Optimal strong Maltsev conditions for congruence meet-semidistributivity

Matthew Moore

Vanderbilt University

January 7, 2015 BLAST at New Mexico State University

Joint work with...

Jelena Jovanović, Belgrade University

Petar Marković, University of Novi Sad

Ralph McKenzie, Vanderbilt University

Outline

- \bullet SD(\wedge) and the CSP
- 2 Known Maltsev conditions
- **3** Better Maltsev conditions for $SD(\land)$
- 4 Some conjectured Maltsev conditions

$SD(\land)$ varieties

Definition

A variety $\mathcal V$ is **congruence meet-semidistributive** (SD(\wedge)) if for every algebra $\mathbb A \in \mathcal V$,

$$\mathsf{Con}(\mathbb{A}) \models \big[(x \land y \approx x \land z) \rightarrow (x \land y \approx x \land (y \lor z)) \big].$$

(for \mathcal{V} locally finite . . .)

- ullet (\Leftrightarrow) ullet is not a sublattice of $\mathsf{Con}(\mathbb{A})$ for all $\mathbb{A} \in \mathcal{V}$
- (\Leftrightarrow) $\mathcal V$ omits TCT types $\mathbf 1$ and $\mathbf 2$:
- (\Leftrightarrow) Con(\mathbb{A}) \models $[x,y] <math>\approx x \land y$ for any $\mathbb{A} \in \mathcal{V}$ (congruence neutral)
- Park's Conjecture is true (if $\mathcal V$ has finite residual bound, then $\mathcal V$ is finitely based) [Willard 2000]
- CSP($\mathbb A$) can be solved using local consistency checking [Barto, Kozik 2014]

CSP(A)

Definition

Let \mathbb{A} be a finite algebra. An instance of the **constraint satisfaction problem for** \mathbb{A} , written $\mathsf{CSP}(\mathbb{A})$, is a triple $(V; A; \mathcal{C})$:

- V is a finite nonempty set of variables
- $m{\cdot}$ \mathcal{C} is a finite nonempty set of **constraints**
 - for each $C \in \mathcal{C}$ there is $W \subseteq V$ such that $C \leq \mathbb{A}^W$
 - W is called the **scope** of C
 - |W| is called the **arity** of C

An instance of $CSP(\mathbb{A})$ is said to have a **solution** if there is an assignment of elements of A to the variables V so that all constraints are true.

Example:

$$\mathbb{A} \models \exists \overline{x} [(x_1, x_3) \in R_1 \ \land \ x_2 \in R_2 \ \land \ x_3 \in R_2 \ \land \ (x_2, x_3, x_1) \in R_3]$$

How hard is it to decide if a solution exists?

$\mathsf{CSP}(\mathbb{A})$

Theorem (Barto 2014)

If \mathbb{A} is idempotent and $\mathcal{V}(\mathbb{A})$ is $SD(\wedge)$, then every (2,3)-minimal instance of $CSP(\mathbb{A})$ has a solution.

Definition

Let (V; A; C) be a CSP instance.

- (V; A; C) is **2-consistent** if for every $U \subseteq V$ with $|U| \le 2$ and every pair of constraints $C, D \in C$ containing U in their scopes, $C|_U = D|_U$.
- (V; A; C) is (2,3)-minimal if it is 2-consistent and every subset $U \le V$ with $|U| \le 3$ is contained in the scope of some constraint.

Typical usage: build a (2,3)-minimal CSP($\mathbb{F}(\overline{x})$) instance (in l.f. idemp. SD(\wedge) variety) and use combinatorics.

Theorem

 $\mathcal V$ is $SD(\wedge)$ iff $\mathcal V$ satisfies an idempotent Maltsev condition which fails in any variety of modules.

 \bullet SD(\wedge) and the CSP

2 Known Maltsev conditions

3 Better Maltsev conditions for $SD(\land)$

4 Some conjectured Maltsev conditions

Some known Maltsev characterizations

A variety $\mathcal V$ is said to satisfy WNU(n) if it has an idempotent n-ary term $t(\cdots)$ such that

$$\mathcal{V} \models t(y, x, \ldots, x) \approx t(x, y, x, \ldots, x) \approx \cdots \approx t(x, \ldots, x, y).$$

This is the weak near unanimity term condition.

TFAE for locally finite ${\cal V}$

- V is SD(∧)
 - there exists n > 1 such that $\mathcal{V} \models \mathsf{WNU}(k)$ for all $k \ge n$ [Maroti, McKenzie 2008]
 - $\mathcal V$ satisfies WNU(4) via $t(\cdots)$ and WNU(3) via $s(\cdots)$ and

$$t(y, x, x, x) \approx s(y, x, x)$$

[Kozik, Krokhin, Valeriote, Willard 2013]

"Better" Maltsev conditions

Let Σ and Ω be Maltsev conditions. (some sets of equations in some language)

- Write $\Sigma \leq \Omega$ if any variety which realizes Ω must also realize Σ .
- This induces a preorder.
- If $\Sigma \leq \Omega$, we say Ω is **stronger** than Σ .
- If $\Sigma \leq \Omega \leq \Sigma$, we say the conditions are **equivalent** and write $\Sigma \sim \Omega$.

Many strong Maltsev conditions which are not equivalent are equivalent within the class of locally finite varieties.

$$t(\dots), s(\dots)$$
 WNU's $t(yxxx) \approx s(yxx)$

 $\exists n \forall k > n \text{ there}$ is k-ary WNU

 \bullet SD(\wedge) and the CSP

2 Known Maltsev conditions

3 Better Maltsev conditions for $SD(\land)$

4 Some conjectured Maltsev conditions

A restricted ≺-minimal characterization

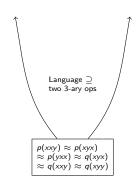
Theorem (JMMM)

A locally finite variety V is $SD(\wedge)$ iff there are idempotent terms $p(\cdots)$, $q(\cdots)$ such that

$$p(x,x,y) \approx p(x,y,x) \approx p(y,x,x) \approx q(x,y,x)$$
 and $q(x,x,y) \approx q(x,y,y)$

There is no idempotent strong Maltsev condition characterizing $SD(\land)$ in the language with one ternary and any number of binary operation symbols.

In the class of all strong idempotent Maltsev conditions in a language consisting of 2 ternary operation symbols, a computer search produced as a candidate for being \preceq -minimal for characterizing SD(\land) varieties. [Jovanović 2013]



 $t(\dots), s(\dots)$ WNU's $t(yxxx) \approx s(yxx)$

 $\exists n \forall k > n \text{ there}$ is k-ary WNU

Language = one 3-ary, any # binary

Other optimal Maltsev characterizations

Theorem (JMMM)

A locally finite variety V is $SD(\wedge)$ iff there is an idempotent term $t(\cdots)$ such that

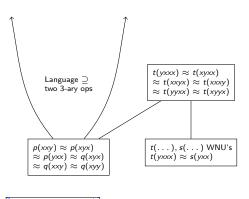
$$t(y, x, x, x) \approx t(x, y, x, x) \approx t(x, x, y, x) \approx t(x, x, x, y)$$

 $\approx t(y, y, x, x) \approx t(y, x, y, x) \approx t(x, y, y, x)$

Look at the relation

$$U = Sg \begin{pmatrix} x & x & x & y \\ x & x & y & x \\ x & y & x & x \\ y & x & x & x \\ y & y & x & x \\ y & x & y & x \\ x & y & y & x \end{pmatrix}$$

in $\mathbb{F}^{\mathcal{V}}(x,y)$, plus 11 ternary relations, plus 3 binary. Then use a (difficult) Ramsey-style argument.



 $\exists n \forall k > n \text{ there}$ is k-ary WNU

Language = one 3-ary, any # binary

Better WNU's

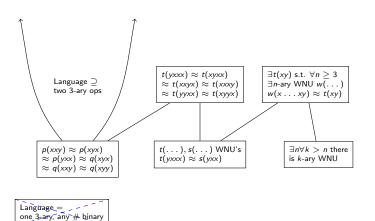
Theorem (JMMM)

A locally finite variety V is $SD(\land)$ iff there is a term t(x,y) and for all n > 3,

- there exists n-ary WNU, $w(\cdots)$ and
- $t(x,y) = w(y,x,\ldots,x)$.

Proof.

(is there time?)



 \bullet SD(\wedge) and the CSP

2 Known Maltsev conditions

3 Better Maltsev conditions for $SD(\land)$

4 Some conjectured Maltsev conditions

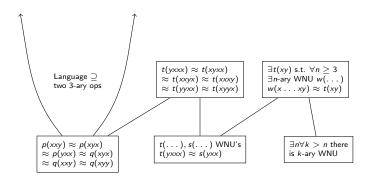
How much better can we do?

Theorem

Any strong Maltsev condition of the form

$$f(x,...,x) \approx x$$
 and $f(y_1,...,y_n) \approx f(z_1,...,z_n)$,

where $y_i, z_j \in \{x_1, \dots, x_m\}$, that is realized in a nontrivial semilattice can also be realized in a nontrivial module.



Language = one 3-ary, any # binary

Language = idempotent f, $f(\overline{x}) = f(\overline{y})$

Candidates for "least-equations"-optimal

Amongst all idempotent strong Maltsev conditions of the form

$$f(\overline{x}) \approx f(\overline{y}) \approx f(\overline{z}),$$

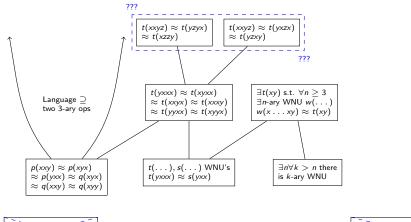
for $f(\cdots)$ of arity \leq 4, a computer search eliminates all but two candidates:

$$t\begin{pmatrix} x & x & y & z \\ y & z & y & x \\ x & z & z & y \end{pmatrix} = \begin{pmatrix} w \\ w \\ w \end{pmatrix}$$

$$t\begin{pmatrix} x & x & y & z \\ y & x & z & x \\ y & z & x & y \end{pmatrix} = \begin{pmatrix} w \\ w \\ w \end{pmatrix}$$

Problem

Prove that a locally finite $SD(\land)$ variety satisfies one (or both) of the Maltsev conditions above.



Language = one 3-ary, any # binary

Language = idempotent f, $f(\overline{x}) = f(\overline{y})$

WNU's (special and otherwise)

Theorem (JMMM)

A locally finite variety V is $SD(\land)$ iff there is a term t(x,y) and for all $n \ge 3$,

- there exists n-ary WNU, $w(\cdots)$ and
- $\bullet \ t(x,y) = w(y,x,\ldots,x).$

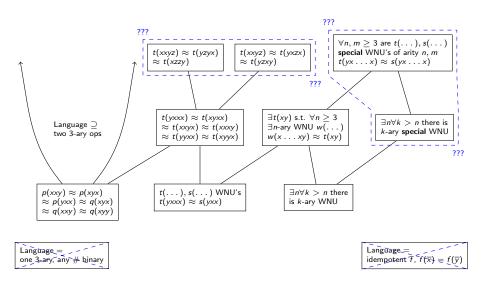
A WNU $w(\cdots)$ is called **special** if t(x, t(x, y)) = t(x, y) for $t(x, y) = w(y, x, \dots, x)$.

Problem

Prove that the WNU's in the above theorem can be taken to be special.

Problem

A locally finite variety V is $SD(\land)$ if there exists n such that V has special WNU's of all arities k > n.



Thank you.

Shanks workshop: Open Problems in Universal Algebra

Vanderbilt University May 28 – June 1, 2015

www.math.vanderbilt.edu/~moorm10/shanks/