The Variety Generated by $\mathbb{A}(\mathcal{T})$ - Two Counterexamples

Matthew Moore

Vanderbilt University
October 6, 2013

Park's Conjecture

Conjecture (Park)

If \mathcal{V} is a finitely generated variety with finite residual bound, then \mathcal{V} is finitely based.

Known if \mathcal{V}...

- is congruence distributive (Baker).
- is congruence modular (McKenzie).
- is congruence meet-semidistributive $(\operatorname{CSD}(\wedge))$ (Willard).
- has a difference term (Kearnes, Szendrei, Willard).

Finite Basis Theorems

Theorem (Baker)

If \mathcal{V} is a finitely generated congruence distributive variety, then \mathcal{V} is finitely based.

Some alternate proofs use:

- definable principal subcongruences
- bounded Maltsev depth

Theorem (Willard)

If \mathcal{V} is a finitely generated congruence meet-semidistributive and has finite residual bound, then \mathcal{V} is finitely based.

Do alternate proofs exist that use:

- definable principal subcongruences?
- bounded Maltsev depth?

Question

If \mathbb{A} generates a variety that has finite residual bound and is $\operatorname{CSD}(\wedge)$, does the variety have...

- definable principal subcongruences?
- bounded Maltsev depth?

Definable Principal Subcongruences

Definition

A variety \mathcal{V} is said to have definable principal subcongruences (DPSC) if there are congruence formulas $\Gamma(-,-,-,-)$ and $\psi(-,-,-,-)$ such that for all $\mathbb{A} \in \mathcal{V}$ and all $a, b \in A$ there exist $c, d \in A$ such that $\Gamma(c, d, a, b)$ witnesses $(c, d) \in \mathrm{Cg}^{\mathbb{A}}(a, b)$ and $\psi(-,-, c, d)$ defines $\mathrm{Cg}^{\mathbb{A}}(c, d)$.

If \mathcal{V} has DPSC and $\operatorname{Cg}^{\mathbb{A}}(a, b)$ is an atomic congruence of some $\mathbb{A} \in \mathcal{V}$, then $\psi(-,-, a, b)$ defines $\mathrm{Cg}^{\mathbb{A}}(a, b)$.

Definable Principal Subcongruences

If \mathcal{V} has DPSC, then every atomic congruence is defined by ψ.

This means...

- there is $N \in \mathbb{N}$ such that
- for all $\mathbb{A} \in \mathcal{V}$,
- all $a, b \in A$ with $\mathrm{Cg}^{\mathbb{A}}(a, b)$ atomic, and
- all $(c, d) \in \mathrm{Cg}^{\mathbb{A}}(a, b)$
there is $\mathbb{B} \leq \mathbb{A}$ of size at most N with $(c, d) \in \mathrm{Cg}^{\mathbb{B}}(a, b)$.
- to disprove DPSC for \mathcal{V}, find $\mathbb{A} \in \mathcal{V}$ and atomic $\operatorname{Cg}^{\mathbb{A}}(a, b)$ such that there is no bound on minimal $\mathbb{B} \leq \mathbb{A}$ witnessing $(c, d) \in \operatorname{Cg}^{\mathbb{B}}(a, b)$.

Bounded Maltsev Depth

Definition

A variety \mathcal{V} has Maltsev depth N if for every $\mathbb{A} \in \mathcal{V}$ and every $a, b \in \mathbb{A}$, $(c, d) \in \mathrm{Cg}^{\mathbb{A}}(a, b)$ is witnessed by a Maltsev chain with associated polynomials of compositional depth at most N (and N is minimal).

$\forall \mathbb{A} \in \mathcal{V}, \forall a, b, c, d \in A \ldots$
$\lambda_{i}(x)$ has uniformly bounded depth.

The Strategy

- Find \mathcal{V} that is $\operatorname{CSD}(\wedge)$ and has finite residual bound.
- Find family of $\mathbb{B}_{n} \in \mathcal{V}$ and $a, b, b_{n}, c_{n} \in B_{n}$ such that...
- $\mathrm{Cg}^{\mathbb{B}_{n}}(a, b)$ is atomic.

- This is the "best" Maltsev chain witnessing $\left(b_{n}, c_{n}\right) \in C g^{\mathbb{B}}(a, b)$.
- The number of parameters used in $\lambda(x)$ scales with n.
- $\lambda(x)$ has depth that scales with n.
- Letting n grow will demonstrate that \mathcal{V} has neither DPSC nor bounded Maltsev depth.

The Algebra $\mathbb{A}(\mathcal{T})$

- McKenzie associated to each Turing machine \mathcal{T} an algebra $\mathbb{A}(\mathcal{T})$ such that $\mathcal{V}(\mathbb{A}(\mathcal{T}))$ has finite residual bound iff \mathcal{T} halts.
- $\mathbb{A}(\mathcal{T})$ has a semilattice operation, so $\mathcal{V}(\mathbb{A}(\mathcal{T}))$ is $\operatorname{CSD}(\wedge)$. When \mathcal{T} halts, $\mathcal{V}(\mathbb{A}(\mathcal{T}))$ has finite residual bound.
- Willard proved that $\mathcal{V}(\mathbb{A}(\mathcal{T}))$ is finitely axiomatizable iff \mathcal{T} halts.
- By adding another operation to $\mathbb{A}(\mathcal{T})$, I proved that $\mathcal{V}\left(\mathbb{A}^{\prime}(\mathcal{T})\right)$ has DPSC iff \mathcal{T} halts.
- Is $\mathcal{V}(\mathbb{A}(\mathcal{T}))$ a counterexample to the claim that all such algebras have DPSC? (Yes)

$\mathbb{A}(\mathcal{T})$

For a Turing machine \mathcal{T} with n states, the underlying set of $\mathbb{A}^{\prime}(\mathcal{T})$ has $(20 n+8)$ elements:

$$
\begin{aligned}
& A^{\prime}(\mathcal{T})=\{0,1,2, H, C, D, \partial C, \partial D \\
&\left.C_{i r}^{s}, D_{i r}^{s}, M_{i}^{r}, \partial C_{i r}^{s}, \partial D_{i r}^{s}, \partial M_{i}^{r} \mid 0 \leq i \leq n \text { and } r, s \in\{0,1\}\right\}
\end{aligned}
$$

$\mathbb{A}^{\prime}(\mathcal{T})$ has operations to emulate computation on certain tuples of the indexed elements:

$$
\begin{aligned}
& \mathcal{L}=\left\{L_{\text {irt }} \mid \mathcal{T} \text { has instruction }\left(\mu_{i}, r, s, L, \mu_{j}\right) \text { and } t \in\{0,1\}\right\}, \\
& \mathcal{R}=\left\{R_{\text {irt }} \mid \mathcal{T} \text { has instruction }\left(\mu_{i}, r, s, R, \mu_{j}\right) \text { and } t \in\{0,1\}\right\} .
\end{aligned}
$$

The operations of $\mathbb{A}(\mathcal{T})$ are

$$
\left\{0, \wedge,(\cdot), J, J^{\prime}, S_{0}, S_{1}, S_{2}, T, I, F, U_{F}^{0}, U_{F}^{1} \mid F \in \mathcal{L} \cup \mathcal{R}\right\}
$$

The algebra $\mathbb{A}^{\prime}(\mathcal{T})$ (has DPSC iff \mathcal{T} halts) includes an operation K.

Let $\mathbb{A}^{\prime}(\mathcal{T})$ be $\mathbb{A}(\mathcal{T})$ with a new operation, K, added to the language.

Theorem

The following are equivalent:

- \mathcal{T} halts.
- $\mathcal{V}\left(\mathbb{A}^{\prime}(\mathcal{T})\right)$ has finitely many SI's, all finite.
- $\mathcal{V}\left(\mathbb{A}^{\prime}(\mathcal{T})\right)$ has DPSC.
- $\mathcal{V}\left(\mathbb{A}^{\prime}(\mathcal{T})\right)$ is finitely axiomatizable.

Proof involves analysis of Maltsev chains:

The Counterexample

Define $\mathbb{B}_{n}=\left\langle\left\{a, b_{i}, d_{i} \mid 2 \leq i \leq n\right\}\right\rangle$ where

$$
\begin{array}{rl}
b_{i} & =(D, D, \ldots, \hat{D}, 0, \ldots, 0), \\
d_{i} & a=b_{1}, \\
d_{i} & =\left(D, \ldots, D, \partial \partial^{\prime}, 0, \ldots, 0\right), \\
c_{i} & =(0, D, \ldots, \hat{D}, 0, \ldots, 0) .
\end{array}
$$

$\mathbb{A}(\mathcal{T})$ has lots of operations, but the only nonzero ones on \mathbb{B}_{n} are

$$
\begin{aligned}
x \wedge y & =\left\{\begin{array}{lll}
x & \text { if } x=y & S_{2}(u, v, x, y, z) \\
0 & \text { otherwise }
\end{array}\right. \\
J(x, y, z) & =\left\{\begin{array}{lll}
x & \text { if } x=y \\
x \wedge z & \text { if } x=\partial y \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned} J^{\prime}(x, y, z)= \begin{cases}x \wedge z) & \text { if } x=y \\
x & \text { if } x=\partial y \\
0 & \text { otherwise }\end{cases}
$$

Look at $\left(b_{n}, d_{n}\right) \in \mathrm{Cg}^{\mathbb{B}_{n}}(a, 0)$.

The Calculation

- $\lambda(x)$ uses $2(n-1)$ distinct parameters (so the smallest $\mathbb{B} \leq \mathbb{B}_{n}$ witnessing $\left(b_{n}, c_{n}\right) \in \mathrm{Cg}^{\mathbb{B}_{n}}(0, a)$ is of size $\left.\geq 2(n-1)\right)$. Therefore $\mathcal{V}(\mathbb{A}(\mathcal{T}))$ doesn't have DPSC.
- The compositional depth of $\lambda(x)$ is $n-1$. Therefore $\mathcal{V}(\mathbb{A}(\mathcal{T}))$ doesn't have bounded Maltsev depth.

What about the K operation?

With K in the language, \mathbb{B}_{n} contains an element p such that...

The K operation was introduced precisely so that things like $\lambda(x)$ could be simplified.

Thank you.

