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Park’s Conjecture

Conjecture (Park)

If V is a finitely generated variety with finite residual bound, then V is
finitely based.

Known if V...

is congruence distributive (Baker).

is congruence modular (McKenzie).

is congruence meet-semidistributive (CSD(∧)) (Willard).

has a difference term (Kearnes, Szendrei, Willard).
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Finite Basis Theorems

Theorem (Baker)

If V is a finitely generated congruence distributive variety, then V is finitely
based.

Some alternate proofs use:

definable principal subcongruences

bounded Maltsev depth

Theorem (Willard)

If V is a finitely generated congruence meet-semidistributive and has finite
residual bound, then V is finitely based.

Do alternate proofs exist that use:

definable principal subcongruences?

bounded Maltsev depth?
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Question

If A generates a variety that has finite residual bound and is CSD(∧), does
the variety have...

definable principal subcongruences?

bounded Maltsev depth?
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Definable Principal Subcongruences

Definition

A variety V is said to have definable principal subcongruences (DPSC) if
there are congruence formulas Γ(-, -, -, -) and ψ(-, -, -, -) such that for all
A ∈ V and all a, b ∈ A there exist c , d ∈ A such that Γ(c , d , a, b)
witnesses (c , d) ∈ CgA(a, b) and ψ(−,−, c , d) defines CgA(c, d).

∀(a, b)

∃(c, d)

∀(r, s)

Γ(c, d, a, b)

ψ(r, s, c, d)

Con(A)

If V has DPSC and CgA(a, b) is an atomic
congruence of some A ∈ V, then ψ(−,−, a, b)
defines CgA(a, b).
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Definable Principal Subcongruences

If V has DPSC, then every atomic congruence is defined by ψ.

This means...

there is N ∈ N such that

for all A ∈ V,
all a, b ∈ A with CgA(a, b) atomic, and
all (c , d) ∈ CgA(a, b)

there is B ≤ A of size at most N with (c , d) ∈ CgB(a, b).

to disprove DPSC for V, find A ∈ V and atomic CgA(a, b) such that
there is no bound on minimal B ≤ A witnessing (c , d) ∈ CgB(a, b).
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Bounded Maltsev Depth

Definition

A variety V has Maltsev depth N if for every A ∈ V and every a, b ∈ A,
(c, d) ∈ CgA(a, b) is witnessed by a Maltsev chain with associated
polynomials of compositional depth at most N (and N is minimal).

a b

c d

λ1(x)

λ2(x) λ3(x)

λ4(x) ∀A ∈ V, ∀a, b, c , d ∈ A...

λi (x) has uniformly bounded depth.
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The Strategy

Find V that is CSD(∧) and has finite residual bound.

Find family of Bn ∈ V and a, b, bn, cn ∈ Bn such that...

a

b

bn

cn

λ(x)

CgBn(a, b) is atomic.

This is the “best” Maltsev chain witnessing
(bn, cn) ∈ CgB(a, b).

The number of parameters used in λ(x)
scales with n.

λ(x) has depth that scales with n.

Letting n grow will demonstrate that V has neither DPSC nor
bounded Maltsev depth.
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The Algebra A(T )

McKenzie associated to each Turing machine T an algebra A(T )
such that V(A(T )) has finite residual bound iff T halts.

A(T ) has a semilattice operation, so V(A(T )) is CSD(∧). When T
halts, V(A(T )) has finite residual bound.

Willard proved that V(A(T )) is finitely axiomatizable iff T halts.

By adding another operation to A(T ), I proved that V(A′(T )) has
DPSC iff T halts.

Is V(A(T )) a counterexample to the claim that all such algebras have
DPSC? (Yes)
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A(T )

For a Turing machine T with n states, the underlying set of A′(T ) has
(20n + 8) elements:

A′(T ) = {0, 1, 2,H,C ,D, ∂C , ∂D,

C s
ir ,D

s
ir ,M

r
i , ∂C s

ir , ∂Ds
ir , ∂M r

i | 0 ≤ i ≤ n and r , s ∈ {0, 1}} .

A′(T ) has operations to emulate computation on certain tuples of the
indexed elements:

L = {Lirt | T has instruction (µi , r , s, L, µj) and t ∈ {0, 1}} ,
R = {Rirt | T has instruction (µi , r , s,R, µj) and t ∈ {0, 1}} .

The operations of A(T ) are{
0,∧, (·), J, J ′,S0, S1, S2,T , I ,F ,U

0
F ,U

1
F | F ∈ L ∪R

}
.

The algebra A′(T ) (has DPSC iff T halts) includes an operation K .
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Let A′(T ) be A(T ) with a new operation, K , added to the language.

Theorem

The following are equivalent:

T halts.

V(A′(T )) has finitely many SI’s, all finite.

V(A′(T )) has DPSC.

V(A′(T )) is finitely axiomatizable.

Proof involves analysis of Maltsev chains:

F (. . . ) ⇒

J′(. . . )

J(. . . )

J′(. . . )

J′(. . . )

⇒
J′(. . . )

J(. . . )
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The Counterexample

Define Bn = 〈{a, bi , di | 2 ≤ i ≤ n}〉 where

bi = (D,D, . . . ,
i

D̂, 0, . . . , 0), a = b1,

di = (D, . . . ,D,
i

∂̂D, 0, . . . , 0), ci = (0,D, . . . ,
i

D̂, 0, . . . , 0).

A(T ) has lots of operations, but the only nonzero ones on Bn are

x ∧ y =

{
x if x = y

0 otherwise
S2(u, v , x , y , z) =

{
(x ∧ y) ∨ (x ∧ z) if u = ∂v

0 otherwise

J(x , y , z) =


x if x = y

x ∧ z if x = ∂y

0 otherwise

J ′(x , y , z) =


x ∧ z if x = y

x if x = ∂y

0 otherwise

Look at (bn, dn) ∈ CgBn(a, 0).
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The Calculation

a

0

b2

c2

b3

c3

· · ·

bn

cn

J′(b2, d2, x) J′(b3, d3, x)

λ(x) = J′(bn, dn, J′(bn−1, dn−1, · · · J′(b2, d2, x) · · · ))

λ(x) uses 2(n − 1) distinct parameters (so the smallest B ≤ Bn

witnessing (bn, cn) ∈ CgBn(0, a) is of size ≥ 2(n − 1)).
Therefore V(A(T )) doesn’t have DPSC.

The compositional depth of λ(x) is n − 1.
Therefore V(A(T )) doesn’t have bounded Maltsev depth.
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What about the K operation?

With K in the language, Bn contains an element p such that...

a

0

b2

c2

b3

c3

· · ·

bn

cn

J′(b2, d2, x) J′(b3, d3, x)

λ(x) = J′(bn, dn, J′(bn−1, dn−1, · · · J′(b2, d2, x) · · · ))

J′(bn, p, x)

The K operation was introduced precisely so that things like λ(x) could be
simplified.
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Thank you.
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