The Variety Generated by $\mathbb{A}(\mathcal{T})$ – Two Counterexamples

Matthew Moore

Vanderbilt University

October 6, 2013

Matthew Moore (VU)

Conjecture (Park)

If ${\cal V}$ is a finitely generated variety with finite residual bound, then ${\cal V}$ is finitely based.

Known if $\mathcal{V}...$

- is congruence distributive (Baker).
- is congruence modular (McKenzie).
- is congruence meet-semidistributive (CSD(∧)) (Willard).
- has a difference term (Kearnes, Szendrei, Willard).

Finite Basis Theorems

Theorem (Baker)

If \mathcal{V} is a finitely generated congruence distributive variety, then \mathcal{V} is finitely based.

Some alternate proofs use:

- definable principal subcongruences
- bounded Maltsev depth

Theorem (Willard)

If \mathcal{V} is a finitely generated congruence meet-semidistributive and has finite residual bound, then \mathcal{V} is finitely based.

Do alternate proofs exist that use:

- definable principal subcongruences?
- bounded Maltsev depth?

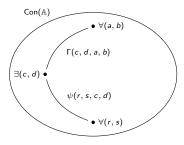
Question

If \mathbb{A} generates a variety that has finite residual bound and is $CSD(\wedge)$, does the variety have...

- definable principal subcongruences?
- bounded Maltsev depth?

Definition

A variety \mathcal{V} is said to have *definable principal subcongruences (DPSC)* if there are congruence formulas $\Gamma(-, -, -, -)$ and $\psi(-, -, -, -)$ such that for all $\mathbb{A} \in \mathcal{V}$ and all $a, b \in A$ there exist $c, d \in A$ such that $\Gamma(c, d, a, b)$ witnesses $(c, d) \in \operatorname{Cg}^{\mathbb{A}}(a, b)$ and $\psi(-, -, c, d)$ defines $\operatorname{Cg}^{\mathbb{A}}(c, d)$.



If \mathcal{V} has DPSC and $Cg^{\mathbb{A}}(a, b)$ is an atomic congruence of some $\mathbb{A} \in \mathcal{V}$, then $\psi(-, -, a, b)$ defines $Cg^{\mathbb{A}}(a, b)$.

If ${\mathcal V}$ has DPSC, then every atomic congruence is defined by $\psi.$

This means...

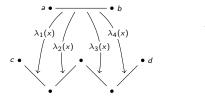
- there is $N \in \mathbb{N}$ such that
 - $\bullet \ \ \text{for all} \ \mathbb{A} \in \mathcal{V},$
 - all $a, b \in A$ with $\mathsf{Cg}^{\mathbb{A}}(a, b)$ atomic, and
 - all $(c, d) \in \mathsf{Cg}^{\mathbb{A}}(a, b)$

there is $\mathbb{B} \leq \mathbb{A}$ of size at most N with $(c, d) \in \mathsf{Cg}^{\mathbb{B}}(a, b)$.

• to disprove DPSC for \mathcal{V} , find $\mathbb{A} \in \mathcal{V}$ and atomic $Cg^{\mathbb{A}}(a, b)$ such that there is no bound on minimal $\mathbb{B} \leq \mathbb{A}$ witnessing $(c, d) \in Cg^{\mathbb{B}}(a, b)$.

Definition

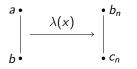
A variety \mathcal{V} has *Maltsev depth N* if for every $\mathbb{A} \in \mathcal{V}$ and every $a, b \in \mathbb{A}$, $(c, d) \in Cg^{\mathbb{A}}(a, b)$ is witnessed by a Maltsev chain with associated polynomials of compositional depth at most N (and N is minimal).



$$\forall \mathbb{A} \in \mathcal{V}, \ \forall a, b, c, d \in A...$$

 $\lambda_i(x)$ has uniformly bounded depth.

- Find \mathcal{V} that is CSD(\wedge) and has finite residual bound.
- Find family of $\mathbb{B}_n \in \mathcal{V}$ and $a, b, b_n, c_n \in B_n$ such that...



- $\operatorname{Cg}^{\mathbb{B}_n}(a, b)$ is atomic.
- This is the "best" Maltsev chain witnessing $(b_n, c_n) \in Cg^{\mathbb{B}}(a, b).$
- The number of parameters used in $\lambda(x)$ scales with *n*.
- $\lambda(x)$ has depth that scales with *n*.
- Letting *n* grow will demonstrate that \mathcal{V} has neither DPSC nor bounded Maltsev depth.

The Algebra $\mathbb{A}(\mathcal{T})$

- McKenzie associated to each Turing machine T an algebra A(T) such that V(A(T)) has finite residual bound iff T halts.
- A(T) has a semilattice operation, so V(A(T)) is CSD(∧). When T halts, V(A(T)) has finite residual bound.
- Willard proved that $\mathcal{V}(\mathbb{A}(\mathcal{T}))$ is finitely axiomatizable iff \mathcal{T} halts.
- By adding another operation to $\mathbb{A}(\mathcal{T})$, I proved that $\mathcal{V}(\mathbb{A}'(\mathcal{T}))$ has DPSC iff \mathcal{T} halts.
- Is V(A(T)) a counterexample to the claim that all such algebras have DPSC? (Yes)

$\mathbb{A}(\mathcal{T})$

For a Turing machine \mathcal{T} with *n* states, the underlying set of $\mathbb{A}'(\mathcal{T})$ has (20n + 8) elements:

$$\begin{aligned} A'(\mathcal{T}) &= \{0, 1, 2, H, C, D, \partial C, \partial D, \\ C_{ir}^s, D_{ir}^s, M_i^r, \partial C_{ir}^s, \partial D_{ir}^s, \partial M_i^r \mid 0 \le i \le n \text{ and } r, s \in \{0, 1\}\}. \end{aligned}$$

 $\mathbb{A}'(\mathcal{T})$ has operations to emulate computation on certain tuples of the indexed elements:

$$\mathcal{L} = \{L_{irt} \mid \mathcal{T} \text{ has instruction } (\mu_i, r, s, L, \mu_j) \text{ and } t \in \{0, 1\}\},\ \mathcal{R} = \{R_{irt} \mid \mathcal{T} \text{ has instruction } (\mu_i, r, s, R, \mu_j) \text{ and } t \in \{0, 1\}\}.$$

The operations of $\mathbb{A}(\mathcal{T})$ are

$$\left\{0, \wedge, (\cdot), J, J', S_0, S_1, S_2, T, I, F, U_F^0, U_F^1 \mid F \in \mathcal{L} \cup \mathcal{R}\right\}.$$

The algebra $\mathbb{A}'(\mathcal{T})$ (has DPSC iff \mathcal{T} halts) includes an operation K.

Let $\mathbb{A}'(\mathcal{T})$ be $\mathbb{A}(\mathcal{T})$ with a new operation, K, added to the language.

Theorem

The following are equivalent:

- T halts.
- $\mathcal{V}(\mathbb{A}'(\mathcal{T}))$ has finitely many SI's, all finite.
- $\mathcal{V}(\mathbb{A}'(\mathcal{T}))$ has DPSC.
- $\mathcal{V}(\mathbb{A}'(\mathcal{T}))$ is finitely axiomatizable.

Proof involves analysis of Maltsev chains:

$$F(\ldots) | \qquad \Rightarrow \qquad \begin{vmatrix} J'(\ldots) \\ \bullet \\ J'(\ldots) \\ \bullet \\ J'(\ldots) \\ \downarrow J'(\ldots) \\ \downarrow J'(\ldots) \end{vmatrix}$$

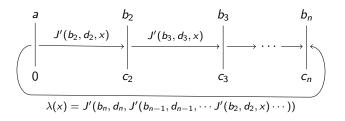
The Counterexample

Define
$$\mathbb{B}_{n} = \langle \{a, b_{i}, d_{i} \mid 2 \leq i \leq n \} \rangle$$
 where
 $b_{i} = (D, D, \dots, \overset{i}{\hat{D}}, 0, \dots, 0), \quad a = b_{1},$
 $d_{i} = (D, \dots, D, \overset{i}{\partial D}, 0, \dots, 0), \quad c_{i} = (0, D, \dots, \overset{i}{\hat{D}}, 0, \dots, 0).$

 $\mathbb{A}(\mathcal{T})$ has **lots** of operations, but the only nonzero ones on \mathbb{B}_n are

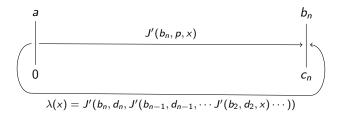
$$x \wedge y = \begin{cases} x & \text{if } x = y \\ 0 & \text{otherwise} \end{cases} \quad S_2(u, v, x, y, z) = \begin{cases} (x \wedge y) \lor (x \wedge z) & \text{if } u = \partial v \\ 0 & \text{otherwise} \end{cases}$$
$$J(x, y, z) = \begin{cases} x & \text{if } x = y \\ x \wedge z & \text{if } x = \partial y \\ 0 & \text{otherwise} \end{cases} \quad J'(x, y, z) = \begin{cases} x \wedge z & \text{if } x = y \\ x & \text{if } x = \partial y \\ 0 & \text{otherwise} \end{cases}$$

Look at $(b_n, d_n) \in Cg^{\mathbb{B}_n}(a, 0)$.



- $\lambda(x)$ uses 2(n-1) distinct parameters (so the smallest $\mathbb{B} \leq \mathbb{B}_n$ witnessing $(b_n, c_n) \in Cg^{\mathbb{B}_n}(0, a)$ is of size $\geq 2(n-1)$). Therefore $\mathcal{V}(\mathbb{A}(\mathcal{T}))$ doesn't have DPSC.
- The compositional depth of λ(x) is n − 1.
 Therefore V(A(T)) doesn't have bounded Maltsev depth.

With K in the language, \mathbb{B}_n contains an element p such that...



The K operation was introduced precisely so that things like $\lambda(x)$ could be simplified.

Thank you.