• $\forall B \leq A, \exists a \in B, b \prec B$

Using the characterization of Mal'cev condition by Walter Taylor answering Grätzer:

Hereditary Singleton Cube Absorption

• $\forall B \leq A, \exists a \in B, b \prec B$

Using the characterization of Mal'cev condition by Walter Taylor answering Grätzer:

Theorem

- The class K of varieties in which every algebra has singleton cube-absorption is a Mal'cev condition.
- The class K of varieties of algebras in which every singleton subalgebra is cube-absorbing is a Mal'cev condition.
- The class X of varieties in which every finite algebra has singleton cube-absorption is a weak-Mal'cev condition.

Hereditary Singleton Cube Absorption

• $\forall B \leq A, \exists a \in B, b \prec B$

Using the characterization of Mal'cev condition by Walter Taylor answering Grätzer:

Theorem

- The class K of varieties in which every algebra has singleton cube-absorption is a Mal'cev condition.
- The class K of varieties of algebras in which every singleton subalgebra is cube-absorbing is a Mal'cev condition.
- The class X of varieties in which every finite algebra has singleton cube-absorption is a weak-Mal'cev condition.
- Is (3) actually a Mal'cev condition? Restricted to locally finite varieties?
- Find a "nice" explicit description of the Mal'cev conditions.

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

Hereditary Singleton Cube Absorption

$\forall B \leq A, \exists a \in B, \ b \prec B$

- $F_n = F_{\mathcal{V}(A)}(n)$ is too
- Find terms r(x, y) and $e(\bar{x})$ such that

Hereditary Singleton Cube Absorption

$\forall B \leq A, \exists a \in B, b \prec B$

- $F_n = F_{\mathcal{V}(A)}(n)$ is too
- Find terms r(x, y) and $e(\bar{x})$ such that
 - $r(x,y) \prec_{e(\bar{x})} F_2$ is edge-absorbing.
 - whenever $a \prec B \in \mathcal{V}$, a = r(a, y), $\forall y \in B$
 - for all $f(x,y) \in F_2$,

 $r(r(y,x), f(x,y)) \approx r(y,x)$ and $r(x,y) \approx r(r(x,y), f(x,y))$

• $\{b: x \mapsto r(x, b) \text{ surjective }\} = A \text{ iff } A \text{ has edge term}$

Hereditary Singleton Cube Absorption

A =	•	0	1	а	b
	0	0	1	b	1
	1	1	0	1	1
	а	b	1	а	а
	b	1	1	а	b

Non-trivial subalgebras:

- $\{a, b\}$ 2-element semilattice with bottom a
- $\{1, b\}$ 2-element semilattice with bottom 1
- $\{1, a\}$ 2-element semilattice with bottom 1
- $\{0,1\}$ 2-element abelian group
- $\{0,1,b\}$ with $\{0,1\}$ abelian absorbing
- $\{0,1\} \triangleleft_r A$ where r(xyzw) = (xy)(zw)• $\{0\}, \{1\} \prec_m A_4$ where m = t * r with t(x, y, z) := (xy)z

◆□> ◆□> ◆三> ◆三> ・三> のへで

Def II

We say *B* is *k*-edge absorbing if it is cube-absorbing with term $m(x_1,...,x_k)$ and absorption identities

$$u_{1} = (y, y, x, x, x, ..., x)$$
$$u_{2} = (y, x, y, x, x, ..., x)$$
$$u_{3} = (x, x, x, y, x, ..., x)$$
$$\vdots$$
$$u_{k-1} = (x, x, x, x, ..., x, y)$$

Def II

We say *B* is *k*-edge absorbing if it is cube-absorbing with term $m(x_1,...,x_k)$ and absorption identities

$$u_{1} = (y, y, x, x, x, ..., x)$$
$$u_{2} = (y, x, y, x, x, ..., x)$$
$$u_{3} = (x, x, x, y, x, ..., x)$$
$$\vdots$$
$$u_{k-1} = (x, x, x, x, ..., x, y)$$

Theorem

Let A be a finite idempotent Taylor algebra. Then there exists a single term $m(\bar{x})$ such that $B \prec_{m(\bar{x})} D$ is edge-absorbing whenever $B \prec D \leq A$ and either B is a singleton or (B,D) is a cube-term blocker.

Def II

We say *B* is *k*-edge absorbing if it is cube-absorbing with term $m(x_1,...,x_k)$ and absorption identities

$$u_{1} = (y, y, x, x, x, ..., x)$$
$$u_{2} = (y, x, y, x, x, ..., x)$$
$$u_{3} = (x, x, x, y, x, ..., x)$$
$$\vdots$$
$$u_{k-1} = (x, x, x, x, ..., x, y)$$

Theorem

Let A be a finite idempotent Taylor algebra. Then there exists a single term $m(\bar{x})$ such that $B \prec_{m(\bar{x})} D$ is edge-absorbing whenever $B \prec D \leq A$ and either B is a singleton or (B,D) is a cube-term blocker.

Problem

Let A be a finite idempotent algebra. Then B is a cube-absorbing subalgebra of A iff B is an edge-absorbing subalgebra of A?

weakly compact d-quasi-representations

 $B \prec A$ edge-absorbing

$$p(Baa) \subseteq B \qquad d(xy) = p(xxy)$$

$$s(yxx...xx) = p(xxy) \qquad d(x,d(xy)) = d(xy)$$

$$s(BAB...BB) \subseteq B$$

$$\vdots$$

$$s(BBB...BA) \subseteq B$$

weakly compact d-quasi-representations

 $B \prec A$ edge-absorbing

$$p(Baa) \subseteq B \qquad d(xy) = p(xxy)$$

$$s(yxx...xx) = p(xxy) \qquad d(x,d(xy)) = d(xy)$$

$$s(BAB...BB) \subseteq B$$

$$\vdots$$

$$s(BBB...BA) \subseteq B$$

 $R \leq A^n$

- def. from "Varieties with Few Subalgebras of Powers" works for any d(x, d(xy)) = d(xy)
- $S \subseteq A^n$ weakly compact d-quasi-representation of R

weakly compact d-quasi-representations

 $B \prec A$ edge-absorbing

$$p(Baa) \subseteq B \qquad d(xy) = p(xxy)$$

$$s(yxx...xx) = p(xxy) \qquad d(x,d(xy)) = d(xy)$$

$$s(BAB...BB) \subseteq B$$

$$\vdots$$

$$s(BBB...BA) \subseteq B$$

 $R \leq A^n$

- def. from "Varieties with Few Subalgebras of Powers" works for any d(x, d(xy)) = d(xy)
- $S \subseteq A^n$ weakly compact d-quasi-representation of R
- d associated to edge-term \Rightarrow Sg^{Aⁿ}(S) = R

weakly compact d-quasi-representations

 $B \prec A$ edge-absorbing

 $p(Baa) \subseteq B \qquad d(xy) = p(xxy)$ $s(yxx...xx) = p(xxy) \qquad d(x,d(xy)) = d(xy)$ $s(BAB...BB) \subseteq B$ \vdots $s(BBB...BA) \subseteq B$

 $R \leq A^n$

- def. from "Varieties with Few Subalgebras of Powers" works for any d(x, d(xy)) = d(xy)
- $S \subseteq A^n$ weakly compact d-quasi-representation of R
- d associated to edge-term \Rightarrow Sg^{Aⁿ}(S) = R
- In general, what properties does Sg^{Aⁿ}(S) < R have?</p>
 - d(x,y) "sees" all singleton $b \prec B \leq A$ and cube-term blockers (C,D)
 - walking subalgebras through subpowers: R⁺_{ij}[B], maximal components above singletons and blockers in appropriates quasi-orders (potato systems)

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ● の Q @

Thank You