Absorption and directed Jónsson terms

Matthew Moore

Vanderbilt University

June 11, 2015

This is joint work with

- Alexandr Kazda, Institute of Science and Technology
- Marcin Kozik, Jagiellonian University
- Ralph McKenzie, Vanderbilt University

 \mathcal{V} is congruence distributive (CD) if for every $\mathbb{A} \in \mathcal{V}$ the lattice of congruences of \mathbb{A} is a distributive lattice.

$$\Leftrightarrow$$
 no \langle , or \langle , in congruence lattices

 \Leftrightarrow there are **Jónsson terms**: $\textit{J}_0, \ldots, \textit{J}_{2n+1}$ such that $\mathcal V$ models

$$\begin{aligned} J_1(x,x,y) &= x, \qquad J_{2n+1}(x,y,y) = y, \qquad J_i(x,y,x) = x \\ J_{2i+1}(x,y,y) &= J_{2i+2}(x,y,y), \qquad J_{2i}(x,x,y) = J_{2i+1}(x,x,y). \end{aligned}$$

& locally finite $\Rightarrow \mathcal{V}$ has finite residual bound and is finitely axiomatizable.

$$J_1(x, x, y) = x, \qquad J_{2n+1}(x, y, y) = y, \qquad J_i(x, y, x) = x$$

$$J_{2i+1}(x, y, y) = J_{2i+2}(x, y, y), \qquad J_{2i}(x, x, y) = J_{2i+1}(x, x, y).$$

If
$$J_i(x, x, y) \rightarrow J_i(x, y, y)$$
, then

A near unanimity (NU) term for a variety \mathcal{V} is an idempotent term $t(\cdots)$ such that

$$\mathcal{V} \models t(y, x, \ldots, x) \approx t(x, y, \ldots, x) \approx t(x, \ldots, x, y) \approx x.$$

 $\exists \text{ NU term} \Leftrightarrow \text{CD, every finite algebra is finitely related} \\ \Leftrightarrow \text{CD, finite algebras are dualizable}$

Definition

For algebra \mathbb{A} with subalgebra $\mathbb{B} \leq \mathbb{A}$, \mathbb{B} **absorbs** \mathbb{A} (written $\mathbb{B} \leq \mathbb{A}$) if there is an idempotent term $t(\cdots)$ such that for all *i*,

$$t(B,\ldots,B,\widehat{A},B,\ldots,B)\subseteq B$$

Theorem (Barto, Kozik 2012)

Let \mathcal{V} be a locally finite idempotent variety. TFAE

- \mathcal{V} is a Taylor variety,
- for all finite $\mathbb{A}, \mathbb{B} \in \mathcal{V}$ and all linked $\mathbb{R} \leq_{sd} \mathbb{A} \times \mathbb{B}$,
 - $\mathbb{R} = \mathbb{A} \times \mathbb{B}$, or
 - \mathbb{A} has a proper absorbing subuniverse, or
 - \mathbb{B} has a proper absorbing subuniverse.

Theorem (Barto, Kozik, Willard 2012)

Let \mathbb{A} be a finite algebra and $\mathbb{R} \leq \mathbb{S} \leq \mathbb{A}^n$ such that $\mathbb{R} \leq_{sd} \mathbb{A}^n$ and $\Delta_n \leq \mathbb{S}$. Then $\Delta_n \cap R \neq \emptyset$.

From near unanimity to directed Jónsson terms

Let $t(\cdots)$ be an *n*-ary near unanimity term for \mathbb{A} :

$$\mathbb{A} \models t(y, x, \ldots, x) \approx t(x, y, \ldots) \approx t(x, \ldots, x, y) \approx x.$$

Define terms D_1, \ldots, D_n by

$$D_1(x, y, z) = t(x, ..., x, y),$$
 $D_n(x, y, z) = t(y, z, ..., z),$
 $D_i(x, y, z) = t(x, ..., x, y, z, ..., z)$ y in the $(n - i + 1)th$ place.

It's not hard to see that these satisfy the directed Jónsson identities:

$$D_1(x, x, y) = x, \quad D_n(x, y, y) = y,$$

 $D_i(x, y, y) = D_{i+1}(x, x, y), \quad D_i(x, y, x) = x.$

These identities imply CD.

$$D_1(x, x, y) = x,$$
 $D_n(x, y, y) = y,$
 $D_i(x, y, y) = D_{i+1}(x, x, y),$ $D_i(x, y, x) = x$

If $D_i(x, x, y) \rightarrow D_i(x, y, y)$, then

Suppose that $\mathbb{B} \trianglelefteq \mathbb{A}$ via the *n*-ary term $t(\cdots)$ and define

$$D_1(x, y, z) = t(x, ..., x, y),$$
 $D_n(x, y, z) = t(y, z, ..., z),$
 $D_i(x, y, z) = t(x, ..., x, y, z, ..., z)$ y in the $(n - i + 1)th$ place.

These satisfy the weak directed Jónsson identities:

$$D_1(x, x, y) = x, \qquad D_n(x, y, y) = y,$$

$$D_i(x, y, y) = D_{i+1}(x, x, y), \qquad D_i(\overline{x, y, x}) = \overline{x},$$

 $\mathbb{B} \trianglelefteq \mathbb{A}$ via $t(\cdots)$, from which the D_i were defined.

$$D_1(x, x, y) = x,$$
 $D_n(x, y, y) = y,$
 $D_i(x, y, y) = D_{i+1}(x, x, y),$ $D_i(B, A, B) \subseteq B,$

If we have terms D_i and $\mathbb{B} \leq \mathbb{A}$ satisfying these, we say \mathbb{B} directed Jónsson absorbs \mathbb{A} and write $\mathbb{B} \triangleleft_{DJ} \mathbb{A}$.

Similarly, replacing $J_i(x, y, x) = x$ with $J_i(B, A, B) \subseteq B$ in the Jónsson identities, we obtain **Jónsson absorption**, written $\mathbb{B} \triangleleft_J \mathbb{A}$.

A has Jónsson terms if and only if $\{a\} \triangleleft_J A$ for all $a \in A$.

A has directed Jónsson terms if and only if $\{a\} \triangleleft_{DJ} A$ for all $a \in A$.

Theorem

Suppose that \mathbb{A} is finite and $\mathbb{E}, \mathbb{F} \leq \mathbb{A}^2$ are preorders (i.e. reflexive and transitive). If $\mathbb{E} \triangleleft_J \mathbb{F}$ then $\mathbb{E} = \mathbb{F}$.

How to get directed Jónsson terms (finite \mathbb{A}): Suppose \mathcal{V} is CD.

- \mathbb{A} is finite, so $\mathcal{V}(\mathbb{A})$ is locally finite.
- $\mathbb{F}_2 = \mathbb{F}(x, z)$ and $\mathbb{F}_3 = \mathbb{F}(x, y, z)$ are finite.
- Let $\mathcal{G} = \{t(x, y, z) \in \mathbb{F}_3 \mid t(x, z, x) = x\},\$ $F = \{(t(x, x, z), t(x, z, z)) \mid t \in \mathbb{F}_3\},\$ $E = \{(t(x, x, z), t(x, z, z)) \mid t \in \mathcal{G}\}.$
- Let \rightarrow and --> be the transitive closures of E and F, resp.
- *E*, *F*, \rightarrow , and $-\rightarrow$ are subalgebras of \mathbb{F}_2 and \rightarrow , $-\rightarrow$ are preorders.
- The Jónsson terms for \mathcal{V} witness $\mathbb{E} \triangleleft_J \mathbb{F}$, so $\rightarrow \triangleleft_J \dashrightarrow$, so $\rightarrow = \rightarrow$.
- $(x,z) \in F$, so $x \to z$, so there are witnessing *E*-related terms $D_i \in \mathcal{G}$.
- These are the directed Jónsson terms!

$$\mathcal{G} = \{t(x, y, z) \in \mathbb{F}_3 \mid t(x, z, x) = x\},\$$
$$E = \{(t(x, x, z), t(x, z, z)) \mid t \in \mathcal{G}\},\$$
$$\rightarrow = \text{transitive closure of } E$$

 $x \rightarrow z$

There is a sequence in *E* witnessing $x \rightarrow z$:

Every pair comes from \mathcal{G} , so $D_i(x, z, x) = x$.

These are the directed Jónsson terms!

Theorem

Let \mathcal{V} be a variety and \mathcal{J} a system of weak Jónsson terms. Then there is a system of weak directed Jónsson terms \mathcal{D} such that for all $\mathbb{A}, \mathbb{B} \in \mathcal{V}$ if $\mathbb{B} \triangleleft_J \mathbb{A}$ via \mathcal{J} then $\mathbb{B} \triangleleft_{DJ} \mathbb{A}$ via \mathcal{D} .

How to get directed Jónsson terms:

- Let V be a variety with Jónsson terms J and let F^{id}₃ be the idempotent reduct of F(x, y, z).
- \mathcal{J} are Jónsson terms for \mathcal{V} , so $\{x\} \triangleleft_J \mathbb{F}_3^{id}$.
- Thus there are directed Jónsson terms \mathcal{D} such that $\{x\} \triangleleft_{DJ} \mathbb{F}_3^{id}$.
- The elements of D are weak directed Jónsson terms plus the identities D_i(x, y, x) = x.
- Thus \mathbb{F}_3^{id} has directed Jónsson terms.

Theorem

Let \mathcal{V} be any variety. \mathcal{V} is congruence distributive if and only if it has directed Jónsson terms.

We can prove similar absorption theorems for (directed) Gumm terms and Pixley terms.

Theorem

Let \mathcal{V} be any variety.

- V is congruence distributive iff it has directed Jónsson terms.
- For any integer k ≥ 1, a V is congruence distributive and has (k + 1)-permuting congruences iff it has Pixley terms of length k.
- \mathcal{V} is congruence modular iff it has directed Gumm terms.

Thank you.