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Tarski’s Problem

A. Tarski’s Problem [1960’s]

Is there an algorithm which takes as input a finite algebra and outputs
whether or not the algebra has a finite equational basis?

A. Tarski’s Problem, v2

Is there an algorithm which takes as input a finite algebra A and outputs
whether or not V(A) is finitely axiomatizable?
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Proving Finite Axiomatizability

Theorem (Jónsson)

Suppose that V is a variety, V ⊆ K, and both K and KSI are finitely
axiomatizable. Then V and VSI are either both finitely axiomatizable or
both not.

An Idea:

Carefully choose some class K that is finitely axiomatizable.
Make sure that KSI is finitely axiomatized.
Restrict consideration to those V ⊆ K with finitely many SI’s, all
finite.

For instance, if K is the class of abelian groups of exponent m, then the
sentence∨

pn|m

( ∀x
[
xpn = 1

]
) ∧ ( ∃=py [yp = 1] )

axiomatizes KSI . If V is a variety contained in K with only finitely many
SI’s, all finite, then V is finitely axiomatizable.
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Proving Finite Axiomatizability

Theorem (Jónsson)

Suppose that V is a variety, V ⊆ K, and both K and KSI are finitely
axiomatizable. Then V and VSI are either both finitely axiomatizable or
both not.

An Idea:

Carefully choose some class K that is finitely axiomatizable.
Make sure that KSI is finitely axiomatized.
Restrict consideration to those V ⊆ K with finitely many SI’s, all
finite.

For instance, if K is the class of abelian groups of exponent m, then the
sentence∨

pn|m

(“I am a pn group”) ∧ (“exactly p − 1 order p elements”)

axiomatizes KSI . If V is a variety contained in K with only finitely many
SI’s, all finite, then V is finitely axiomatizable.
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Proving Finite Axiomatizability

Theorem (Jónsson)

Suppose that V is a variety, V ⊆ K, and both K and KSI are finitely
axiomatizable. Then V and VSI are either both finitely axiomatizable or
both not.

An Idea:

Carefully choose some class K that is finitely axiomatizable.
Make sure that KSI is finitely axiomatized.
Restrict consideration to those V ⊆ K with finitely many SI’s, all
finite.

For instance, if K is the class of abelian groups of exponent m, then the
sentence∨

pn|m

“I am an order pn cyclic p-group”

axiomatizes KSI . If V is a variety contained in K with only finitely many
SI’s, all finite, then V is finitely axiomatizable.
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Choosing the class K: DPC

Definition

A variety V is said to have definable principal congruences (DPC) if
there is a congruence formula ψ(w , x , y , z) such that for all A ∈ V and all
a, b ∈ A, CgA(a, b) is defined by ψ(−,−, a, b).

∀(a, b)

∀(c, d)

ψ(c, d, a, b)

Con(A)

In this case, take K to be the class of algebras with
DPC witnessed by ψ (this is finitely axiomatizable).

KSI is axiomatized by

∃u, v [u 6= v ∧ ∀a, b [a 6= b → ψ(u, v , a, b)]] .

If V ⊆ K and VSI is finite and contains only finite
algebras then V is finitely axiomatizable.
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Choosing the class K: DPSC

Definition

A variety V is said to have definable principal subcongruences (DPSC)
if there are congruence formulas Γ and ψ(w , x , y , z) such that for all
A ∈ V and all a, b ∈ A there exist c , d ∈ A such that Γ(c , d , a, b)
witnesses (c , d) ∈ CgA(a, b) and ψ(−,−, c , d) defines CgA(c, d).

∀(a, b)

∃(c, d)

∀(r, s)

Γ(c, d, a, b)

ψ(r, s, c, d)

Con(A)

Let K be the class of algebras with DPSC via
Γ and ψ (this is finitely axiomatizable).

KSI is axiomatized by

∃u, v [u 6= v ∧ ∀a, b [a 6= b →
∃c , d [Γ(c , d , a, b) ∧ ψ(u, v , c , d)]]] .

If V ⊆ K and VSI is finite and contains only
finite algebras then V is finitely axiomatizable.
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A Question

For each Turing machine T McKenzie constructed an algebra
associated to it, A(T ), such that V(A(T )) has finitely many SI’s, all
finite, if and only if T halts.

Willard showed that V(A(T )) is finitely axiomatizable if and only if T
halts.

In the case where there are only finitely many SI’s, all finite, DPC and
DPSC are closely related to finite axiomatizability. This leads naturally to
the question:

Question
1 Is the undecidability of finite axiomatizability in V(A(T )) due to a

more primitive result about the undecidability of DPSC for V(A(T ))?

2 Is it true that V(A(T )) has DPSC if and only if T halts?
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A Theorem

In order to connect the halting status of T with DPSC, the algebra A(T ) is
modified by adding a new operation. The modified algebra is called A′(T )
and still possesses many of the same important properties that A(T ) does.

Theorem

The following are equivalent:

T halts.

V(A′(T )) has finitely many SI’s, all finite.

Since the problem of determining when a Turing machine halts is
undecidable, this shows that the other property is also undecidable.
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A′(T )

For a Turing machine T with n states, the underlying set of A′(T ) has
(20n + 16) elements:

A′(T ) = {0, 1, 2,H,C ,D, ∂C , ∂D,

C s
ir ,D

s
ir ,M

r
i , ∂C s

ir , ∂Ds
ir , ∂M r

i | 0 ≤ i ≤ n and r , s ∈ {0, 1}} .

A′(T ) has operations to emulate computation on certain tuples of the
indexed elements:

L = {Lirt | T has instruction (µi , r , s, L, µj) and t ∈ {0, 1}} ,
R = {Rirt | T has instruction (µi , r , s,R, µj) and t ∈ {0, 1}} .

The operations of A′(T ) are{
0,∧, (·), J, J ′,K , S0,S1, S2,T , I ,F ,U

0
F ,U

1
F | F ∈ L ∪R

}
.
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How do we approach proving that V(A′(T )) has DPSC?

Matthew Moore (CU) Undecidability of DPSC 2013-04-13 9 / 22



Maltsev Chains

The unary polynomials of an algebra A are

Pol1(A) =
{

p(x) = t(y , x) | t(x1, . . . , xn) a term, y ∈ An−1
}

a b

s3

s2

c = s1

s4

s5 = d

A

[a]

[c]

p1 p2 p3
p4

(c , d) ∈ CgA(a, b) iff there are
p1, . . . , pn−1 ∈ Pol1(A) and
c = s1, s2, . . . , sn = d ∈ A with

{si , si+1} = {ti (a), ti (b)}

Such chains are called Maltsev chains.
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DPSC in General

1 Produce (c , d) from (a, b) in a way that is bounded in complexity.
This means Maltsev chains of uniformly bounded length, whose
associated polynomials are uniformly bounded in complexity.

2 The (c , d) thus produced should be made to have some special
properties so that the congruence generated by (c, d) is uniformly
definable.

3 This means that the Maltsev chains for any (r , s) ∈ CgB(c , d) should
be uniformly bounded in length and have associated polynomials that
are uniformly bounded in complexity.
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DPSC for A′(T ) (when T halts)

For B ∈ V(A′(T )) and a, b ∈ B, we want a uniform way to produce (c , d)
from (a, b) such that (c , d) generates a congruence that is uniformly
definable.
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DPSC for A′(T ) (when T halts)

Take a subdirect representation of B by SI’s:

B ≤
∏
l∈L

Cl such that πl(B) = Cl .

We will try to understand congruences in B by carefully analyzing the Cl .

The Cl come in 4 different flavors:

Flavor S: These SI’s are all contained in HS(A′(T )) and satisfy a
certain identity involving the Si operation.

Flavor Seq: These SI’s all have a certain nice structure based on the
(·) operation. These are called sequential type.

Flavor M: These SI’s all have a certain nice structure based on the
machine operations, L ∪R. These are called machine type.

Flavor X: These SI’s are all contained in HS(A′(T )), but don’t fit
into Flavor S.
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The Case Distinction

For B ∈ V(A′(T )) with B ≤
∏

l∈LCl and distinct a, b ∈ B, let

K = {l ∈ L | a(l) 6= b(l)}.

The 4 flavors of SI’s give rise to 4 cases to consider:

1 Case S: There is k ∈ K such that Ck is flavor S.

2 Case Seq: Case S does not hold, and there is k ∈ K such that Ck is
flavor Seq.

3 Case M: Cases S and Seq. don’t hold, and there is k ∈ K such that
Ck is flavor M.

4 Case X: Cases S, Seq., and M do not hold, so there must be k ∈ K
such that Ck is flavor X.
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DPSC in V(A′(T )) (when T halts)

1 In cases Seq., M, and X, Maltsev chains are short (length 1), and
polynomials will be bounded in complexity when T halts.

2 Case S is quite involved, and requires a fine analysis of the
polynomials and extensive calculations using A′(T ) arithmetic.
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Case S: An Overview

Con(B)
1

0

κl1
κl2 κl3

κl4

· · · · · ·

(a, b)

all SI’s
flavor S

ei

(a′, b′)

Con(ei (B))

ei

1

0

· · ·

(a′, b′)

all SI’s
flavor S

belongs to
a class
with DPSC

(c, d)
Γ′

defined by
ψ′ in ei (B)

Γ′

(c, d)

???
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Case S: Reducing a Maltsev Chain

In Case S membership in CgB(c , d) is witnessed by one of the 15 chains
below

Si (· · · ) J(· · · ) J′(· · · )

J′(· · · )

J(· · · )

J(· · · )

Si (· · · )

J′(· · · )

Si (· · · )

J′(· · · )

J(· · · )

Si (· · · )

(the · · · is uniformly bounded in complexity). In Case S, this demonstrates
a uniform way to produce (c, d) from (a, b) such that CgB(c , d) is
uniformly definable.
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If T Halts, Then...

Working through cases S, Seq., M, and X proves the following theorem.

Theorem

If T halts, then V(A′(T )) has DSPC.
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If T Does Not Halt

Suppose that there is a first-order sentence Φ expressing “I am SI”.

If T does not halt, then V(A′(T )) has a countably infinite SI, call it S.

S satisfies the sentence Φ.

Any ultrapower of S satisfies Φ, so any ultrapower of S is also SI.

Under close examination, the ultrapower cannot be SI if it is
uncountable.

Therefore, if T does not halt then no such Φ can exist.

If V(A′(T )) has DPSC, then there is a first-order sentence expressing “I
am SI”. Therefore V(A′(T )) cannot have DPSC if T does not halt.
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If T Does Not Halt

Lemma

If T does not halt, then V(A′(T )) does not have DPSC.
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The Theorem

Combining everything, we have the following theorem.

Theorem

The following are equivalent:

T halts.

V(A′(T )) has finitely many SI’s, all finite.

V(A′(T )) has DPSC.

V(A′(T )) is finitely axiomatizable.

Since the problem of determining when a Turing machine halts is
undecidable, this shows that other stated properties are also undecidable.
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