Open Problems in Clone Theory

Dmitriy Zhuk zhuk.dmitriy@gmail.com

Department of Mathematics and Mechanics Moscow State University

Open Problems in Universal Algebra a Shanks workshop at Vanderbilt University May 28 - June 1, 2015

Outline

- Background
- 2 Self-Dual Operations
- 3 Next steps
- Different ways to define a clone
- 5 Principal Filters
- Generation of clones
- 7 Whether a clone is finitely related
- 8 Finite Sublattices
- 🧿 Maximal Chain
- 10 Relations-Operations Transformations
- 1 Undecidable problems

The lattice of clones

Definition

Let \boldsymbol{A} be a finite set.

 O_A is the set of all operations on A.

A set of operations $F \subseteq O_A$ is a clone if F is closed under composition and contains all projections.

 J_A is the set of all projections.

Definition

Let A be a finite set. O_A is the set of all operations on A. A set of operations $F \subseteq O_A$ is a clone if F is closed under composition

and contains all projections.

 J_A is the set of all projections.

The clones form an algebraic lattice whose least element is J_A and whose greatest element is O_A .

Definition

Let \boldsymbol{A} be a finite set.

 O_A is the set of all operations on A.

A set of operations $F \subseteq O_A$ is a clone if F is closed under composition and contains all projections.

 J_A is the set of all projections.

The clones form an algebraic lattice whose least element is J_A and whose greatest element is O_A .

Notations

- For a set of operations M, by Clo(M) we denote the minimal clone containing M.
- For a set of operations M, by Inv(M) we denote the set of all invariants of M.
- For a set of relations C, by Pol(C) we denote the set of all operations preserving every relation from C.

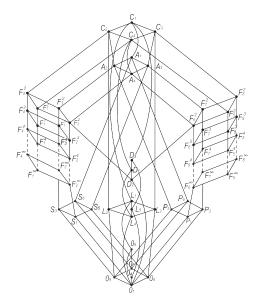
Dmitriy Zhuk zhuk.dmitriy@gmail.co Open Problems in Clone Theory Open Problems in UA

What is the main problem of Clone Theory?

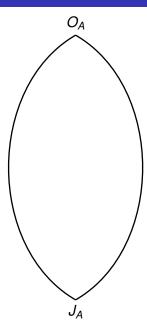
What is the main problem of Clone Theory?

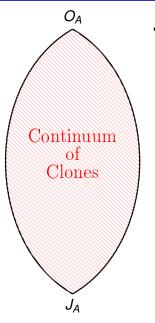
• To get a description of all clones!

The lattice of all clones on two elements (for |A| = 2)

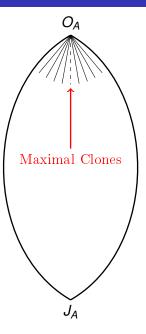


Emil Post (1921, 1941)

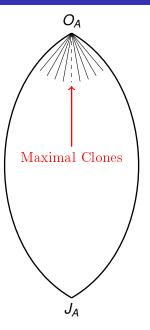




There exists a continuum of clones for • $|\mathbf{A}| > 2$ (Ju. I. Janov, A. A. Muchnik, 1959)



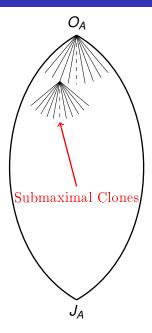
There exists a continuum of clones for |A| > 2 (Ju. I. Janov, A. A. Muchnik, 1959)



There exists a continuum of clones for |A| > 2 (Ju. I. Janov, A. A. Muchnik, 1959)

All maximal clones for $|\mathbf{A}| = \mathbf{3}$ were found (S. V. Jablonskij, 1955) All maximal clones were found

(I. Rosenberg, 1970)



There exists a continuum of clones for |A| > 2 (Ju. I. Janov, A. A. Muchnik, 1959)

All maximal clones for $|\mathbf{A}| = \mathbf{3}$ were found (S. V. Jablonskij, 1955)

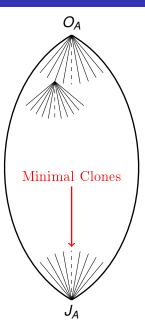
All maximal clones were found

(I. Rosenberg, 1970)

All 158 submaximal clones for $|\mathbf{A}| = \mathbf{3}$ were

• found (D. Lau, H. Machida, J. Demetrovics,

L. Hannak, S. S. Marchenkov, J. Bagyinszki)



There exists a continuum of clones for |A| > 2 (Ju. I. Janov, A. A. Muchnik, 1959)

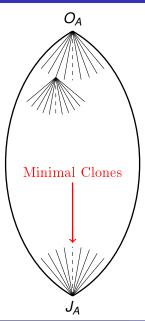
All maximal clones for $|\mathbf{A}| = \mathbf{3}$ were found (S. V. Jablonskij, 1955)

All maximal clones were found

(I. Rosenberg, 1970)

All 158 submaximal clones for $|\mathbf{A}| = \mathbf{3}$ were

• found (D. Lau, H. Machida, J. Demetrovics, L. Hannak, S. S. Marchenkov, J. Bagyinszki)



There exists a continuum of clones for • |A| > 2 (Ju. I. Janov, A. A. Muchnik, 1959)

All maximal clones for $|\mathbf{A}| = \mathbf{3}$ were found (S. V. Jablonskij, 1955)

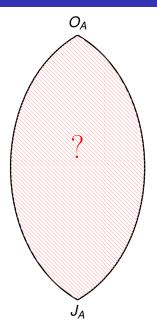
All maximal clones were found

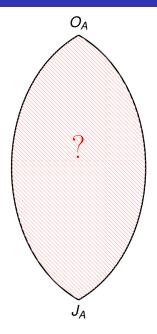
(I. Rosenberg, 1970)

All 158 submaximal clones for $|\mathbf{A}| = \mathbf{3}$ were

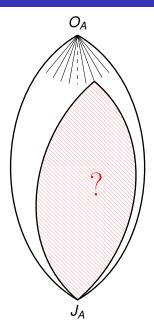
- found (D. Lau, H. Machida, J. Demetrovics, L. Hannak, S. S. Marchenkov, J. Bagyinszki)
- I. Rosenberg classified all minimal clones
- All minimal clones for $|\mathbf{A}| = \mathbf{3}$ were found (B. Csákány, 1983)

All minimal clones for $|\mathbf{A}| = 4$ were found (Karsten Schölzer, 2012)

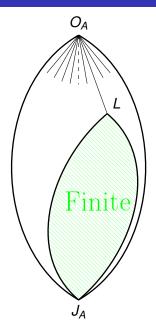




• Can we describe a significant part of the lattice?

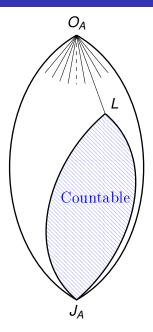


• Can we describe all subclones of a maximal clone?



• Can we describe all subclones of a maximal clone?

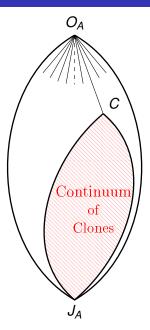
For the maximal clone of linear operations • the lattice of subclones is finite and known (|**A**| is a prime number) (A. A. Salomaa, 1964



• Can we describe all subclones of a maximal clone?

For the maximal clone of linear operations • the lattice of subclones is finite and known (|**A**| is a prime number) (A. A. Salomaa, 1964

For the maximal clone of quasi-linear operations the lattice of subclones is countable but not known (if $|\mathbf{A}|$ is a power of a prime number)



• Can we describe all subclones of a maximal clone?

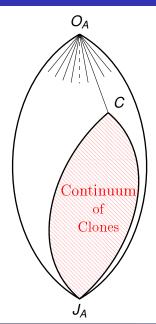
For the maximal clone of linear operations • the lattice of subclones is finite and known $(|\mathbf{A}|$ is a prime number) (A. A. Salomaa, 1964

For the maximal clone of quasi-linear operations the lattice of subclones is countable but not known

(if $|\mathbf{A}|$ is a power of a prime number)

For all other maximal clones the lattice of

• subclones is uncountable (J. Demetrovics, L. Hannak, S. S. Marchenkov, 1983)



• Can we describe all subclones of a maximal clone?

For the maximal clone of linear operations • the lattice of subclones is finite and known $(|\mathbf{A}|$ is a prime number) (A. A. Salomaa, 1964

For the maximal clone of quasi-linear operations the lattice of subclones is countable but not known

(if $|\mathbf{A}|$ is a power of a prime number)

For all other maximal clones the lattice of

• subclones is uncountable (J. Demetrovics, L. Hannak, S. S. Marchenkov, 1983)

Can we describe a sublattice that has continuum cardinality?

Here we assume that $A = \{0, 1, 2\}$.

Here we assume that $A = \{0, 1, 2\}$.

Definitions

An n-ary operation on three elements is called self-dual if

$$f(x_1 + 1, x_2 + 1, \dots, x_n + 1) = f(x_1, x_2, \dots, x_n) + 1$$

for all $x_1, x_2, \ldots, x_n \in \{0, 1, 2\}$. + is addition modulo 3.

Here we assume that $A = \{0, 1, 2\}$.

Definitions

An *n*-ary operation on three elements is called self-dual if

$$f(x_1 + 1, x_2 + 1, \dots, x_n + 1) = f(x_1, x_2, \dots, x_n) + 1$$

for all $x_1, x_2, \ldots, x_n \in \{0, 1, 2\}$. + is addition modulo 3.

• Self-dual operations are operations that preserve the relation $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}$.

Here we assume that $A = \{0, 1, 2\}$.

Definitions

An *n*-ary operation on three elements is called self-dual if

$$f(x_1 + 1, x_2 + 1, \dots, x_n + 1) = f(x_1, x_2, \dots, x_n) + 1$$

for all $x_1, x_2, \ldots, x_n \in \{0, 1, 2\}$. + is addition modulo 3.

- Self-dual operations are operations that preserve the relation $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}$.
- The set of all self-dual operations is a maximal clone on three elements

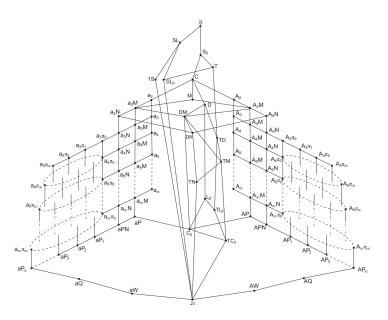
- Many clones of self-dual operations were found (S.S. Marchenkov, J. Demetrovich, L. Hannak, 1980).
- There exists a continuum of clones of self-dual operations (S. S. Marchenkov, 1983)

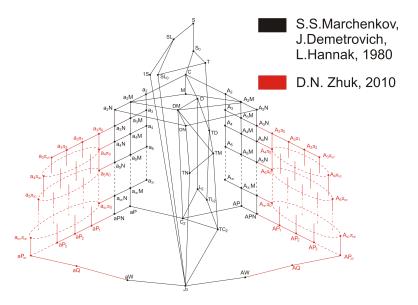
- Many clones of self-dual operations were found (S.S. Marchenkov, J. Demetrovich, L. Hannak, 1980).
- There exists a continuum of clones of self-dual operations (S. S. Marchenkov, 1983)

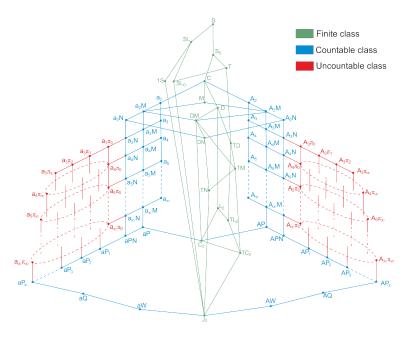
Main Result (D. Zhuk, 2010)

All clones of self-dual operations on three elements are described

• This is the first maximal clone besides the clone of all linear operations that has such description.







• Finite and countable classes of clones are defined explicitly (as in the Post's Lattice).

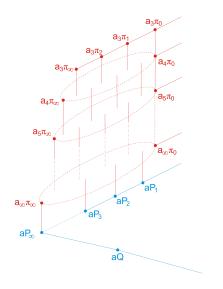
- Finite and countable classes of clones are defined explicitly (as in the Post's Lattice).
- We define a set of relations $\Pi.$

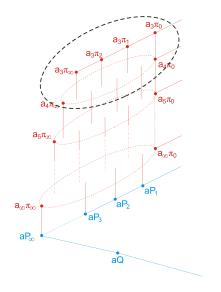
- Finite and countable classes of clones are defined explicitly (as in the Post's Lattice).
- We define a set of relations Π .
- We define a quasiorder \leq on the set Π ;

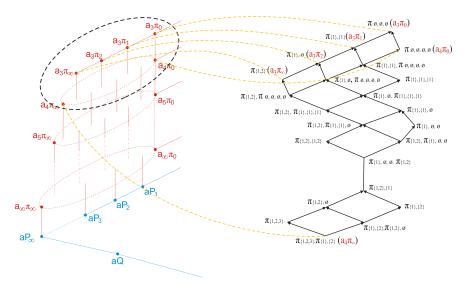
- Finite and countable classes of clones are defined explicitly (as in the Post's Lattice).
- We define a set of relations Π .
- We define a quasiorder \leq on the set Π ;
- The uncountable class of clones consists of all clones that can be defined as Pol(F) for a down-set $F \subseteq \Pi$.
- If $F_1, F_2 \subseteq \Pi$ are nonempty down-sets, then $F_1 \neq F_2 \Rightarrow \operatorname{Pol}(F_1) \neq \operatorname{Pol}(F_2).$
- Each clone from the uncountable class is uniquely defined by a nonempty down-set $F \subseteq \Pi$.

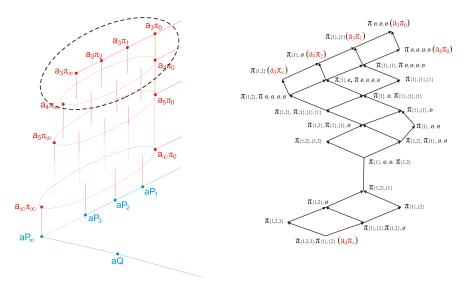
- Finite and countable classes of clones are defined explicitly (as in the Post's Lattice).
- We define a set of relations Π .
- We define a quasiorder \leq on the set Π ;
- The uncountable class of clones consists of all clones that can be defined as Pol(F) for a down-set $F \subseteq \Pi$.
- If $F_1, F_2 \subseteq \Pi$ are nonempty down-sets, then $F_1 \neq F_2 \Rightarrow \operatorname{Pol}(F_1) \neq \operatorname{Pol}(F_2).$
- Each clone from the uncountable class is uniquely defined by a nonempty down-set $F \subseteq \Pi$.

Why this description is complete and final?









Dmitriy Zhuk zhuk.dmitriy@gmail.cc Open Problems in Clone Theory Open Problems in UA 15 / 49

• Pairwise inclusion of clones was describes.

- Pairwise inclusion of clones was describes.
- A basis of a clone is a minimal by inclusion generating set.
 - It was proved that a basis exists for every clone of self-dual operations!
 - A basis for every clone was found.

- Pairwise inclusion of clones was describes.
- A basis of a clone is a minimal by inclusion generating set.
 - It was proved that a basis exists for every clone of self-dual operations!
 - A basis for every clone was found.

Relation degree of a clone is the minimal arity of relations such that the clone can be defined as the set of all operations that preserve these relations.

- The relation degree of each clone of self-dual operations is found
- The values of the relation degree prove that our description of clones is optimal. That is, these clones can not be defined by relations of smaller arity.

Definition

 \mathbb{L}_3 is the set of all clones of self-dual operations,

$$\mathbb{L}_{3}^{\uparrow}(M) := \{M' \in \mathbb{L}_{3} \mid M \subseteq M'),$$

$$\mathbb{L}_3^{\downarrow}(M) := \{M' \in \mathbb{L}_3 \mid M' \subseteq M\}.$$

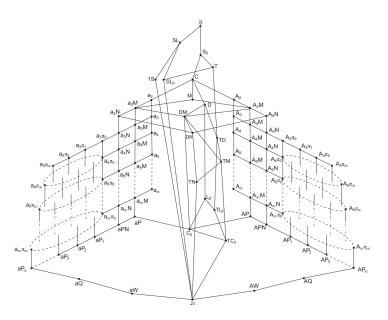
Definition

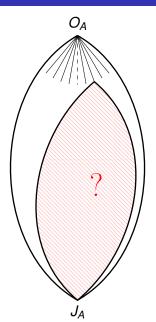
 \mathbb{L}_3 is the set of all clones of self-dual operations,

$$\mathbb{L}_{3}^{\uparrow}(M) := \{M' \in \mathbb{L}_{3} \mid M \subseteq M'),$$

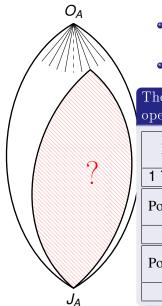
$$\mathbb{L}_{3}^{\downarrow}(M) := \{M' \in \mathbb{L}_{3} \mid M' \subseteq M\}.$$

- For each clone $C \in \mathbb{L}_3$ the cardinality of $\mathbb{L}_3^{\uparrow}(C)$ is found.
- For each clone $C \in \mathbb{L}_3$ the cardinality of $\mathbb{L}_3^{\downarrow}(C)$ is found.
- $\mathbb{L}_{3}^{\downarrow}(\operatorname{Pol}(F))$ has continuum cardinality for every down-set $F \subseteq \Pi$ such that $F \neq \Pi$, $\mathbb{L}_{3}^{\downarrow}(\operatorname{Pol}(\Pi)) = 4$.



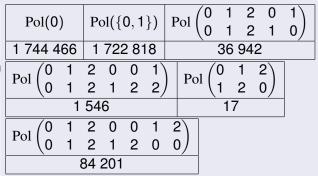


- Can we do the same for other maximal clones if |A| = 3?
- Which maximal clone is the "smallest" one?

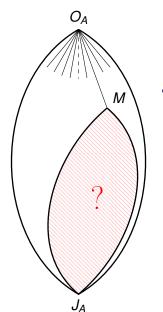


- Can we do the same for other maximal clones if |A| = 3?
- Which maximal clone is the "smallest" one?

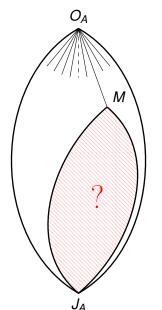
The number of clones containing a majority operation



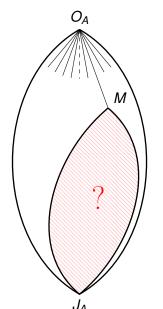
Dmitriy Zhuk_zhuk.dmitriy@gmail.co Open Problems in Clone Theory 🛛 🤇



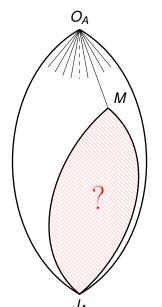
 Can we get the same description for the maximal clone of monotone operations for |A| = 3?



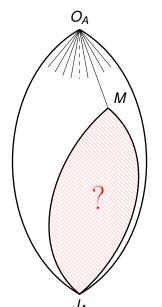
- Can we get the same description for the maximal clone of monotone operations for |A| = 3?
- I believe the sublattice can be divided into 1 million parts, and then every part can be described in a similar way!



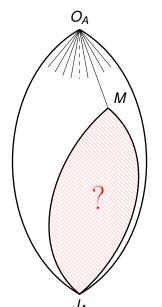
- Can we get the same description for the maximal clone of monotone operations for |A| = 3?
- I believe the sublattice can be divided into 1 million parts, and then every part can be described in a similar way!
- Is it a good idea to do this? No!



- Can we get the same description for the maximal clone of monotone operations for |A| = 3?
- I believe the sublattice can be divided into 1 million parts, and then every part can be described in a similar way!
- Is it a good idea to do this? No!
- Probably we consider the wrong main problem.



- Can we get the same description for the maximal clone of monotone operations for |A| = 3?
- I believe the sublattice can be divided into 1 million parts, and then every part can be described in a similar way!
- Is it a good idea to do this? No!
- Probably we consider the wrong main problem.



- Can we get the same description for the maximal clone of monotone operations for |A| = 3?
- I believe the sublattice can be divided into 1 million parts, and then every part can be described in a similar way!
- Is it a good idea to do this? No!
- Probably we consider the wrong main problem.

The New Main Problems of Clone Theory

To find out how

- to check properties of clones
- to find finite parts of the lattice
- to check properties of the lattice of clones

• Given a set of operations F. A clone is defined by Clo(F), that is the minimal clone containing F.

- Given a set of operations F. A clone is defined by Clo(F), that is the minimal clone containing F.
- Given a set of relations C. A clone is defined by Pol(C), that is the set of all operations preserving every relation from C.

- Given a set of operations F. A clone is defined by Clo(F), that is the minimal clone containing F.
- Given a set of relations C. A clone is defined by Pol(C), that is the set of all operations preserving every relation from C.
- Given two sets of operations F_1 and F_2 . A clone is defined by $\operatorname{Clo}(F_1) \cap \operatorname{Clo}(F_2)$.

Decide whether two definitions give the same clone.

Decide whether two definitions give the same clone.

Decision Problems

• Given two finite sets of operations F_1 and F_2 . Decide whether $\operatorname{Clo}(F_1) = \operatorname{Clo}(F_2)$.

Decide whether two definitions give the same clone.

Decision Problems

• Given two finite sets of operations F_1 and F_2 . Decide whether $\operatorname{Clo}(F_1) = \operatorname{Clo}(F_2)$. It is decidable!

Decide whether two definitions give the same clone.

- Given two finite sets of operations F_1 and F_2 . Decide whether $\operatorname{Clo}(F_1) = \operatorname{Clo}(F_2)$. It is decidable!
- **2** Given two relations ρ_1 and ρ_2 . Decide whether $Pol(\rho_1) = Pol(\rho_2)$.

Decide whether two definitions give the same clone.

- Given two finite sets of operations F_1 and F_2 . Decide whether $\operatorname{Clo}(F_1) = \operatorname{Clo}(F_2)$. It is decidable!
- Given two relations ρ_1 and ρ_2 . Decide whether $Pol(\rho_1) = Pol(\rho_2)$. It is decidable!

Decide whether two definitions give the same clone.

- Given two finite sets of operations F_1 and F_2 . Decide whether $\operatorname{Clo}(F_1) = \operatorname{Clo}(F_2)$. It is decidable!
- Given two relations ρ_1 and ρ_2 . Decide whether $Pol(\rho_1) = Pol(\rho_2)$. It is decidable!
- Given a set of operations F and a relation ρ . Decide whether $Clo(F) = Pol(\rho)$.

Decide whether two definitions give the same clone.

- Given two finite sets of operations F_1 and F_2 . Decide whether $\operatorname{Clo}(F_1) = \operatorname{Clo}(F_2)$. It is decidable!
- Given two relations ρ_1 and ρ_2 . Decide whether $Pol(\rho_1) = Pol(\rho_2)$. It is decidable!
- Given a set of operations F and a relation ρ . Decide whether $Clo(F) = Pol(\rho)$. Open Problem 1: is this decidable?

Decide whether two definitions give the same clone.

- Given two finite sets of operations F_1 and F_2 . Decide whether $\operatorname{Clo}(F_1) = \operatorname{Clo}(F_2)$. It is decidable!
- Given two relations ρ_1 and ρ_2 . Decide whether $Pol(\rho_1) = Pol(\rho_2)$. It is decidable!
- Given a set of operations F and a relation ρ . Decide whether $Clo(F) = Pol(\rho)$. Open Problem 1: is this decidable?
- Given 3 sets of operations B, C, and D. Decide whether $\operatorname{Clo}(B) \cap \operatorname{Clo}(C) = \operatorname{Clo}(D)$.

Decide whether two definitions give the same clone.

- Given two finite sets of operations F_1 and F_2 . Decide whether $\operatorname{Clo}(F_1) = \operatorname{Clo}(F_2)$. It is decidable!
- ² Given two relations ρ_1 and ρ_2 . Decide whether $Pol(\rho_1) = Pol(\rho_2)$. It is decidable!
- Given a set of operations F and a relation ρ . Decide whether $Clo(F) = Pol(\rho)$. Open Problem 1: is this decidable?
- Given 3 sets of operations B, C, and D. Decide whether $\operatorname{Clo}(B) \cap \operatorname{Clo}(C) = \operatorname{Clo}(D)$. Open Problem 2: is this decidable?

Given a clone, decide how many clones contain this clone.

Given a clone, decide how many clones contain this clone.

Decision problems

• Given a finite set of operations. Decide how many clones contain these operations.

Given a clone, decide how many clones contain this clone.

Decision problems

• Given a finite set of operations. Decide how many clones contain these operations. Open Problem 3: is this decidable?

Given a clone, decide how many clones contain this clone.

- Given a finite set of operations. Decide how many clones contain these operations. Open Problem 3: is this decidable?
- ③ Given an operation. Decide how many clones contain this operation.

Given a clone, decide how many clones contain this clone.

- Given a finite set of operations. Decide how many clones contain these operations. Open Problem 3: is this decidable?
- Given an operation. Decide how many clones contain this operation. Open Problem 4: is this decidable?

Given a clone, decide how many clones contain this clone.

- Given a finite set of operations. Decide how many clones contain these operations. Open Problem 3: is this decidable?
- Given an operation. Decide how many clones contain this operation. Open Problem 4: is this decidable?
- Given a WNU operation. Decide how many clones contain this operation.

Given a clone, decide how many clones contain this clone.

- Given a finite set of operations. Decide how many clones contain these operations. Open Problem 3: is this decidable?
- Given an operation. Decide how many clones contain this operation. Open Problem 4: is this decidable?
- Given a WNU operation. Decide how many clones contain this operation. Open Problem 5: is this decidable?

Given a clone, decide how many clones contain this clone.

- Given a finite set of operations. Decide how many clones contain these operations. Open Problem 3: is this decidable?
- Given an operation. Decide how many clones contain this operation. Open Problem 4: is this decidable?
- Given a WNU operation. Decide how many clones contain this operation. Open Problem 5: is this decidable?
- Given a Mal'tsev operation. Decide how many clones contain this operation.

Given a clone, decide how many clones contain this clone.

- Given a finite set of operations. Decide how many clones contain these operations. Open Problem 3: is this decidable?
- Given an operation. Decide how many clones contain this operation. Open Problem 4: is this decidable?
- Given a WNU operation. Decide how many clones contain this operation. Open Problem 5: is this decidable?
- Given a Mal'tsev operation. Decide how many clones contain this operation. Open Problem 6: is this decidable?

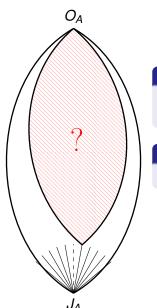
Given a clone, decide how many clones contain this clone.

- Given a finite set of operations. Decide how many clones contain these operations. Open Problem 3: is this decidable?
- Given an operation. Decide how many clones contain this operation. Open Problem 4: is this decidable?
- Given a WNU operation. Decide how many clones contain this operation. Open Problem 5: is this decidable?
- Given a Mal'tsev operation. Decide how many clones contain this operation. Open Problem 6: is this decidable?
- **(a)** Given a relation ρ . Decide how many clones contain $Pol(\rho)$.

Given a clone, decide how many clones contain this clone.

- Given a finite set of operations. Decide how many clones contain these operations. Open Problem 3: is this decidable?
- Given an operation. Decide how many clones contain this operation. Open Problem 4: is this decidable?
- Given a WNU operation. Decide how many clones contain this operation. Open Problem 5: is this decidable?
- Given a Mal'tsev operation. Decide how many clones contain this operation. Open Problem 6: is this decidable?
- Given a relation ρ . Decide how many clones contain $Pol(\rho)$. Open Problem 7: is this decidable?

The principal filters for minimal clones



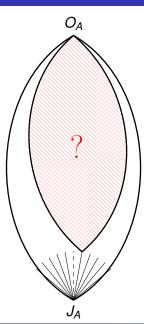
Definition

A clone $A \neq J_k$ is called minimal, if every operation from $A \setminus J_k$ generates this clone.

Examples of minimal clones

 $Clo(\{max\}), Clo(\{x + 1\}).$

The principal filters for minimal clones



Definition

A clone $A \neq J_k$ is called minimal, if every operation from $A \setminus J_k$ generates this clone.

Examples of minimal clones $Clo(\{max\}), Clo(\{x + 1\}).$

Question

How many clones contain a given minimal clone?

Theorem

Each minimal clone on k elements can be generated by f where

- f is an unary operation.
- **2** f is a binary idempotent operation f(a, a) = a for every $a \in E_3$.
- f is a majority operation $\forall a, b \in E_3 : f(a, a, b) = f(a, b, a) = f(b, a, a) = a$
- f is a minority operation $\forall a, b \in E_3 : f(a, a, b) = f(a, b, a) = f(b, a, a) = b$
- f is a semiprojection to the *i*-th variable $f \in P_k^n, 3 \le n \le k$, for every tuple (a_1, a_2, \ldots, a_n) satisfying $|\{a_1, a_2, \ldots, a_n\}| < n$ we have $f(a_1, a_2, \ldots, a_n) = a_i$.

We will assume that i = 1 for all occurring semiprojections.

There are exactly 84 minimal clones on 3 elements. One obtains every one of these clones by applying inner automorphisms of P_3 to exactly one of the following clones:

a) Minimal clones generated by unary operations

	х	c ₀	C1	c ₂	C3
.	0	1	1	0	1
,	1	1	0	1	2
	2	1	2	1	0

b) Minimal clones generated by idempotent binary operations

ſ	х	у	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆	b ₇	b ₈	b ₉	b ₁₀	b ₁₁	b ₁₂
ſ	0	1	1	0	1	1	1	1	0	0	0	0	1	2
	1	0	1	1	1	1	1	1	1	1	1	1	1	2
	0	2	1	0	0	0	0	0	0	1	0	1	0	1
1	2	0	1	1	0	2	0	2	0	1	1	2	0	1
	1	2	1	1	1	1	1	1	1	1	1	0	2	0
	2	1	1	1	1	1	2	2	1	2	2	2	2	0

c) Minimal clones generated by majority operations m_1, m_2, m_3 and

semiprojections S_1, S_2, S_3, S_4, S_5

X	У	Ζ	m ₁	m ₂	m ₃	s ₁	s ₂	s ₃	s ₄	s 5
0	1	2	1	0	0	1	0	0	1	1
0	2	1	1	1	0	1	0	0	1	2
1	0	2	1	1	1	1	1	1	0	0
1	2	0	1	0	1	1	1	1	0	2
2	0	1	1	0	2	1	1	0	2	0
2	1	0	1	1	2	1	1	1	2	1

 $\operatorname{Problem}$

How many clones contain a given minimal clone on three elements?

• For minimal clones generated by majority operations the result follows from Baker-Pixley Theorem (K. A. Baker, A. F. Pixley, 1975)

- For minimal clones generated by majority operations the result follows from Baker-Pixley Theorem (K. A. Baker, A. F. Pixley, 1975)
- Clones containing \$5\$ and clones containing \$b_{12}\$ are finitely generated (S.S. Marchenkov, 1984)

- For minimal clones generated by majority operations the result follows from Baker-Pixley Theorem (K. A. Baker, A. F. Pixley, 1975)
- Clones containing \$5\$ and clones containing \$b_{12}\$ are finitely generated (S. S. Marchenkov, 1984)
- The set of all clones containing **b**₁₂ is finite and completely described (I. Rosenberg, 1995).

- For minimal clones generated by majority operations the result follows from Baker-Pixley Theorem (K. A. Baker, A. F. Pixley, 1975)
- Clones containing \$5\$ and clones containing \$b_{12}\$ are finitely generated (S. S. Marchenkov, 1984)
- The set of all clones containing **b**₁₂ is finite and completely described (I. Rosenberg, 1995).
- For the minimal clones generated by unary operations this problem was solved by J. Pantović and D. Voivodić (2000).

- For minimal clones generated by majority operations the result follows from Baker-Pixley Theorem (K. A. Baker, A. F. Pixley, 1975)
- Clones containing \$5 and clones containing \$b_{12}\$ are finitely generated (S. S. Marchenkov, 1984)
- The set of all clones containing **b**₁₂ is finite and completely described (I. Rosenberg, 1995).
- For the minimal clones generated by unary operations this problem was solved by J. Pantović and D. Voivodić (2000).
- The set of all clones containing a operation f has continuum cardinality for every $f \in \{\mathbf{s_1}, \mathbf{s_2}, \mathbf{b_1}, \mathbf{b_2}, \mathbf{b_4}, \mathbf{b_6}, \mathbf{b_8}, \mathbf{b_9}\}$. The set of all clones containing a operation g is at least countable for every $g \in \{\mathbf{s_3}, \mathbf{s_4}, \mathbf{b_3}, \mathbf{b_5}, \mathbf{b_7}, \mathbf{b_{10}}\}$ (J. Pantović, D. Voivodić, 2000).

Theorem (D. Zhuk, 2012)

Suppose a minimal clone on 3 elements \boldsymbol{M} is generated by $\boldsymbol{f}.$ The set of all clones containing \boldsymbol{M}

- is finite if $f \in \{c_3, b_{12}, m_1, m_2, m_3\}$,
- is countable if $f \in \{\mathbf{S_4}, \mathbf{S_5}\}$,

• has continuum cardinality if

 $f \in \{c_0, c_1, c_2, b_1, b_2, b_3, \dots, b_{10}, b_{11}, s_1, s_2, s_3\}.$

Finite cases (except clones generated by majority operations)

$$c_3(x) = x + 1;$$

 $c_{12}(x, y) = 2x + 2y.$

Countable cases

$$\begin{split} \mathbf{s_4}(x,y,z) &= \begin{cases} 2x+1, & \text{if } |\{x,y,z\}| = 3; \\ x, & \text{otherwise.} \end{cases} \\ \mathbf{s_5}(x,y,z) &= \begin{cases} y, & \text{if } |\{x,y,z\}| = 3; \\ x, & \text{otherwise.} \end{cases}. \end{split}$$

• All minimal clones on 4 elements were found (Pöshel, Kaluzhnin, Szczepara, Waldhauser, Jezek, Quackenbush, Karsten Schölzer, 2012). • All minimal clones on 4 elements were found (Pöshel, Kaluzhnin, Szczepara, Waldhauser, Jezek, Quackenbush, Karsten Schölzer, 2012).

Open Problems

Solution Find how many clones contain a given minimal clone on 4 elements.

• All minimal clones on 4 elements were found (Pöshel, Kaluzhnin, Szczepara, Waldhauser, Jezek, Quackenbush, Karsten Schölzer, 2012).

Open Problems

- So Find how many clones contain a given minimal clone on 4 elements.
- If ind all minimal clones such that the corresponding principal filter is finite.

• All minimal clones on 4 elements were found (Pöshel, Kaluzhnin, Szczepara, Waldhauser, Jezek, Quackenbush, Karsten Schölzer, 2012).

Open Problems

- Find how many clones contain a given minimal clone on 4 elements.
- Find all minimal clones such that the corresponding principal filter is finite.
- Find all minimal clones such that the corresponding principal filter is countable.

Given a clone. Decide whether the clone is finitely generated. Find a generating set.

Given a clone. Decide whether the clone is finitely generated. Find a generating set.

Decision Problems

• Given a relation ρ . Decide whether the clone $Pol(\rho)$ is finitely generated.

Given a clone. Decide whether the clone is finitely generated. Find a generating set.

Decision Problems

• Given a relation ρ . Decide whether the clone $Pol(\rho)$ is finitely generated. Open Problem 11: is this decidable?

Given a clone. Decide whether the clone is finitely generated. Find a generating set.

- Given a relation ρ . Decide whether the clone $Pol(\rho)$ is finitely generated. Open Problem 11: is this decidable?
- **②** Given a relation ρ such that the clone $Pol(\rho)$ is finitely generated. Find a generating set for $Pol(\rho)$.

Given a clone. Decide whether the clone is finitely generated. Find a generating set.

- Given a relation ρ . Decide whether the clone $Pol(\rho)$ is finitely generated. Open Problem 11: is this decidable?
- **2** Given a relation ρ such that the clone $Pol(\rho)$ is finitely generated. Find a generating set for $Pol(\rho)$. Open Problem 12: is this decidable?

Given a clone. Decide whether the clone is finitely generated. Find a generating set.

- Given a relation ρ . Decide whether the clone $Pol(\rho)$ is finitely generated. Open Problem 11: is this decidable?
- **2** Given a relation ρ such that the clone $Pol(\rho)$ is finitely generated. Find a generating set for $Pol(\rho)$. Open Problem 12: is this decidable?
- ③ Given two sets of operations B and C. Decide whether the clone $Clo(B) \cap Clo(C)$ is finitely generated.

Given a clone. Decide whether the clone is finitely generated. Find a generating set.

- Given a relation ρ . Decide whether the clone $Pol(\rho)$ is finitely generated. Open Problem 11: is this decidable?
- **2** Given a relation ρ such that the clone $Pol(\rho)$ is finitely generated. Find a generating set for $Pol(\rho)$. Open Problem 12: is this decidable?
- ^③ Given two sets of operations B and C. Decide whether the clone $Clo(B) \cap Clo(C)$ is finitely generated. Open Problem 13: is this decidable?

Given a clone. Decide whether the clone is finitely generated. Find a generating set.

- Given a relation ρ . Decide whether the clone $Pol(\rho)$ is finitely generated. Open Problem 11: is this decidable?
- **2** Given a relation ρ such that the clone $Pol(\rho)$ is finitely generated. Find a generating set for $Pol(\rho)$. Open Problem 12: is this decidable?
- Given two sets of operations B and C. Decide whether the clone $Clo(B) \cap Clo(C)$ is finitely generated. Open Problem 13: is this decidable?
- There exist finite sets of operations B and C such that Clo(B) ∩ Clo(C) is not finitely generated (L.Haddad, 1990).

• All maximal clones except for maximal clones of monotone operations are finitely generated. The order of all such maximal clones was found.

- All maximal clones except for maximal clones of monotone operations are finitely generated. The order of all such maximal clones was found.
- For $|\mathbf{A}| \ge \mathbf{8}$ there exists a maximal clone of monotone operations that is not finitely generated (G. Tardos, 1986).

- All maximal clones except for maximal clones of monotone operations are finitely generated. The order of all such maximal clones was found.
- For $|\mathbf{A}| \ge \mathbf{8}$ there exists a maximal clone of monotone operations that is not finitely generated (G. Tardos, 1986).

Decision Problem

• Given partial order relation with a greatest and a least element. Decide whether $Pol(\rho)$ is finitely generated.

Order of a clone C (Ord(C)) is the minimal arity of a generating set. A maximal clone of monotone operations is a clone Pol(ρ), where ρ is partial order relation with a greatest and a least element.

- All maximal clones except for maximal clones of monotone operations are finitely generated. The order of all such maximal clones was found.
- For $|\mathbf{A}| \ge \mathbf{8}$ there exists a maximal clone of monotone operations that is not finitely generated (G. Tardos, 1986).

Decision Problem

• Given partial order relation with a greatest and a least element. Decide whether $Pol(\rho)$ is finitely generated. Open Problem 14: is this decidable?

$$f(x,\ldots,x,y)=f(x,\ldots,x,y,x)=\cdots=f(y,x,\ldots,x)=x.$$

$$f(x,\ldots,x,y)=f(x,\ldots,x,y,x)=\cdots=f(y,x,\ldots,x)=x.$$

• Every clone with a NU operation is finitely generated (K. A. Baker, A. F. Pixley, 1975).

$$f(x,\ldots,x,y)=f(x,\ldots,x,y,x)=\cdots=f(y,x,\ldots,x)=x.$$

- Every clone with a NU operation is finitely generated (K. A. Baker, A. F. Pixley, 1975).
- For a clone C containing a majority operation $Ord(C) \leq |A|(|A| - 2)$, and this is a tight upper bound for $|A| \geq 5$ (H.Lakser, 1989).

$$f(x,\ldots,x,y)=f(x,\ldots,x,y,x)=\cdots=f(y,x,\ldots,x)=x.$$

- Every clone with a NU operation is finitely generated (K. A. Baker, A. F. Pixley, 1975).
- For a clone C containing a majority operation $Ord(C) \leq |A|(|A| - 2)$, and this is a tight upper bound for $|A| \geq 5$ (H.Lakser, 1989).
- For a clone C containing a majority operation $Ord(C) \leq 3$ if |A| = 3 and $Ord(C) \leq 8$ if |A| = 4, and these are tight upper bounds. (S. Kerkhoff, D. Zhuk, 2013).

$$f(x,\ldots,x,y)=f(x,\ldots,x,y,x)=\cdots=f(y,x,\ldots,x)=x.$$

- Every clone with a NU operation is finitely generated (K. A. Baker, A. F. Pixley, 1975).
- For a clone C containing a majority operation $\operatorname{Ord}(C) \leq |A|(|A|-2)$, and this is a tight upper bound for $|A| \geq 5$ (H.Lakser, 1989).
- For a clone C containing a majority operation $Ord(C) \leq 3$ if |A| = 3 and $Ord(C) \leq 8$ if |A| = 4, and these are tight upper bounds. (S. Kerkhoff, D. Zhuk, 2013).
- For a clone C containing NU of arity d + 1 we have $Ord(C) \leq (|A| - 1)^d - 1$, and this is a tight upper bound for sufficiently large |A| (S. Kerkhoff, 2011).

Conjecture

Suppose ρ is a partial order relation with a greatest and a least element. Then $Pol(\rho)$ is finitely generated iff it contains a NU.

Conjecture

Suppose ρ is a partial order relation with a greatest and a least element. Then Pol(ρ) is finitely generated iff it contains a NU. Open Problem 15: Does this conjecture hold?

General problem 4

Given a clone. Decide whether the clone is finitely related. Find a relation that defines this clone.

General problem 4

Given a clone. Decide whether the clone is finitely related. Find a relation that defines this clone.

Decision Problems

Given a finite set of operations *M*. Decide whether the clone Clo(*M*) is finitely related.

General problem 4

Given a clone. Decide whether the clone is finitely related. Find a relation that defines this clone.

Decision Problems

Given a finite set of operations *M*. Decide whether the clone Clo(*M*) is finitely related. Open Problem 16: is this decidable?

General problem 4

Given a clone. Decide whether the clone is finitely related. Find a relation that defines this clone.

Decision Problems

- Given a finite set of operations *M*. Decide whether the clone Clo(*M*) is finitely related. Open Problem 16: is this decidable?
- **②** Given a finite set of operations M such that the clone $\operatorname{Clo}(M)$ is finitely related. Find a relation ρ such that $\operatorname{Pol}(\rho) = \operatorname{Clo}(M)$.

General problem 4

Given a clone. Decide whether the clone is finitely related. Find a relation that defines this clone.

Decision Problems

- Given a finite set of operations *M*. Decide whether the clone Clo(*M*) is finitely related. Open Problem 16: is this decidable?
- **2** Given a finite set of operations M such that the clone Clo(M) is finitely related. Find a relation ρ such that $Pol(\rho) = Clo(M)$. Open Problem 17: is this decidable?

General problem 4

Given a clone. Decide whether the clone is finitely related. Find a relation that defines this clone.

Decision Problems

- Given a finite set of operations *M*. Decide whether the clone Clo(*M*) is finitely related. Open Problem 16: is this decidable?
- **2** Given a finite set of operations M such that the clone Clo(M) is finitely related. Find a relation ρ such that $Pol(\rho) = Clo(M)$. Open Problem 17: is this decidable?

Open Problems

Does there exist a minimal clone that is not finitely related?

General problem 4

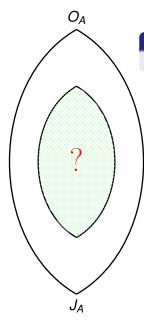
Given a clone. Decide whether the clone is finitely related. Find a relation that defines this clone.

Decision Problems

- Given a finite set of operations *M*. Decide whether the clone Clo(*M*) is finitely related. Open Problem 16: is this decidable?
- **2** Given a finite set of operations M such that the clone Clo(M) is finitely related. Find a relation ρ such that $Pol(\rho) = Clo(M)$. Open Problem 17: is this decidable?

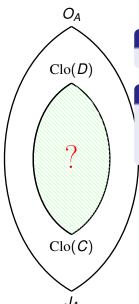
Open Problems

- Does there exist a minimal clone that is not finitely related?
- Does there exist a minimal clone on 3 elements that is not finitely related?



General Problem 5

Find a sublattice between two clones if it is finite.

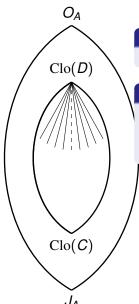


General Problem 5

Find a sublattice between two clones if it is finite.

Computational Problem

Given two finite sets of operations C and D such that $C \subseteq D$ and the sublattice between two clones Clo(C) and Clo(D) is finite. Find this sublattice.



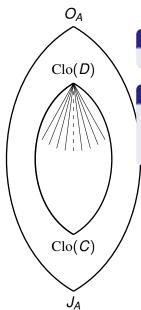
General Problem 5

Find a sublattice between two clones if it is finite.

Computational Problem

Given two finite sets of operations C and D such that $C \subseteq D$ and the sublattice between two clones Clo(C) and Clo(D) is finite. Find this sublattice.

- All clones in the sublattice are finitely generated.
- All maximal clones in Clo(D) can be found (each is defined as $Pol(\rho)$ for some ρ).



General Problem 5

Find a sublattice between two clones if it is finite.

Computational Problem

Given two finite sets of operations C and D such that $C \subseteq D$ and the sublattice between two clones Clo(C) and Clo(D) is finite. Find this sublattice.

- All clones in the sublattice are finitely generated.
- All maximal clones in Clo(D) can be found (each is defined as $Pol(\rho)$ for some ρ).
- What to do next? Open problem 21: is this problem decidable?

Given two clones C and D such that $C \subseteq D$ and C contains a near-unanimity operation. Find the sublattice between C and D.

Given two clones C and D such that $C \subseteq D$ and C contains a near-unanimity operation. Find the sublattice between C and D.

Every clone containing NU of arity m + 1 can be defined by relations of arity m.

Given two clones C and D such that $C \subseteq D$ and C contains a near-unanimity operation. Find the sublattice between C and D.

Every clone containing NU of arity m + 1 can be defined by relations of arity m.

Solution

- Consider all sets of relations of arity m preserving by a clone C.
- Find those of them that define different clones.

What is the complexity of this algorithm?

Given two clones C and D such that $C \subseteq D$ and C contains a near-unanimity operation. Find the sublattice between C and D.

Every clone containing NU of arity m + 1 can be defined by relations of arity m.

Solution

- Consider all sets of relations of arity m preserving by a clone C.
- Find those of them that define different clones.

What is the complexity of this algorithm? Huge!

Given two clones C and D such that $C \subseteq D$ and C contains a near-unanimity operation. Find the sublattice between C and D.

Every clone containing NU of arity m + 1 can be defined by relations of arity m.

Solution

- Consider all sets of relations of arity m preserving by a clone C.
- Find those of them that define different clones.

What is the complexity of this algorithm? Huge!

Improvements(D.Zhuk, S.Moiseev, 2012)

• We consider only relations that cannot be represented as a conjunction of relations with smaller arities (these relations are called essential).

• We consider a closure operator on the set of essential relations. Dmitriy Zhuk zhuk.dmitriy@gmail.cc Open Problems in Clone Theory Open Problems in UA

- Two finite sets of relations M_{up} and M_{down} such that $M_{up} \subseteq M_{down}$.
- The arity N of near-unanimity operation preserving $M_{down}.$

Output

The lattice of clones between $Pol(M_{down})$ and $Pol(M_{up})$.

- Two finite sets of relations M_{up} and M_{down} such that $M_{up} \subseteq M_{down}$.
- The arity N of near-unanimity operation preserving M_{down} .

Output

The lattice of clones between $Pol(M_{down})$ and $Pol(M_{up})$.

- We consider all essential relations.
- Calculate the closure of every relation together with M_{up} .
- Choose minimal by inclusion sets: thus, we get maximal clones in $Pol(M_{up})$.

- Two finite sets of relations M_{up} and M_{down} such that $M_{up} \subseteq M_{down}$.
- The arity N of near-unanimity operation preserving M_{down} .

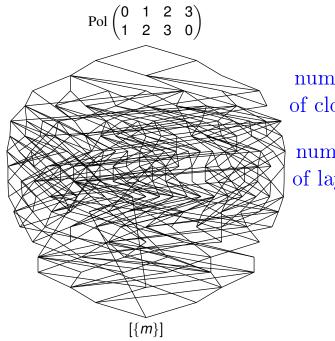
Output

The lattice of clones between $Pol(M_{down})$ and $Pol(M_{up})$.

- We consider all essential relations.
- Calculate the closure of every relation together with M_{up} .
- Choose minimal by inclusion sets: thus, we get maximal clones in $Pol(M_{up})$.
- Consider the closure of a maximal clone together with an essential relation.
- Choose the minimal by inclusion sets: thus, we get submaximal clones in $Pol(M_{up})$.
- Repeat the procedure till we get M_{down} .

$$\begin{split} & A = \{0, 1, 2, 3\}. \\ & M_{up} = \left\{ \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \end{pmatrix} \right\} \\ & M_{down} = \text{Inv}(m), \text{ where } m(x, y, z) = \begin{cases} y, & \text{if } x = y; \\ x, & \text{otherwise.} \end{cases} \\ & N = 3. \end{split}$$

Find the sublattice between Clo(m) and $Pol\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \end{pmatrix}$.



 $\begin{array}{l} {\rm number}\\ {\rm of\ clones} \end{array} = 199 \\ {\rm number}\\ {\rm of\ layers} \end{array} = 19 \end{array}$

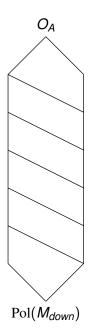
$$A = \{0, 1\}.$$

$$M_{up} = \emptyset$$

$$M_{down} = \{\{0, 1\}^n \setminus \{0\}^n \mid n \in \{1, 2, \dots, 7\}\} \cup \left\{ \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \right\}.$$

$$N = 8.$$

Find the sublattice between $Pol(M_{down})$ and $Pol(M_{up})$.

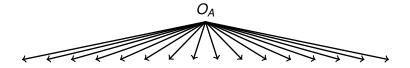


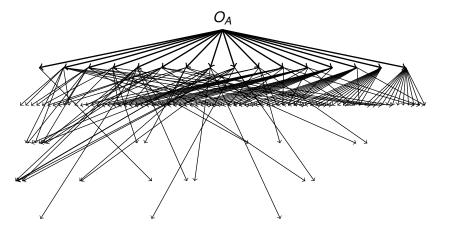
$\frac{\text{number}}{\text{of clones}} = 14$

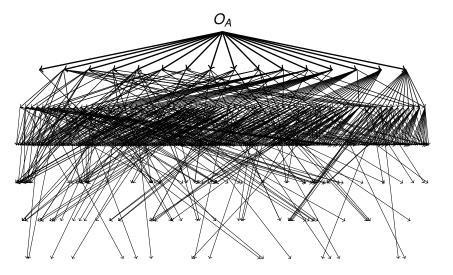
 $\frac{\text{number}}{\text{of layers}} = 8$

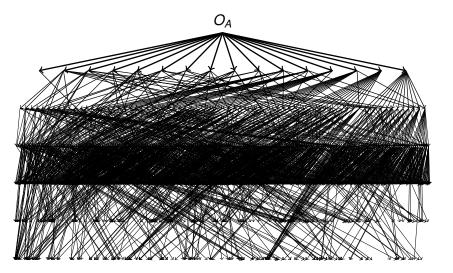
 $\begin{array}{l} A = \{0,1,2\}. \\ M_{up} = \varnothing \\ M_{down} = \mathrm{Inv}(m), \ \mathrm{where} \ m \ \mathrm{is} \ \mathrm{a} \ \mathrm{minimal} \ \mathrm{majority} \ \mathrm{operation}. \\ N = 3. \end{array}$

Find all clones on 3 elements containing a majority operation.









Clones with a majority operation

There are exactly 1 918 040 clones on three elements containing a majority operation!

Clones with a majority operation

There are exactly 1 918 040 clones on three elements containing a majority operation!

Clones with a majority operation

We have three types of a minimal majority operation on 3 elements.

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>m</i> ₁	<i>m</i> ₂	<i>m</i> 3
0	1	2	1	0	0
0	2	1	1	1	0
1	0	2	1	1	1
1	2	0	1	0	1
2	0	1	1	0	2
2	1	0	1	1	2

The Number of Clones and the number of Layers

	<i>m</i> 1	<i>m</i> ₂	<i>m</i> 3
number of clones	928767	325581	99152
number of layers	51	45	33

What can be the size of a maximal chain in the lattice of clones?

What can be the size of a maximal chain in the lattice of clones?

Partial Results

• If |A| = 2 then a maximal chain can be of size $5, 6, 7, \aleph_0$

What can be the size of a maximal chain in the lattice of clones?

Partial Results

- If |A| = 2 then a maximal chain can be of size $5, 6, 7, \aleph_0$
- For prime $|\mathbf{A}|$ the shortest maximal chain is of size 5. For composite $|\mathbf{A}|$ the shortest maximal chain is of size ≥ 6 (Ágnes Szendrei).

What can be the size of a maximal chain in the lattice of clones?

Partial Results

- If |A| = 2 then a maximal chain can be of size $5, 6, 7, \aleph_0$
- For prime $|\mathbf{A}|$ the shortest maximal chain is of size 5. For composite $|\mathbf{A}|$ the shortest maximal chain is of size ≥ 6 (Ágnes Szendrei).
- If $|\mathbf{A}| = \mathbf{3}$ then there exists a maximal chain of size 52. This chain contains a minimal majority operation.

What can be the size of a maximal chain in the lattice of clones?

Partial Results

- If |A| = 2 then a maximal chain can be of size $5, 6, 7, \aleph_0$
- For prime $|\mathbf{A}|$ the shortest maximal chain is of size 5. For composite $|\mathbf{A}|$ the shortest maximal chain is of size ≥ 6 (Ágnes Szendrei).
- If $|\mathbf{A}| = \mathbf{3}$ then there exists a maximal chain of size 52. This chain contains a minimal majority operation.

Open Problems

2 Does there exist a finite maximal chain of size greater than 52 on 3 elements?

What can be the size of a maximal chain in the lattice of clones?

Partial Results

- If |A| = 2 then a maximal chain can be of size $5, 6, 7, \aleph_0$
- For prime $|\mathbf{A}|$ the shortest maximal chain is of size 5. For composite $|\mathbf{A}|$ the shortest maximal chain is of size ≥ 6 (Ágnes Szendrei).
- If $|\mathbf{A}| = \mathbf{3}$ then there exists a maximal chain of size 52. This chain contains a minimal majority operation.

Open Problems

- ② Does there exist a finite maximal chain of size greater than 52 on 3 elements?
- Is the size of a finite maximal chain restricted?

What can be the size of a maximal chain in the lattice of clones?

Partial Results

- If |A| = 2 then a maximal chain can be of size 5, 6, 7, \aleph_0
- For prime $|\mathbf{A}|$ the shortest maximal chain is of size 5. For composite $|\mathbf{A}|$ the shortest maximal chain is of size ≥ 6 (Ágnes Szendrei).
- If $|\mathbf{A}| = \mathbf{3}$ then there exists a maximal chain of size 52. This chain contains a minimal majority operation.

Open Problems

- 2 Does there exist a finite maximal chain of size greater than 52 on 3 elements?
- Is the size of a finite maximal chain restricted?
- Is it true that a finite maximal chain of the maximal size always contains a minimal majority operation? 46 / 49

Open Problems

Find a set of relations C of arity at most m such that $Ord(Pol(C)) > |A|^m \text{ (or } > 2^{2^m}).$

Open Problems

- Find a set of relations C of arity at most m such that $Ord(Pol(C)) > |A|^m \text{ (or } > 2^{2^m}).$
- Find a set of operations *M* of arity at most *m* such that the relational degree of $\operatorname{Clo}(M)$ is greater than $|A|^m$ (or $> 2^{2^m}$).

Are there any undecidable problems in Clone Theory?

Are there any undecidable problems in Clone Theory?

Theorem (R.McKenzie, 1997)

It is undecidable for a finite algebra \mathbb{A} and two elements $a, b \in A$ whether \mathbb{A} has a term operation that is a near-unanimity operation on $\{a, b\}$.

Theorem (M.Maróti, 2000)

It is undecidable for a finite algebra \mathbb{A} and two elements $a, b \in A$ whether \mathbb{A} has a term operation that is a near-unanimity operation on $A \setminus \{a, b\}$. Are there any undecidable problems in Clone Theory?

Theorem (R.McKenzie, 1997)

It is undecidable for a finite algebra \mathbb{A} and two elements $a, b \in A$ whether \mathbb{A} has a term operation that is a near-unanimity operation on $\{a, b\}$.

Theorem (M.Maróti, 2000)

It is undecidable for a finite algebra \mathbb{A} and two elements $a, b \in A$ whether \mathbb{A} has a term operation that is a near-unanimity operation on $A \setminus \{a, b\}$.

Let me know if you find other examples!

Thank you for your attention