Optimal strong Maltsev conditions for congruence meet-semidistributivity

Matthew Moore
Vanderbilt University

November 27, 2014

Joint work with...

Jelena Jovanović, Belgrade University

Petar Marković, University of Novi Sad

Ralph McKenzie, Vanderbilt University

$S D(\wedge)$ varieties

Definition

A variety \mathcal{V} is congruence meet-semidistributive $(\mathrm{SD}(\wedge))$ if for every algebra $\mathbb{A} \in \mathcal{V}$,

$$
\operatorname{Con}(\mathbb{A}) \models[(x \wedge y \approx x \wedge z) \rightarrow(x \wedge y \approx x \wedge(y \vee z))]
$$

(for \mathcal{V} locally finite ...)

- (\Leftrightarrow) is not a sublattice of $\operatorname{Con}(\mathbb{A})$ for all $\mathbb{A} \in \mathcal{V}$
- $(\Leftrightarrow) \mathcal{V}$ omits TCT types $\mathbf{1}$ and $\mathbf{2}$:
- $(\Leftrightarrow) \operatorname{Con}(\mathbb{A}) \vDash[x, y] \approx x \wedge y$ for any $\mathbb{A} \in \mathcal{V}$ (congruence neutral)
- Park's Conjecture is true (if \mathcal{V} has finite residual bound, then \mathcal{V} is finitely based) [Willard 2000]
- $\operatorname{CSP}(\mathbb{A})$ can be solved using local consistency checking [Barto, Kozik 2014]

$\operatorname{CSP}(\mathbb{A})$

Definition

For a finite algebra $\mathbb{A}, \operatorname{CSP}(\mathbb{A})$ is the CSP restricted to constraints C such that $C \leq \mathbb{A}^{n}$ for some n.

Examine relations over $\mathbb{F}^{\mathcal{V}}\left(x_{1}, \ldots, x_{n}\right)$.

$\operatorname{CSP}(\mathbb{A})$

Theorem (Barto 2014)

If \mathbb{A} is idempotent and $\mathcal{V}(\mathbb{A})$ is $S D(\wedge)$, then every $(2,3)$-minimal instance of $\operatorname{CSP}(\mathbb{A})$ has a solution.

Definition

Let $(V ; A ; \mathcal{C})$ be a CSP instance.

- $(V ; A ; \mathcal{C})$ is 2-consistent if for every $U \subseteq V$ with $|U| \leq 2$ and every pair of constraints $C, D \in \mathcal{C}$ containing U in their scopes, $\left.C\right|_{U}=\left.D\right|_{U}$.
- $(V ; A ; \mathcal{C})$ is $(\mathbf{2}, \mathbf{3})$-minimal if it is 2-consistent and every subset $U \leq V$ with $|U| \leq 3$ is contained in the scope of some constraint. any variety of modules.

Some known Maltsev characterizations

A variety \mathcal{V} is said to satisfy $\operatorname{WNU}(n)$ if it has an idempotent n-ary term $t(\cdots)$ such that

$$
\mathcal{V} \models t(y, x, \ldots, x) \approx t(x, y, x, \ldots, x) \approx \cdots \approx t(x, \ldots, x, y)
$$

This is the weak near unanimity term condition.
TFAE for locally finite \mathcal{V}

- \mathcal{V} is $\mathrm{SD}(\wedge)$
- there exists $n>1$ such that $\mathcal{V} \models \operatorname{WNU}(k)$ for all $k \geq n$ [Maroti, McKenzie 2008]
- \mathcal{V} satisfies $\mathrm{WNU}(4)$ via $t(\cdots)$ and $\mathrm{WNU}(3)$ via $s(\cdots)$ and

$$
t(y, x, x, x) \approx s(y, x, x)
$$

[Kozik, Krokhin, Valeriote, Willard 2013]

"Better" Maltsev conditions

Let Σ and Ω be Maltsev conditions.
(some sets of equations in some language)

- Write $\Sigma \preceq \Omega$ if any variety which realizes Ω must also realize Σ.
- This induces a preorder.
- If $\Sigma \preceq \Omega$, we say Ω is stronger than Σ.
- If $\Sigma \preceq \Omega \preceq \Sigma$, we say the conditions are equivalent and write $\Sigma \sim \Omega$.

Many strong Maltsev conditions which are not equivalent are equivalent within the class of locally finite varieties.

Characterizations of $\operatorname{SD}(\wedge)$ for locally finite \mathcal{V}

$$
\begin{aligned}
& t(\ldots), s(\ldots) \text { WNU's } \\
& t(y x x x) \approx s(y x x)
\end{aligned}
$$

$\exists n \forall k>n$ there is k-ary WNU

A restricted \preceq-minimal characterization

Theorem (JMMM)

A locally finite variety \mathcal{V} is $S D(\wedge)$ iff there are idempotent terms $p(\cdots)$, $q(\cdots)$ such that

$$
\begin{gathered}
p(x, x, y) \approx p(x, y, x) \approx p(y, x, x) \approx q(x, y, z) \text { and } \\
q(x, x, y) \approx q(x, y, y)
\end{gathered}
$$

There is no idempotent strong Maltsev condition characterizing $\mathrm{SD}(\wedge)$ in the language with one ternary and any number of binary operation symbols.

In the class of all strong idempotent Maltsev conditions in a language consisting of 2 ternary operation symbols, a computer search produced as a candidate for being \preceq-minimal for characterizing $\operatorname{SD}(\wedge)$ varieties. [Jovanović 2013]

Characterizations of $\mathrm{SD}(\wedge)$ for locally finite \mathcal{V}


```
Language=
one 3=ary,-any`## kinary
```


Other optimal Maltsev characterizations

Theorem (JMMM)

A locally finite variety \mathcal{V} is $S D(\wedge)$ iff there is an idempotent term $t(\cdots)$ such that

$$
\begin{aligned}
t(y, x, x, x) & \approx t(x, y, x, x) \\
& \approx t(x, x, y, x) \\
\approx t(y, y, x, x) & \approx t(y, x, y, x)
\end{aligned}
$$

Look at the relation

$$
U=\operatorname{Sg}\left(\begin{array}{llll}
x & x & x & y \\
x & x & y & x \\
x & y & x & x \\
y & x & x & x \\
y & y & x & x \\
y & x & y & x \\
x & y & y & x
\end{array}\right)
$$

in $\mathbb{F}^{\mathcal{V}}(x, y)$, plus 11 ternary relations, plus 3 binary. Then use a (difficult) Ramsey argument. Can we do better?

How much better can we do?

Theorem

Any strong Maltsev condition of the form

$$
f(x, \ldots, x) \approx x \quad \text { and } \quad f\left(y_{1}, \ldots, y_{n}\right) \approx f\left(z_{1}, \ldots, z_{n}\right)
$$

where $y_{i}, z_{j} \in\left\{x_{1}, \ldots, x_{m}\right\}$, that is realized in a nontrivial semilattice can also be realized in a nontrivial module.

Characterizations of $\operatorname{SD}(\wedge)$ for locally finite \mathcal{V}

$\exists n \forall k>n$ there is k-ary WNU

```
Language =
one 3=ary, any'# binary
```

```
Langūage \(=\)
idempotent \(\overline{\bar{f}}, \quad f(\bar{x} \bar{x})=f(\bar{y})\)
```


Candidates for "least-equations"-optimal

Amongst all idempotent strong Maltsev conditions of the form

$$
f(\bar{x}) \approx f(\bar{y}) \approx f(\bar{z})
$$

for $f(\cdots)$ of arity ≤ 4, a computer search eliminates all but two candidates:

$$
t\left(\begin{array}{llll}
x & x & y & z \\
y & z & y & x \\
x & z & z & y
\end{array}\right)=\left(\begin{array}{l}
w \\
w \\
w
\end{array}\right) \quad t\left(\begin{array}{llll}
x & x & y & z \\
y & x & z & x \\
y & z & x & y
\end{array}\right)=\left(\begin{array}{l}
w \\
w \\
w
\end{array}\right)
$$

Problem

Prove that a locally finite $S D(\wedge)$ variety satisfies one (or both) of the Maltsev conditions above.

Characterizations of $\operatorname{SD}(\wedge)$ for locally finite \mathcal{V}


```
Language=
one, 3=ary,'any'# binary
```

```
Langūage \(=\)
idempotent \(\bar{f}, \quad f(\bar{x})=\underline{f}(\bar{y})\)
```


WNU's (special and otherwise)

Theorem (JMMM)

A locally finite variety \mathcal{V} is $S D(\wedge)$ iff there is a term $t(x, y)$ and for all $n \geq 3$,

- there exists n-ary WNU, w(\cdots) and
- $t(x, y)=w(y, x, \ldots, x)$.

A WNU $w(\cdots)$ is called special if $t(x, t(x, y))=t(x, y)$ for $t(x, y)=w(y, x, \ldots, x)$.

Problem

Prove that the WNU's in the above theorem can be taken to be special.

Problem

A locally finite variety \mathcal{V} is $S D(\wedge)$ if there exists n such that \mathcal{V} has special WNU's of all arities $k>n$.

Characterizations of $\operatorname{SD}(\wedge)$ for locally finite \mathcal{V}


```
Language =
one, 3=ary,'any'# binary
```

```
Lañgūage \(=\)
idempotent \(\bar{f}, f(\bar{x}) \equiv \underline{f}(\bar{y})\)
```


Characterizations of $\mathrm{SD}(\wedge)$ for locally finite \mathcal{V}


```
Language =
one, 3=ary,'any'# binary
```

$$
\begin{aligned}
& \text { Language }= \\
& \text { idempotent } \bar{f},<\bar{f}(\bar{x}) \equiv \underline{f}(\bar{y})
\end{aligned}
$$

Thank you.

Shanks workshop: Open Problems in Universal Algebra
Vanderbilt University
May 28 - June 1, 2015
www.math.vanderbilt.edu/~moorm10/shanks/

