The Undecidability of the Definability of Principal Subcongruences

Matthew Moore

The University of Colorado at Boulder

April 13, 2013

Matthew Moore (CU)

Undecidability of DPSC

2013-04-13 1 / 22

A. Tarski's Problem [1960's]

Is there an algorithm which takes as input a finite algebra and outputs whether or not the algebra has a finite equational basis?

A. Tarski's Problem, v2

Is there an algorithm which takes as input a finite algebra \mathbb{A} and outputs whether or not $\mathcal{V}(\mathbb{A})$ is finitely axiomatizable?

Theorem (Jónsson)

Suppose that \mathcal{V} is a variety, $\mathcal{V} \subseteq \mathcal{K}$, and both \mathcal{K} and \mathcal{K}_{SI} are finitely axiomatizable. Then \mathcal{V} and \mathcal{V}_{SI} are either both finitely axiomatizable or both not.

An Idea:

- Carefully choose some class ${\cal K}$ that is finitely axiomatizable.
- Make sure that \mathcal{K}_{SI} is finitely axiomatized.
- Restrict consideration to those $\mathcal{V}\subseteq\mathcal{K}$ with finitely many SI's, all finite.

For instance, if \mathcal{K} is the class of abelian groups of exponent m, then the sentence

$$\bigvee (\forall x [x^{p^n} = 1]) \land (\exists_{=p} y [y^p = 1])$$

axiomatizes \mathcal{K}_{SI} . If \mathcal{V} is a variety contained in \mathcal{K} with only finitely many SI's, all finite, then \mathcal{V} is finitely axiomatizable.

Matthew Moore (CU)

Theorem (Jónsson)

Suppose that \mathcal{V} is a variety, $\mathcal{V} \subseteq \mathcal{K}$, and both \mathcal{K} and \mathcal{K}_{SI} are finitely axiomatizable. Then \mathcal{V} and \mathcal{V}_{SI} are either both finitely axiomatizable or both not.

An Idea:

- \bullet Carefully choose some class ${\cal K}$ that is finitely axiomatizable.
- Make sure that \mathcal{K}_{SI} is finitely axiomatized.
- Restrict consideration to those $\mathcal{V}\subseteq\mathcal{K}$ with finitely many SI's, all finite.

For instance, if \mathcal{K} is the class of abelian groups of exponent m, then the sentence

 \bigvee ("I am a p^n group") \wedge ("exactly p-1 order p elements")

axiomatizes \mathcal{K}_{SI} . If \mathcal{V} is a variety contained in \mathcal{K} with only finitely many SI's, all finite, then \mathcal{V} is finitely axiomatizable.

Matthew Moore (CU)

Theorem (Jónsson)

Suppose that \mathcal{V} is a variety, $\mathcal{V} \subseteq \mathcal{K}$, and both \mathcal{K} and \mathcal{K}_{SI} are finitely axiomatizable. Then \mathcal{V} and \mathcal{V}_{SI} are either both finitely axiomatizable or both not.

An Idea:

- Carefully choose some class ${\cal K}$ that is finitely axiomatizable.
- Make sure that \mathcal{K}_{SI} is finitely axiomatized.
- Restrict consideration to those $\mathcal{V}\subseteq\mathcal{K}$ with finitely many SI's, all finite.

For instance, if \mathcal{K} is the class of abelian groups of exponent m, then the sentence

axiomatizes \mathcal{K}_{SI} . If \mathcal{V} is a variety contained in \mathcal{K} with only finitely many SI's, all finite, then \mathcal{V} is finitely axiomatizable.

Matthew Moore (CU)

Definition

A variety \mathcal{V} is said to have **definable principal congruences (DPC)** if there is a congruence formula $\psi(w, x, y, z)$ such that for all $\mathbb{A} \in \mathcal{V}$ and all $a, b \in A$, $Cg^{\mathbb{A}}(a, b)$ is defined by $\psi(-, -, a, b)$.

In this case, take \mathcal{K} to be the class of algebras with DPC witnessed by ψ (this is finitely axiomatizable).

 \mathcal{K}_{SI} is axiomatized by

 $\exists u, v [u \neq v \land \forall a, b [a \neq b \rightarrow \psi(u, v, a, b)]].$

If $\mathcal{V} \subseteq \mathcal{K}$ and \mathcal{V}_{SI} is finite and contains only finite algebras then \mathcal{V} is finitely axiomatizable.

Choosing the class \mathcal{K} : DPSC

Definition

A variety \mathcal{V} is said to have **definable principal subcongruences (DPSC)** if there are congruence formulas Γ and $\psi(w, x, y, z)$ such that for all $\mathbb{A} \in \mathcal{V}$ and all $a, b \in A$ there exist $c, d \in A$ such that $\Gamma(c, d, a, b)$ witnesses $(c, d) \in Cg^{\mathbb{A}}(a, b)$ and $\psi(-, -, c, d)$ defines $Cg^{\mathbb{A}}(c, d)$.

Let \mathcal{K} be the class of algebras with DPSC via Γ and ψ (this is finitely axiomatizable).

$$\begin{split} \mathcal{K}_{SI} \text{ is axiomatized by} \\ \exists u, v \, [u \neq v \land \forall a, b \, [a \neq b \rightarrow \\ \exists c, d \, [\Gamma(c, d, a, b) \land \psi(u, v, c, d)]]] \, . \end{split}$$

If $\mathcal{V} \subseteq \mathcal{K}$ and \mathcal{V}_{SI} is finite and contains only finite algebras then \mathcal{V} is finitely axiomatizable.

A Question

- For each Turing machine T McKenzie constructed an algebra associated to it, A(T), such that V(A(T)) has finitely many SI's, all finite, if and only if T halts.
- Willard showed that V(A(T)) is finitely axiomatizable if and only if T halts.

In the case where there are only finitely many SI's, all finite, DPC and DPSC are closely related to finite axiomatizability. This leads naturally to the question:

Question

Is the undecidability of finite axiomatizability in V(A(T)) due to a more primitive result about the undecidability of DPSC for V(A(T))?
Is it true that V(A(T)) has DPSC if and only if T halts?

In order to connect the halting status of \mathcal{T} with DPSC, the algebra $\mathbb{A}(\mathcal{T})$ is modified by adding a new operation. The modified algebra is called $\mathbb{A}'(\mathcal{T})$ and still possesses many of the same important properties that $\mathbb{A}(\mathcal{T})$ does.

Theorem
The following are equivalent:
• ${\mathcal T}$ halts.
• $\mathcal{V}(\mathbb{A}'(\mathcal{T}))$ has finitely many SI's, all finite.

Since the problem of determining when a Turing machine halts is undecidable, this shows that the other property is also undecidable.

$\mathbb{A}'(\mathcal{T})$

For a Turing machine T with *n* states, the underlying set of $\mathbb{A}'(T)$ has (20n + 16) elements:

 $\begin{aligned} A'(\mathcal{T}) &= \{0, 1, 2, H, C, D, \partial C, \partial D, \\ C^s_{ir}, D^s_{ir}, M^r_i, \partial C^s_{ir}, \partial D^s_{ir}, \partial M^r_i \mid 0 \le i \le n \text{ and } r, s \in \{0, 1\}\}. \end{aligned}$

 $\mathbb{A}'(\mathcal{T})$ has operations to emulate computation on certain tuples of the indexed elements:

$$\mathcal{L} = \{ L_{irt} \mid \mathcal{T} \text{ has instruction } (\mu_i, r, s, L, \mu_j) \text{ and } t \in \{0, 1\} \}, \\ \mathcal{R} = \{ R_{irt} \mid \mathcal{T} \text{ has instruction } (\mu_i, r, s, R, \mu_j) \text{ and } t \in \{0, 1\} \}.$$

The operations of $\mathbb{A}'(\mathcal{T})$ are

$$\left\{0,\wedge,(\cdot),J,J',K,S_0,S_1,S_2,T,I,F,U_F^0,U_F^1\mid F\in\mathcal{L}\cup\mathcal{R}\right\}.$$

How do we approach proving that $\mathcal{V}(\mathbb{A}'(\mathcal{T}))$ has DPSC?

The unary polynomials of an algebra $\mathbb A$ are

$$\mathsf{Pol}_1(\mathbb{A}) = ig\{ p(x) = t(\overline{y},x) \mid t(x_1,\ldots,x_n) \text{ a term}, \overline{y} \in \mathcal{A}^{n-1} ig\}$$

 $\begin{bmatrix} a \\ a \end{bmatrix} (c,d) \in \mathsf{Cg}^{\mathbb{A}}(a,b) \text{ iff there are} \\ p_1,\ldots,p_{n-1} \in \mathsf{Pol}_1(\mathbb{A}) \text{ and} \\ c = s_1,s_2,\ldots,s_n = d \in A \text{ with} \\ \{s_i,s_{i+1}\} = \{t_i(a),t_i(b)\} \end{bmatrix}$

Such chains are called Maltsev chains.

- Produce (c, d) from (a, b) in a way that is bounded in complexity. This means Maltsev chains of uniformly bounded length, whose associated polynomials are uniformly bounded in complexity.
- The (c, d) thus produced should be made to have some special properties so that the congruence generated by (c, d) is uniformly definable.
- O This means that the Maltsev chains for any (r, s) ∈ Cg^B(c, d) should be uniformly bounded in length and have associated polynomials that are uniformly bounded in complexity.

For $\mathbb{B} \in \mathcal{V}(\mathbb{A}'(\mathcal{T}))$ and $a, b \in B$, we want a uniform way to produce (c, d) from (a, b) such that (c, d) generates a congruence that is uniformly definable.

DPSC for $\mathbb{A}'(\mathcal{T})$ (when \mathcal{T} halts)

Take a subdirect representation of $\ensuremath{\mathbb{B}}$ by SI's:

$$\mathbb{B} \leq \prod_{I \in L} \mathbb{C}_I$$
 such that $\pi_I(B) = C_I.$

We will try to understand congruences in \mathbb{B} by carefully analyzing the \mathbb{C}_{I} .

The \mathbb{C}_l come in 4 different flavors:

- Flavor S: These SI's are all contained in HS(A'(T)) and satisfy a certain identity involving the S_i operation.
- Flavor Seq: These SI's all have a certain nice structure based on the (·) operation. These are called sequential type.
- Flavor M: These SI's all have a certain nice structure based on the machine operations, L ∪ R. These are called machine type.
- Flavor X: These SI's are all contained in HS(A'(T)), but don't fit into Flavor S.

For $\mathbb{B} \in \mathcal{V}(\mathbb{A}'(\mathcal{T}))$ with $\mathbb{B} \leq \prod_{l \in L} \mathbb{C}_l$ and distinct $a, b \in B$, let $\mathcal{K} = \{l \in L \mid a(l) \neq b(l)\}.$

The 4 flavors of SI's give rise to 4 cases to consider:

- **Q** Case S: There is $k \in K$ such that \mathbb{C}_k is flavor S.
- **2** Case Seq: Case S does not hold, and there is $k \in K$ such that \mathbb{C}_k is flavor Seq.
- Ocase M: Cases S and Seq. don't hold, and there is k ∈ K such that C_k is flavor M.
- Gase X: Cases S, Seq., and M do not hold, so there must be k ∈ K such that C_k is flavor X.

In cases Seq., M, and X, Maltsev chains are short (length 1), and polynomials will be bounded in complexity when T halts.

2 Case S is quite involved, and requires a fine analysis of the polynomials and extensive calculations using $\mathbb{A}'(\mathcal{T})$ arithmetic.

Case S: An Overview

Case S: Reducing a Maltsev Chain

In Case S membership in $\mathrm{Cg}^{\mathbb{B}}(c,d)$ is witnessed by one of the 15 chains below

(the \cdots is uniformly bounded in complexity). In Case S, this demonstrates a uniform way to produce (c, d) from (a, b) such that $Cg^{\mathbb{B}}(c, d)$ is uniformly definable.

Working through cases S, Seq., M, and X proves the following theorem.

Theorem

If \mathcal{T} halts, then $\mathcal{V}(\mathbb{A}'(\mathcal{T}))$ has DSPC.

If ${\mathcal T}$ Does Not Halt

Suppose that there is a first-order sentence Φ expressing "I am SI".

- If \mathcal{T} does not halt, then $\mathcal{V}(\mathbb{A}'(\mathcal{T}))$ has a countably infinite SI, call it \mathbb{S} .
- \mathbb{S} satisfies the sentence Φ .
- Any ultrapower of \mathbb{S} satisfies Φ , so any ultrapower of \mathbb{S} is also SI.
- Under close examination, the ultrapower cannot be SI if it is uncountable.
- Therefore, if \mathcal{T} does not halt then no such Φ can exist.

If $\mathcal{V}(\mathbb{A}'(\mathcal{T}))$ has DPSC, then there **is** a first-order sentence expressing "I am SI". Therefore $\mathcal{V}(\mathbb{A}'(\mathcal{T}))$ cannot have DPSC if \mathcal{T} does not halt.

Lemma

If \mathcal{T} does not halt, then $\mathcal{V}(\mathbb{A}'(\mathcal{T}))$ does not have DPSC.

Combining everything, we have the following theorem.

Theorem

The following are equivalent:

- T halts.
- $\mathcal{V}(\mathbb{A}'(\mathcal{T}))$ has finitely many SI's, all finite.
- $\mathcal{V}(\mathbb{A}'(\mathcal{T}))$ has DPSC.
- $\mathcal{V}(\mathbb{A}'(\mathcal{T}))$ is finitely axiomatizable.

Since the problem of determining when a Turing machine halts is undecidable, this shows that other stated properties are also undecidable.

- Kirby A. Baker and Ju Wang, Definable principal subcongruences, Algebra Universalis 47 (2002), no. 2, 145–151. MR 1916612 (2003c:08002)
- Ralph McKenzie, The residual bound of a finite algebra is not computable, Internat. J. Algebra Comput. 6 (1996), no. 1, 29–48. MR 1371733 (97e:08002b)
- _____, Tarski's finite basis problem is undecidable, Internat. J. Algebra Comput. 6 (1996), no. 1, 49–104. MR 1371734 (97e:08002c)
- ▶ Ross Willard, Tarski's finite basis problem via A(T), Trans. Amer. Math. Soc. 349 (1997), no. 7, 2755–2774. MR 1389791 (97i:03019)