Naturally dualizable algebras omitting types 1 and 5 have a cube term

(the talk formerly known as "Idempotent congruence modular algebras that admit a natural duality have cube terms")

Matthew Moore

Vanderbilt University

May 20, 2014

Let \mathbb{A} be a finite algebra such that $\mathcal{V}(\mathbb{A})$ omits types 1 and 5. If \mathbb{A} admits a natural duality, then \mathbb{A} has a cube term.

Naturally dualizable

• Omitting types ${f 1}$ and ${f 5}$

Natural dualities

Motivational examples to think of:

- Stone duality between Boolean algebras and Stone spaces
- Priestley duality between distributive lattices and bounded Priestley spaces
- Pontryagin duality for abelian groups

Ingredients for a duality:

- a finite algebra $\mathbb{A} = \langle A; F \rangle$
- a structured topological space $\mathbf{A} = \langle A; G, H, R, T \rangle$ (G = total ops, H = partial ops, R = relations, T = discrete topology)
- If $\mathbb{B} \in SP(\mathbb{A})$ then $\mathbb{B}^{\partial} = Hom(\mathbb{B}, \mathbb{A}) \in S_cP_+(\underline{A})$
- If $\underline{\mathsf{B}} \in \mathsf{S}_c\mathsf{P}_+(\underline{\mathsf{A}})$ then $\underline{\mathsf{B}}^\partial = \mathsf{Hom}(\underline{\mathsf{B}},\underline{\mathsf{A}}) \in \mathsf{SP}(\mathbb{A})$
- \mathbf{A} should be algebraic over \mathbf{A}

Natural dualities

For $\mathbb{B} \in \mathbf{SP}(\mathbb{A})$ there are mappings $e_{\mathbb{B}} : \mathbb{B} \to \mathbb{B}^{\partial \partial}$ $x \mapsto (e_{\mathbb{B}}(x) : \mathbb{B}^{\partial} \to \mathbf{A} : y \mapsto y(a)),$ A dualizes \mathbb{A} if $e_{\mathbb{B}}$ are isomorphisms for all $\mathbb{B} \in \mathbf{SP}(\mathbb{A}).$

Examples of naturally dualizable algebras:

- Groups whose Sylow subgroups are abelian [Nickodemus 2007]
- Rings whose Jacobson radical squares to (0) [Clark, Idziak, Sabourin, Szabo, Willard 2001]
- Algebras with a compatible semilattice operation [Davey, Jackson, Pitkethly, Taukder 2007]
- Algebras with near unanimity term [Davey, Heindorf, McKenzie 1995]

Let \mathbb{A} be a finite algebra such that $\mathcal{V}(\mathbb{A})$ omits types **1** and **5**. If \mathbb{A} admits a natural duality, then \mathbb{A} has a cube term.

Naturally dualizable

• Omitting types 1 and 5

Omitting $\{1, 5\}$

TCT type ${\bf 1}$ is the unary type, ${\bf 5}$ is the semilattice type

If $\mathbb A$ finite and $\mathcal V(\mathbb A)$ is congruence modular then $\mathcal V(\mathbb A)$ omits 1 and 5.

Theorem (Kearnes, Kiss)

The following are equivalent for a variety \mathcal{V} .

1 \mathcal{V} omits types **1** and **5**.

V has a sequence of idempotent terms f_i(x, y, v, u) for 0 ≤ i ≤ 2m + 1, such that
V ⊨ f₀(x, y, u, v) ≈ x and V ⊨ f_{2m+1}(x, y, u, v) ≈ v,
V ⊨ f_i(x, y, y, y) ≈ f_{i+1}(x, y, y, y) for all even i,
V ⊨ f_i(x, x, y, y) ≈ f_{i+1}(x, x, y, y) for all odd i, and

• $\mathcal{V} \models f_i(x, y, x, y) \approx f_{i+1}(x, y, x, y)$ for all odd *i*.

Let \mathbb{A} be a finite algebra such that $\mathcal{V}(\mathbb{A})$ omits types **1** and **5**. If \mathbb{A} admits a natural duality, then \mathbb{A} has a cube term.

Naturally dualizable

• Omitting types 1 and 5

Cube terms

For a variety \mathcal{V} the term $t(x_1, \ldots, x_n)$ is a **cube term for** \mathcal{V} , if for all $1 \le i \le n$ there is a choice of $u_1, \ldots, u_n \in \{x, y\}$ with $u_i = y$ such that

$$\mathcal{V} \models t(u_1,\ldots,u_n) \approx x$$

Two examples:

• The "weakest" cube term is

.

$$t\begin{pmatrix} y & x & \cdots & x \\ x & y & \cdots & x \\ \vdots & & \ddots & \vdots \\ x & x & \cdots & y \end{pmatrix} \approx \begin{pmatrix} x \\ x \\ \vdots \\ x \end{pmatrix}$$

• The "strongest" cube term "is"

$$t\begin{pmatrix} y & x & x & y & y & x & y \\ x & y & x & y & x & y & y \\ x & x & y & x & y & y & y \end{pmatrix} \approx \begin{pmatrix} x \\ x \\ x \end{pmatrix}$$

Let \mathbb{A} be a finite algebra such that $\mathcal{V}(\mathbb{A})$ omits types **1** and **5**. If \mathbb{A} admits a natural duality, then \mathbb{A} has a cube term.

• Naturally dualizable

• Omitting types 1 and 5

Theorem (Davey, Heindorf, McKenzie 1995)

The following are equivalent for a finite algebra \mathbb{A} .

- $\textcircled{0} \ \ \mathbb{A} \ \ \text{is dualizable and} \ \ \mathcal{V}(\mathbb{A}) \ \ \text{is congruence distributive.}$
- A has a near unanimity term.

Question

Is there a similar connection between the existence of a cube term for congruence modular $\mathcal{V}(\mathbb{A})$ and dualizability of \mathbb{A} ?

Intuition:

- The cube term is a generalization of the NU term.
- \bullet A cube term for ${\cal V}$ implies CM just like an NU term for ${\cal V}$ implies CD.

Counter-evidence:

• The group \mathbb{S}_3 is in a CM variety, has a cube term, and is dualizable, but the algebra obtained by adding constants is non-dualizable.

Matthew Moore (VU)

Inherent non-dualizability

A finite algebra \mathbb{A} is **inherently non-dualizable** if for all finite algebras \mathbb{B} ,

 $\mathbb{A} \in \textbf{SP}(\mathbb{B}) \qquad \text{ implies } \qquad \mathbb{B} \text{ non-dualizable.}$

Theorem (Davey, Idziak, Lampe, McNulty 1997)

Let \mathbb{A} be a finite algebra, $\mathbb{B} \leq \mathbb{A}^Z$, $B_0 \subseteq B$ be an infinite subset such that

- there is a function $\varphi : \omega \to \omega$ such that for all $k \in \omega$ and all $\theta \in Con(\mathbb{B})$ of index at most $k, \theta|_{B_0}$ has a unique block of size greater than $\varphi(k)$; and
- if the element g ∈ A^Z is defined by g(z) = π(a_z) for z ∈ Z, where a_z is an element of the unique block of ker(π_z)|_{B0} of size greater than φ(|B|), then g ∉ B.

Then \mathbb{A} is inherently non-dualizable.

Pick A the smallest idempotent dualizable algebra omitting 1 and 5 without a cube term. A has a cube term blocker, so there are $a, b \in A$ such that there is no $t(\cdots)$ with

$$t\left(\text{cube pattern on } (a,b)\right) = \begin{pmatrix} a \\ \vdots \\ a \end{pmatrix}$$

Define elements of A^{ω}

$$\alpha_{i_1 \cdots i_n} = \begin{cases} b & \text{if } i \in \{i_1, \dots, i_n\} \\ a & \text{otherwise.} \end{cases}$$

We will apply the non-dualizability theorem to

$$C_0 = \{ \alpha_i \mid i \in \omega \} \qquad \qquad \mathbb{C} = \operatorname{Sg}^{\mathbb{A}^{\omega}}(C_0)$$

To show:

In there is a function φ : ω → ω such that for all k ∈ ω and all θ ∈ Con(ℂ) of index at most k, θ|_{C0} has a unique block of size greater than φ(k)

Take $\varphi(k) = 1$, $\theta \in Con(\mathbb{C})$, and assume that there are two $\theta|_{C_0}$ -blocks of size > 1:

$$S = \{\alpha_1, \alpha_3, \ldots\}$$
 and $T = \{\alpha_2, \alpha_4, \ldots\}$

Claim

The set $\{\alpha_{12}, \alpha_{14}, \alpha_{23}, \alpha_{34}, \alpha_{124}, \alpha_{123}, \alpha_{134}, \alpha_{234}\}$ *lies in single* θ *-block.*

Proof of claim.

... (use the WNU and cube term blockers) ...

To show:

there is a function φ : ω → ω such that for all k ∈ ω and all θ ∈ Con(ℂ) of index at most k, θ|_{C0} has a unique block of size greater than φ(k)

Claim

 $\alpha_1 \theta \alpha_2.$

Proof of claim.

 \mathbbm{A} omits 1 and 5, so we have terms

•
$$\mathcal{V} \models f_0(x, y, u, v) \approx x$$
 and $\mathcal{V} \models f_{2m+1}(x, y, u, v) \approx v$,

2 $\mathcal{V} \models f_i(x, y, y, y) \approx f_{i+1}(x, y, y, y)$ for all even *i*,

3
$$\mathcal{V} \models f_i(x, x, y, y) \approx f_{i+1}(x, x, y, y)$$
 for all odd *i*, and

•
$$\mathcal{V} \models f_i(x, y, x, y) \approx f_{i+1}(x, y, x, y)$$
 for all odd *i*.

If *i* is even then $f_i(\alpha_1, \alpha_{12}, \alpha_{12}, \alpha_{12}) = f_{i+1}(\alpha_1, \alpha_{12}, \alpha_{12}, \alpha_{12})$. If *i* is odd then by the previous claim,

 $f_i(\alpha_1, \alpha_{12}, \alpha_{12}, \alpha_{12}) \theta f_i(\alpha_1, \alpha_{12}, \alpha_{34}, \alpha_{234})$

$$= f_i \begin{pmatrix} b & b & a & a \\ a & b & a & b \\ a & a & b & b \\ a & a & b & b \end{pmatrix} = f_{i+1} \begin{pmatrix} b & b & a & a \\ a & b & a & b \\ a & a & b & b \\ a & a & b & b \end{pmatrix}$$
$$= f_{i+1}(\alpha_1, \alpha_{12}, \alpha_{34}, \alpha_{234}) \ \theta \ f_{i+1}(\alpha_1, \alpha_{12}, \alpha_{12}, \alpha_{12})$$

To show:

if the element g ∈ A^ω is defined by g(z) = π_z(a_z) for z ∈ ω, where a_z is an element of the unique block of ker(π_z)|_{C₀} of size greater than φ(|C|), then g ∉ C

Observe:

• ker $(\pi_z)|_{C_0}$ has two blocks: $X_z = \{\alpha_z\}$ and $Y_z = \{\alpha_i \mid i \neq z\}$.

• Therefore Y_z is the unique large block, and $\pi_z(\alpha_i) = a$ for $i \neq z$.

• Thus
$$g(z) = a$$
 for all $z \in \omega$.

Claim $g \notin C$

Proof of claim.

Suppose that $g \in C$. Then there is a term $t(\cdots)$ such that $t(\alpha_1, \ldots, \alpha_m) = g$. That is,

$$t\begin{pmatrix} b & a & \cdots & a \\ a & b & \cdots & a \\ \vdots & & \ddots & \vdots \\ a & a & \cdots & b \end{pmatrix} = \begin{pmatrix} a \\ a \\ \vdots \\ a \end{pmatrix}$$

We chose a and b so that this couldn't happen!

By the non-dualizability theorem \mathbbm{A} is inherently non-dualizable. This is a contradiction.

Matthew Moore (VU)

Dualizable, omits $\{1, 5\}$ implies cube

Let \mathbb{A} be a finite algebra such that $\mathcal{V}(\mathbb{A})$ omits types 1 and 5. If \mathbb{A} admits a natural duality, then \mathbb{A} has a cube term.

Thank you!